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Abstract 
A recursive method based on successive computations of perimeters of in-
scribed regular polygons for estimating π is formulated by employing the Py-
thagorean theorem alone without resorting to any trigonometric calculations. 
The approach is classical but the formulation of coupled recursion relations is 
new. Further, use of infinite series for computing π is explored by an im-
proved version of Leibniz’s series expansion. Finally, some remarks with ref-
erence to π are made on a relatively recently rediscovered Sumerian tablet 
depicting geometric figures. 
 

Keywords 
π from Recursive Formulas for Polygonal Perimeters, Arayabatha’s Method 
of Estimating π, Improved Leibniz Series for Computing π, Sumerian Tablet 
of Geometric Figures 

 

1. Introduction 

Archimedes (287-212 B.C.) of Syracuse, the first of three greatest mathematicians 
ever according to Gauss (1777-1855), made indelible contributions to not only 
mathematics but every branch of mechanics [1]. Besides giving a method for  

computing π, and showing that for a regular polygon of 96 sides 223 22
71 7

π< < ,  

Archimedes formulated an ingenious way of calculating the segment area of a 
parabola ([2], p. 6). 

Quite a number of mathematicians tackled with the problem of accurate 
computation of π but none devoted a lifetime like Ludolph Van Ceulen (1540- 
1610), whose forename was used to indicate π as Ludolphine number for a long 
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period in Germany [1]. Following Archimedes, by way of computing the cir-
cumference of a regular polygon of 15 × 231 sides, in 1596 Van Ceulen gave π 
correct to 20 decimal places. After Van Ceulen’s death first a 33 decimal-place- 
correct π in 1615 and then his ultimate work of 35 decimal-place-approximation 
was published in 1621 from his works. Lower and upper bounds of π with 35 de-
cimals were engraved on Van Ceulen’s tombstone as a tribute to his lifetime de-
votion to this number. 

The present work diverges from the Archimedes’ frequently used path in two 
ways. First, instead of using both inscribed and circumscribed regular polygons 
for establishing lower and upper bounds for π, only inscribed polygons with 
successively doubling sides are used to improve the estimate of π at each step; a 
method originally used by the Hindus ([3], p. 23). Second, starting from a trian-
gle or a square, two coupled recursive formulas written directly from the Pytha-
gorean theorem are used for computing the perimeters of inscribed polygons of 
successively doubling sides without resorting to any trigonometric calculation. 
Reformulation of an ancient problem by relatively modern techniques can be 
done in various ways but a somewhat meaningful contribution can only be 
achieved by producing a method that uses only the means available in those 
times. It is trivial to write the perimeter p of an 3 2n⋅ -sided polygon  

( )13 2 sin 180 3 2n np R+= ⋅ ⋅  where 1,2,n =   and 1n =  corresponds to a 
hexagon giving the familiar answer 3π   for an estimate. But this formula 
requires calculation of sine function (or in the past tables of sine function as 
used by Van Ceulen) for each n value. This is the main reason of intentional 
avoidance of trigonometric functions in the present approach. Accordingly, the 
resulting formulation is simple enough for an expository treatment of this an-
cient problem at elementary level with no other knowledge than the Pythagorean 
theorem and related square root operations. 

In Section 3, the historically first infinite series approximation to π is appre-
ciably improved and computed results up to 50 terms and 15 decimal places ac-
curacy are presented. 

The final part of the work reveals some rather interesting features concerning 
the overall geometric arrangement of a rediscovered ancient Sumerian tablet by 
establishing definite dimensionless ratios. 

2. Approximate Determination of Circle Perimeter from  
Perimeters of Successively Generated Polygons  

The approach used here is an ancient method of estimating π by computing the 
perimeters of successively generated regular polygons. By employing this me-
thod and starting from the natural choice of a hexagon for which the side length 
is equal to the radius of circumscribing circle, Arayabatha ([3], p. 23) used the 
formula ( ) ( )2 22 2 4s n s n= − −  for computing the perimeter of a polygon 
with 384 sides and gave the estimate for π as 98694 100 3.14156= 

1. The  

 

 

1This value is the same as the one computed at the eight iteration for 73 2 384⋅ =  sides polygon in 
Table 1. 
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Table 1. Twenty six steps of computations starting from a triangle by use of (1) and (2) 
for estimating π correct to 15 decimal places. Incorrect digits are colored red. 

