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Abstract 
We present old and new results about the size function of a set providing 
simple and complete proofs using basic tools of general topology. For in-
stance, the decomposition of the size function is given and, under the calm-
ness property of a set, the right continuity of the size function with respect to 
both arguments is established. Finally, a classification of its points of discon-
tinuity is given. 
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1. Introduction 

Size functions are shape descriptors, in a geometrical/topological sense. They are 
functions counting certain connected components of a topological space. In this 
paper, we revisit the very first basic results about the continuity of the size func-
tion. The main contribution is to present simple and complete proofs of old and 
new results using only basic topological tools. For example, the fundamental re-
sult on the decomposition of the size function is established in Theorem 9 of 
Section 0. Moreover, the introduction of the calmness property for a set allows 
us to, not only simplify some proofs of old results, but also present simple proofs 
of the continuity to the right for the size function with respect to its two argu-
ments, given in Theorem 16 and Theorem 17 of Section 7. To complete the pa-
per, we present a classification of the discontinuity points of the size function. 
Several papers have been dedicated to the study of size functions. For the pur-
pose of this survey, and because we use only basic topology, it is enough to con-
sider [1] [2] [3] [4] and references therein. One of the motivations for studying 
these functions is the possibility to use them in topology, image analysis, and 
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pattern recognition, see for example [5] [6]. 

2. Path Connectivity and Equivalence Relation 

Let   be a subset of n . A path in   joining a point p to a point q in   is 
a continuous function ( )h ⋅  defined on [ ]0,1  with values in   such that 
( )0h p=  and ( )1h q= . The notion of a path in   induces an equivalence 

relation on any subset   of n . Any two points p and q of   are said to be 
 -equivalent, and we use the notation p q≡ , if and only if either p q=  or 
there is a path joining p and q in  , in other words  

[ ]
( ) ( )

=

oriff
: 0,1 ,continuous,

such that 0 and 1 .

p q

p q
h

h p h q



≡ 
 ∃

= =






 

To each np∈  we associate a non empty subset  

[ ] { }| .np q p q= ∈ ≡ ≠ ∅ 
 

For any subset n⊆   and to each np∈  we define the set  

[ ] [ ] { }| .p p q p q= ∩ = ∈ ≡
 

   

Hence we have  

[ ] if ,
if .

p
p

p
≠ ∅ ∈
= ∅ ∉








 

For 1 2⊂  , we have [ ] [ ] [ ] [ ]1 2
1 2p p p p= ∩ ⊆ ∩ = 

   
  , and we can write 

[ ] [ ]1 2
1p p= ∩ 

 
 . Also, for 1 2⊂  , we have [ ] [ ]

1 2
p p⊂ 

 
. 

The family of sets [ ]{ }| such thatnP p P p⊆ ∃ ∈ = 


  is a partition of  ,  

a family of non empty and disjoint sets called quotient set of   with respect to 
≡ , and noted /≡

 . Elements of /≡
  are called equivalence classes. Hence 

two elements of   are members of the same set P of /≡
  if and only if they 

are  -equivalent. Each element p of one /P ≡∈


  is a representative of the  

equivalence class P. So if 1p  and 2 /p P ≡∈ ∈


  then [ ] [ ]1 2p P p= = 

 
. The 

application /:π ≡→



   , defined by ( ) [ ]p pπ = 

 
, is called the projection of  

  on /≡
 , it is a surjection. 

For any set   we define the cardinality of this set, noted ( )Card  , by  

( )
the number of elements of , if this number is finite,

Card
, else.


= +∞


  

The first two results follow easily. 
Theorem 1. Let 1  and 2  be two non empty sets such that 1 2⊂  . The 

application  
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[ ] [ ]1 2 ,p p

 

 
 

defined for all 1p∈ , induces an injection ( )⋅  of 1/≡
  to 2/≡

 . Hence  

( ) ( )1/ 2/Card Card ,≡ ≡≤
 

   

and  

( ) ( )( )2/ 1/ 2 1/
/

\ = \ ,≡ ≡ ≡
≡

  


        

or equivalently  

( ) ( )( )2/ 1/ 2 1/
/

\ .≡ ≡ ≡
≡

= ∪
  


        

Theorem 2. Let 1  and 2  two non empty sets such that 1 2⊂  . The ap-
plication  

[ ] [ ]
1 2

,p p

 

 
 

defined for any p in  , induces a surjection ( )⋅  from 
1/≡

  to 
2/≡

 . 
Hence  

( ) ( )1 2/ /Card Card .≡ ≡≥
 

   