Iteration Sides of polygon Estimated value of π 

1 3·20 2.598076211353316 

2 3·21 3.000000000000000 

3 3·22 3.105828541230249 

4 3·23 3.132628613281238 

5 3·24 3.139350203046867 

6 3·25 3.141031950890510 

7 3·26 3.141452472285462 

8 3·27 3.141557607911858 

9 3·28 3.141583892148319 

10 3·29 3.141590463228051 

11 3·210 3.141592105999271 

12 3·211 3.141592516692157 

13 3·212 3.141592619365384 

14 3·213 3.141592645033691 

15 3·214 3.141592651450767 

16 3·215 3.141592653055037 

17 3·216 3.141592653456104 

18 3·217 3.141592653556371 

19 3·218 3.141592653581438 

20 3·219 3.141592653587704 

21 3·220 3.141592653589271 

22 3·221 3.141592653589663 

23 3·222 3.141592653589760 

24 3·223 3.141592653589785 

25 3·224 3.141592653589791 

26 3·225 3.141592653589793 

 
present work follows a simple didactic approach and derives two coupled recur-
sion formulas as a new contribution for computing the side lengths of regular 
polygons of successively doubled sides. 

2.1. Polygons Generated from a Triangle   

Figure 1 shows a succession of inscribed polygons generated by drawing smaller 
triangles to every side of a main triangle centered in a circle. Thus, starting with 
an inscribed triangle and then creating a hexagon (6-gon), a dodecagon (12-gon), 
icositetragon (24-gon), etc., polygons of 13 2n−⋅  sides are generated for  

1,2,3,n =  .  
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Figure 1. Successive generation of regular polygons starting from an equilateral triangle 
(black) for a circumscribing circle of radius r0. 
 

The side-length s1 of the main equilateral triangle in Figure 1 can be easily 
obtained in terms of the given circumradius r0 by employing the Pythagorean 
theorem together with the relation 1 0 2r r=  so that for the initial stage of cal-
culations  

 1 0 1 03 , 2.s r r r= =                        (1) 

Keeping these starting values at our disposal we proceed to express s2 and r2 of 
the hexagon as ( ) ( )222

2 1 0 12s s r r= + −  and ( )22 2
2 0 2 2r r s= − . Note that s2 can 

be computed from s1 and r1, and then used for computing r2. Generalization of 
these expressions to two coupled recursive formulas is straightforward  

 ( ) ( ) ( )2 2 22 2 2
1 0 1 0 12 , 2 ,n n n n ns s r r r r s+ + += + − = −          (2) 

where 1, 2,3,n =  . Beginning with the known s1 and r1 values, the successive 
use of recursive couple in (2) enables one to compute the side-length sn of a po-
lygon for any desired number of sides 13 2n−⋅  as far as the machine capabilities 
allow. The corresponding perimeter of the polygon is ( )13 2n

n np s−= ⋅ ⋅  hence 
the estimate for 02np rπ  . 

A short FORTRAN program making use of Equations (1) and (2) for succes-
sive computations is provided in the Appendix. Table 1 gives the results of 
twenty six steps, starting from perimeter p1 of the main triangle to perimeter p26 
of the 253 2⋅ -sided polygon. The reason for restricting the computations to this 
range is that the double precision operations are performed for 16 digits and at 
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the 26th step π is estimated correct to 15 decimal places; adding one digit for the 
whole part totals to 16 digits. Further computations are futile as no improve-
ment is possible with the available computational capabilities. Estimates of π 
from these regular polygons are given in the last column of Table 1. The num-
bers in red are incorrect digits; note that as a number starts repeating in suc-
ceeding iterations it can be identified as correct without resorting to any other 
source. An interesting point is observed at the second iteration where a hexagon 
is generated. In this particular case the side length is equal to r0 and therefore the 
perimeter becomes 6r0, resulting in the estimate 0 06 2 3r rπ = , exactly as 
pointed out previously.  

2.2. Polygons Generated from a Square   

Instead of a triangle we are going to begin with a square now. Figure 2 shows 
polygons generated by drawing triangles to every side of a square (regular qua-
drilateral) centered in a circle. Hence, starting with an inscribed square then 
drawing a octagon (8-gon), a hexadecagon (16-gon), etc., polygons of 14 2n−⋅  
sides are generated for 1, 2,3,n =  .  

The side-length s1 of the square in Figure 2 and the distance r1 are obviously  

 1 0 1 02 , 2 2s r r r= =                        (3) 

 

 
Figure 2. Successive generation of regular polygons starting from a square for a circum-
scribing circle of radius r0. 
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where r0 is the circumradius. We now make use of starting values s1 and r1 given 
in (3) and then use the recursion relations of (2) for successive computations. 
The computer program used is identical with the first one except for the starting 
values s1 and r1 hence is not given again. Table 2 gives the results of twenty five 
steps, starting from p1 of the square to p25 of the 244 2⋅ -sided polygon. Estimates 
of π from these regular polygons are given in the last column. Note that starting 
from a square instead of triangle saved only a single step in reaching the same 
degree of accuracy. Going on further and starting from a pentagon would like-
wise not make an appreciable saving either while requiring the use of trigono-
metric relations to initiate the computations, s1 and r1.  
 
Table 2. Twenty five steps of computations starting from a square by use of (2) and (3) 
for estimating π correct to 15 decimal places. Incorrect digits are colored red. 

Iteration Sides of polygon Estimated value of π 

1 4·20 2.828427124746190 

2 4·21 3.061467458920718 

3 4·22 3.121445152258052 

4 4·23 3.136548490545939 

5 4·24 3.140331156954753 

6 4·25 3.141277250932773 

7 4·26 3.141513801144301 

8 4·27 3.141572940367092 

9 4·28 3.141587725277160 

10 4·29 3.141591421511200 

11 4·210 3.141592345570118 

12 4·211 3.141592576584873 

13 4·212 3.141592634338563 

14 4·213 3.141592648776986 

15 4·214 3.141592652386592 

16 4·215 3.141592653288993 

17 4·216 3.141592653514594 

18 4·217 3.141592653570994 

19 4·218 3.141592653585094 

20 4·219 3.141592653588619 

21 4·220 3.141592653589501 

22 4·221 3.141592653589721 

23 4·222 3.141592653589776 

24 4·223 3.141592653589790 

25 4·224 3.141592653589793 
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3. Series Expansions for Estimating π  

We begin by recalling the well-known integral  

 ( ) ( ) ( )1 1

2 00

d arctan arctan 1 arctan 0
41

x x
x

π
= = − =  +∫            (4) 

To evaluate the integral numerically two different series expansions are em-
ployed. The first one is the standard expansion obtained from either simple divi-
sion or Maclaurin series,  

 ( ) 2
2

1

1 1 1 for 1
1

n p p

p
x x

x =

= + − ≤
+ ∑                   (5) 

which in a sense is a deficient representation of 21 1 x+  due to the paradox 
encountered for 1x = . The second expression is a rectified and convergence 
improved expansion obtained from a satisfactory resolution to this paradox [4] 
[5],  

 ( ) 2
2

1

1 11 1 for 1
1 2

n n p p
n

p m p

n
x x

mx = =

  
= + − ≤  +   

∑ ∑            (6) 

where n is an arbitrary truncation order. Integrating (5) and (6) from 0 to 1 gives 
respectively  

 
( )

1

1
1

4 2 1

pn

p p
π

=

−
= +

+∑                        (7) 

 
( )

1

111
4 2 12

pn n

n
p m p

n
m p

π
= =

−  
= +    +  

∑ ∑                   (8) 

For 5n =  we get the following estimates from the standard and improved se-
ries  

 1 1 1 1 14 1 2.976046
3 5 7 9 11

π  − + − + − = 
 

               (9) 

 31 1 26 1 16 1 6 1 1 14 1 3.144588
32 3 32 5 32 7 32 9 32 11

π  − + − + − = 
 

         (10) 

which have respectively −5.3% and 0.1% relative errors, revealing that the im-
proved series performs remarkably well compared to the standard approach. We 
remark here that the classic series representation of π, originally given by Leibniz 
(1646-1716) was the first infinite series derived for estimating π ([2], p. 10) and 
([3], p. 149). 

Table 3 lists π estimates computed for 5,10, ,50n =   terms according to the 
classic and improved formulations. The standard series converges very slowly; 
indeed its convergence is notoriously slow that even 300 terms are insufficient to 
obtain two decimal places of accuracy. On the other hand, the same series in 
improved form performs quite well and actually reaches 15 decimal place accuracy 
for 49n =  terms. It must however be admitted that the present convergence- 
improved series is inferior to the estimate of Isaac Newton (1643-1727), which 
attains the same accuracy by the use of 22n =  terms of a series representing  
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Table 3. Estimates of π for 5,10, ,50n =   terms as computed from the standard (7) 
and improved (8) formulations. Incorrect numbers are colored red. 