Moreover, for all 
22 /P ≡∈


 , ( ) ( ){ }1

1
2 1 / 1 2|P P P P−

≡= ∈ =
     is a parti-

tion of 2P .  
We combine now the first two results we get the next one. 
Theorem 3. Let 1 2,   and 1 2,   be non empty sets such that 1 2⊂   and 

1 2⊂  . For the injections  

( )1/ 2/: 1, 2
j j j

j≡ ≡→ =
     

defined in Theorem 1 we have  

( )( ) ( )( )1 21 2
1 2

2 1/ 2 1/
/ /

Card \ Card \≡ ≡
≡ ≡

   
≥   

   
  

 
        

Proof. For 1 2⊂   and  , let us consider the injection  

1/ 2/: .≡ ≡→
     

The subset ( )1/≡    of 2  increase when   increase. Indeed, for 

1p∈ , the set [ ] 2p 


 increase with  . Because the elements of ( )1/≡   are 

of the form [ ] 2p 


 for 1p∈ , we deduce that ( )1/≡    increase with  . 

This fact implies that  

( ) ( )1 21 22 1/ 2 1/\ \ .≡ ≡⊇
          

From Theorem 1 we have  

( )( ) ( )( )1 21 22 1/ 2 1/
/ /

Card \ Card \
j j

≡ ≡
≡ ≡

   
≥      

   
  

 
        

for 1,2j = . Otherwise from Theorem 2 we have  
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( )( ) ( )( )
1 2

2 1/ 2 1/
/ /

Card \ Card \
j jj j≡ ≡

≡ ≡

   
≥      

   
  

 
        

for 1,2j = . Hence  

( )( ) ( )( )
( )( )

1 21 2
1 1

2 2
2

2 1/ 2 1/
/ /

2 1/
/

Card \ Card \

Card \ ,

≡ ≡
≡ ≡

≡
≡

   
≥   

   
 

≥  
 

 



 
 




 



     

  

 

and the result follows.                                               □ 
We obtain directly the next result which will allow us to get a decomposition 

the size function. 
Theorem 4. Let { }i i I∈

  a partition of   and { }i i I∈
  a partition of  . We 

have 
(a) If, for all p∈ , there exists a set i  such that [ ] ip ⊂


 , in other words 

[ ] [ ] ip p= 

 
, then / /ii I≡ ≡∈

=
 

  . 
(b) If, for all p and iq∈ , we have 

i
p q p q≡ ⇔ ≡  , then / / ii i≡ ≡=

 
  . 

(c) Under the preceding assumptions in (a) and (b), we have  

/ / iii I≡ ≡∈
=
 

  .  
Finally, let us state a classical result for a path connected set [7]. 
Theorem 5. The quotient set /≡

  is the set of path connected components 
of  .  

3. Size Function 

The size function of a set   is defined from a measure function, noted ϕ , 
which is simply a well defined and continuous application on n . For any sub-
set   of n  the following notation will be used  

( ) ( ){ }| ,x p p xϕ ϕ≤ = ∈ ≤   

which can be extended to subsets ( )xϕ = , ( )xϕ ≥ , ( )xϕ <  and 
( )xϕ > . 
We consider the quotient set ( )

( )/ y
x

ϕ
ϕ

≤≡
≤


  of ( )xϕ ≤  obtained from 

the equivalence relation ( )yϕ≤≡  induced by continuous paths in ( )yϕ ≤ . 
The size function associated with the set   and the measure function ϕ , 
noted ( ) ( ), ,ϕ ⋅ ⋅ , is defined as the number of elements in this quotient set. Us-
ing the function ( )Card ⋅ , we have  

( ) ( ) ( )
( )( ), /, Card .

y
x y x

ϕϕ ϕ
≤≡

= ≤
   

Hence  
1) ( ) ( ), , 0x yϕ =  if ( )

( )/ y
x

ϕ
ϕ

≤≡
≤


  is empty;  

2) ( ) ( ) { }, , 1, 2,3,x yϕ ∈ =   if ( )
( )/ y

x
ϕ

ϕ
≤≡

≤


  has a finite number of 
elements;  

3) ( ) ( ), ,x yϕ = +∞  if ( )
( )/ y

x
ϕ

ϕ
≤≡

≤


  has infinitely many elements.  
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Example 6. The simplest example, with no interest for the sequel of the paper, 
is for { }a= . Let ( )a sϕ = . Hence  

( )
if ,
if .

x s
x

x s
ϕ

≥
≤ = ∅ <


  

For any y∈ , we have  

( )
( )

( )
{ }/

/

if ,

if ,
y

y

x s
x

x s
ϕ

ϕ
ϕ ≤

≤

≡

≡

 = ≥≤ = 
∅ <





 
  

hence  

( ) ( ),

1 if ,
,

0 if .
x s

x y
x sϕ

≥
=  <

  □ 

Since ( )ϕ ζ≤  increases with respect to ζ , an increasing/decreasing 
property of the size function follows directly from Theorem 1 and Theorem 2. 