Truncation order n Standard series Improved series 

5 2.976046176046177 3.144588744588745 

10 3.232315809405594 3.141633873522418 

15 3.079153394197428 3.141593416930244 

20 3.189184782277596 3.141592669805532 

25 3.103145312886013 3.141592653962860 

30 3.173842337190751 3.141592653598837 

35 3.113820229023574 3.141592653590020 

40 3.165979272843216 3.141592653589798 

45 3.119856090062712 3.141592653589792 

50 3.161198612987051 3.141592653589793 

 
area of a circular arc ([3], p. 160). Nevertheless, the present formulation, (8), de-
serves credit for enormously improving a practically useless series expansion of 
(7).  

The recursion formulas and the series expansion approach presented here are 
at the elementary level with modest achievements. They cannot compete at all 
with very successful schemes such as the Gauss-Legendre iterative algorithm, the 
Ramanujan or Chudnovsky formulas, which are far beyond the classical series, 
producing computations of π correct to trillions of digits. Also, there are the 
so-called spigot algorithms which produce single digits of π that are not reused 
once calculated. These approaches are quite different from infinite series or iter-
ative algorithms in which all intermediate digits are kept to produce the final 
result. Our aim here is simply to present new formulations to the classic ap-
proaches. 

4. A Sumerian Tablet  

Sumerians established the oldest civilization known in the southern Mesopota-
mia (today’s south-central Iraq) between the sixth and fifth millennium BC and 
continued to reign till around 1900 BC. Proto-writing originated from the cities 
of Sumer between 3500-3000 BC and the world’s oldest literary achievement the 
“Epic of Gilgamesh” was written there as an epic poem in cuneiform on 12 clay 
tablets in about 2200 BC thus pre-dating Homer’s Iliad by nearly a millennium 
and a half. Sumerians were quite advanced in mathematics for their time, 
knowing and using the so-called “Pythagorean theorem” thousands of years be-
fore Pythagoras was born and formulating the roots of second-order polyno-
mials. 

Sumerians used a sexagesimal, base 60, number system in line with the one 
used for maps today. For instance 08:25:19 corresponds to  

208 60 25 60 19 30319× + × + =  in our base 10 system, though some ambiguity 
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may arise as explained in [6]. Considerable research effort has gone into deci-
phering the tablets remained from Sumerians. Quite recently, Mansfield [6] has 
done an extensive study of a mathematically remarkable Sumerian tablet named 
Plimpton 322 and arrived at rather new conclusions concerning the purpose of 
such tablets. To support his conjectures Mansfield examined another tablet 
called Si.427, shown in Figure 3. This particular tablet was in a sense redisco-
vered by Mansfield though it had been acquired by Istanbul Archaeology Mu-
seum about 100 years earlier. From the study of Plimpton 322 and Si.427 Mans-
field concludes that Sumerians basically aimed at improved cadastral surveying 
of land and used diagonal triples (Pythagorean triples) to create accurate per-
pendicular lines in apportioning a field. Interested reader is directed to [6] [7] 
for a thorough exposition of these tablets with convincing arguments regarding 
their purposes of use.  

We consider Si.427 from a different viewpoint and examine its geometric 
properties rather than its contents by establishing definite ratios or non-dimen- 
sional numbers. First, the lines on Si.427 are traced with light gray color to clari-
fy their appearance and then a chord cb (gray) and two sagittas st,sb (red) added 
as shown in Figure 4. All these drawings could be done approximately; likewise, 
the lengths indicated, a, b, c,  , could not be measured precisely. More impor-
tantly, the tablet itself is of baked clay with imperfections of form due to produc-
tion defects, possible deformations by thermal stresses in baking, and finally ab-
rasive effects of thousands of years. Being broken into two pieces adds an extra  
 

 
Figure 3. Photograph of Si.427. Courtesy of Istanbul Archaeology Museum (İstanbul Ar-
keoloji Müzesi). 
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Figure 4. Original lines on Si.427 traced (light gray) and a chord (gray) and two sagittas 
(red) added. 
 
element of inaccuracy to the measurements. For all these reasons the statements 
concerning lengths hence ratios must necessarily be taken as approximate and 
our inclination to round off the numbers in some places should be borne with 
tolerance. 

First, measurements of diameter in four different compass directions, North- 
South (N-S), Northeast-Southwest (NE-SW), East-West (E-W), and North-
west-Southeast (NW-SE), were made from the photograph of Si.427 at an arbi-
trary scale. Then, the average of these measurements was calculated and con-
verted to the true size by the use of measure given in the photograph. The aver-
age diameter thus obtained for Si.427 tablet in actual size is 102.82 mmD = . 