Theorem 7. [2] [4] ( ) ( ), ,x yϕ  increases with respect to x and decreases 
with respect to y.  

4. Decomposition of the Size Function  

Under some assumptions, the set   can be decomposed into disjoint subsets. 
The size function is then decomposable into a sum of size functions of its sub-
sets. 

Theorem 8. If   is compact and locally path connected, then path con-
nected components of   are in finite number and form /≡

 .  
Proof. As   is locally path connected, for any point p∈  and any 

neighborhood pV  of p in   there is a sub-neighborhood pU  in   which 
is path connected. The elements of /≡

  are then path connected components 
of  . These related components are both open and closed in  , and there-
fore also compact. As we have /≡=

 
  , it is a covering of the compact set 

  by disjoint open sets. Then, there is a finite sub-covering of  , but this 
sub-covering may only be the covering itself and therefore /≡

  has a finite 
number of elements, hence the result follows.                            □ 

Let us set  

( ){ }/ | 1, , ,n n N≡ = = 


    

where ( )N   represents the number of non empty and disjoint elements of 

/≡
  in such a way that  

( )

1
.

N

n
n=

=




   

Moreover, we have  

( )
( )

( )
1

.
N

n
n

x xϕ ϕ
=

≤ = ≤




   

Theorem 9. If   is compact and locally path connected, we have  
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( )
( )

( )
( )

( )/ /
1

,
y yn

N

n
n

x x
ϕ ϕ

ϕ ϕ
≤ ≤≡ ≡

=

≤ = ≤


 



   

and then  

( ) ( )
( )

( ) ( ), ,
1

, , .
n

N

n
x y x yϕ ϕ

=

= ∑


    

Proof. We use Theorem 4 with ( )xϕ= ≤   and ( )yϕ= ≤  . Based 
on (a) of Theorem 4, we have  

( )
( )

( )
( )

( )/ /
1

.
y y

N

n
n

x x
ϕ ϕ

ϕ ϕ
≤ ≤≡ ≡

=

≤ = ≤


 



   

Based on (b) of Theorem 4, since for any p and ( )nq xϕ∈ ≤  we have  

( ) ( )if and only if ,
ny yp q p qϕ ϕ≤ ≤≡ ≡   

so we obtain  

( )
( )

( )
( )/ / .

y yn
nx x

ϕ ϕ
ϕ ϕ

≤ ≤≡ ≡
≤ = ≤

 
   

The result follows from (c) of Theorem 4.                             □ 
Using this result, it is enough now to consider a compact, connected, and lo-

cally path connected set  , i.e., a compact set   with only one path con-
nected component. Let us note this family by  

( )
( )
( )
( )

c
loc

i is compact,
ii is connected,

.
iii is locally path connected,
iv contains more than one point.

n

 
 
 = ⊆ 
 
  

 








 

Condition (iv) implies that the set   contains at least two points, so con-
sequently it contains infinitely many points and  

( )Card .= +∞  

The set c
loc∈  will be said calm if the number of connected components 

of ( )sϕ ≤  is always finite, that is to say  

( )
( )( )/Card

s
s

ϕ
ϕ

≤≡
≤ < +∞


  

for all s. 

5. General Results 

Let   be a calm element of c
loc . From the continuity of ( )ϕ ⋅  on the com-

pact set  , let us define s  and s , and the set ( ),s s∆  by  

( ){ } ( ){ }min | max | ,s p p p p sϕ ϕ= ∈ ≤ ∈ =   

and  

( ) ( ){ }, , | .ns s x y s x y s∆ = ∈ ≤ ≤ ≤  

We start by establishing basic general results for ( ) ( ), ,x yϕ  defined on 
2  which are illustrated in Figure 1. 

https://doi.org/10.4236/apm.2022.1210044


F. Dubeau 
 

 

DOI: 10.4236/apm.2022.1210044 571 Advances in Pure Mathematics 
 

 
Figure 1. The function ( ) ( ), ,x yϕ . 