A rather simple survey of definite ratios is considered here. To this purpose 
the sagitta st at the top drawn to the chord ct and the sagitta sb drawn to the 
chord cb established at the bottom are of interest to us. Measuring st and sb and 
then calculating ct and cb by the use of mean diameter give 14.72 mmts = , 

72.02 mmtc =  and 29.12 mmbs = , 92.62 mmbc = . Hence one can establish 
the following dimensionless ratios:  

 0.142996, 0.141537
2

t bs s
D D
= =                  (11) 

Viewing these decimals, the first ratio compels the mind to relate it to the quo-
tient 1 7 0.142857 , which could lead to 3 1 7π −   hence 22 7π  , the 
well-known approximation to π. On the other hand, the second ratio can like-
wise be related to the more accurate difference 3 0.141593π − = . All these im-
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plications can of course be purely coincidental but the near repetition of the 
same decimals for both ts D  and 2bs D  makes it less likely. From another 
aspect, assuming random selections for the location of top chord and the base-
line of the main figures would not be convincing when a relevance can be estab-
lished between these two choices. Nevertheless, it must be admitted that no con-
clusive decision can be made. 

We now move on to establish some other ratios for the mere purpose of re-
vealing some hints to the sexagesimal number system used by Sumerians. First, 
the ratios tD c  and bD c  are considered by introducing a very fine adjust-
ment to bc  so that in place of the measured value 92.62 mmbc =  we take 

92.522 mmbc =  for getting a simpler fraction in the end.  

 102.8 257 04 :17 102.8 200 03 : 20,
72 180 03 : 00 92.52 180 03 : 00t b

D D
c c
= = = = = =       (12) 

where the last ratios are expressed in sexagesimal system. Moreover, in view of 
possible measurement inaccuracies 257 180tD c =  could well be  
260 180 04 : 20 03 : 00=  and this ratio is now well associated with  

03 : 20 03 : 00bD c =  when viewed in sexagesimal system. However, such pos-
sibilities are not vitally important as the appearance of 180 3 60 03 : 00= × =  in 
the denominators should be a good enough implication of the sexagesimal sys-
tem. 

Next consider the big triangle on the right side of Si.427 with measured ap-
proximate lengths of 17.942 mma = , 42.942 mmb = , and 45.882 mmc = . 
This is a triangle of ( )5,12,13  triples as Mansfield [7] indicated2. To comply 
with ( )5,12,13  triples exactly, the side lengths of the triangle are redefined as 

18.02 mma = , 43.22 mmb = , and 46.82 mmc = . Since all the lengths are in-
creased to some extent the diameter is likewise set to 104.02 mmD =  instead of 

102.82 mmD = .  

 45 00 : 45 108 01: 48 117 01: 57, ,
260 04 : 20 260 04 : 20 260 04 : 20

a b c
D D D
= = = = = =      (13) 

Notice that the last ratio 117 260 0.45c D = =  is half the ratio  
180 200 0.90bc D = =  hence indicating that 2bc c= . Since all the ratios with 

some relevance to each other are obtained only by some minor variations of the 
measured values, we may attribute them to premeditated arrangements rather 
than arbitrary choices. 

In closing, we are aware that the square on the left in Figure 4 does not exact-
ly have the side length a; likewise, two small squares with sides q are not quite 
square and two small triangles are not exactly the same with sides a and q; but all 
these values are ascribed to them as being the most approximate ones within the 
uncertainties involved. More importantly, works of the true expert Mansfield [6] 
[7] focus on quite practical implications since Si.427 “concerns the sale of private 
land with unusually high precision measurements”; hence, our speculative 

 

 

2Mansfield also indicates the use of (8, 15, 17) triples on Si.427; however, we could not detect it for 
the smaller triangles; all appeared to comply with (5, 12, 13) triples. 
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treatment may only be viewed as something interesting to contemplate. 

5. Concluding Remarks  

An ancient method based on regular polygons of doubling sides is reformulated 
by introducing new recursive equations to estimate π by successive approxima-
tions. To the same purpose, the historically first series approximation to π is im-
proved remarkably and computational results with various degrees of accuracy 
are presented. Finally, some remarks on a relatively recently rediscovered Sume-
rian tablet are made from purely geometric arrangement viewpoint. 
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