 
Theorem 10. [2] [4] Suppose s s≤ . We have 
i) ( ) ( ), , 0x yϕ =  for all ( ) ( ){ }2

0, , |x y R x y x s∈ = ∈ < ;  
ii) ( ) ( ), , 1x yϕ =  for all ( ) 1,x y R∈  where  

( ){ }2
1 , | andR x y x s y s= ∈ ≥ ≥ ;  

iii) ( ) ( ), ,x yϕ = +∞  for all ( ),x y R∞∈  where  

( ) { }{ }2, | and min ,R x y x s y x s∞ = ∈ ≥ < ;  

iv) ( ) ( ),1 ,x yϕ≤ < +∞  for all ( ),s s s∈∆ .  
Proof. i) In this case ( )xϕ ≤ = ∅ .  
ii) Here we have  

( )
( )

( ) ( ){ }/ / .
y

x x x
ϕ

ϕ ϕ ϕ
≤≡ ≡

≤ = ≤ = ≤


    

iii) There exists a non isolated point p∈  such that ( )y p xϕ< ≤ . Hence  
from continuity of ( )ϕ ⋅ , ( )

( )/ y
x

ϕ
ϕ

≤≡
≤


  contains an infinity of singletons,  

the result follows.  
iv) Direct consequence of the definition of the size function for a calm set 
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 , and the increasing/decreasing property of Theorem 7.                 □ 
Now, since ( ) ( ), ,x yϕ  is an integer valued function, we get directly the 

next result. 
Theorem 11. [2] [4] At any point of continuity of ( ) ( ), ,x yϕ  there is a 

neighborhood of this point where the function is constant.  

6. Examples 
6.1. Generalities 

We present three simple examples of the size function based on two different 
measure functions ( )ϕ ⋅ . In each example, the set   is a simple continuous 
curve of finite length. It is a compact, connected, and locally path connected set. 

6.2. First Example 

Let 2⊂   given in Figure 2. The measure function is  

( ) ( )2 1 22p u vϕ = +  

which is the euclidean distance from the origin ( )0,0O =  to ( ) 2,p u v= ∈ . 
We have 1s =  and 6s = . Figure 3 presents the size function ( ) ( ), ,x yϕ  
on ( ),s s∆  for the set  . 
 

 
Figure 2. The set  . 
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Figure 3. Values of the function ( ) ( ), ,x yϕ . 

 
  is a calm set. On the diagonal of ( ),s s∆ , namely ( ) ( ), ,x y s s=  for 
[ ]1,6s∈ , we have  

( ) ( )

[ )
[ )
[ )
[ )
[ )

,

2 for 1,2 ,
4 for 2,3 ,
6 for 3,4 ,

, =
4 for 4,5 ,
2 for 5,6 ,
1 for 6.

s
s
s

s s
s
s
s

ϕ

 ∈
 ∈
 ∈


∈
 ∈


=

  

6.3. Second Example 

The set   of Figure 4 is a curve of finite length. The measure function is the 
distance of a point ( ),p u v=  to the Ou  axis, so we have  

( ) .p vϕ =  

The size function is given in Figure 5. We have 1s =  and 6s = . 
  is also a clam set. On the diagonal of ( ),s s∆ , namely ( ) ( ), ,x y s s=  for 
[ ]1,6s∈ , we have  
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Figure 4. The set  . 
 

( ) ( )

[ )
[ )
[ )
[ )
[ )
[ )
[ )

,

1 for 1,2 ,
2 for 2,2.5 ,
3 for 2.5,3 ,
1 for 3,4 ,

,
4 for 4,4.5 ,
3 for 4.5,5 ,
2 for 5,6 ,
1 for 6.

s
s
s
s

s s
s
s
s
s

ϕ

 ∈
 ∈
 ∈


∈= 
∈

 ∈


∈
 =

  

6.4. Third Example 

For the third example, we slightly modify the preceding example as indicated in 
Figure 6. In this set, two sequences of triangles with decreasing height go to the 
points A and B. For the point A, the coordinates of the highest vertex of each 
triangle are  

( ) 1 1, 1 4 ,4 2 ,
2 2

n n

n nu v
    = + +         
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Figure 5. The function ( ) ( ), ,x yϕ . 

 

 
Figure 6. The set  . 
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for 0,1,2,n =  . We have ( ) ( )lim , 1,4n n nu v A→∞ = = . For the point B, the 
coordinates of the lowest vertex of each triangle are  

( ) 1 1, 1 4 ,3 2 .
2 2

n n

n nu v
    = + −         

 

for 0,1,2,n =  . We have ( ) ( )lim , 1,3n n nu v B→∞ = = . 
Figure 7 contains the graph of the size function ( ) ( ), ,x yϕ  for the set   

of Figure 6. We have 1s =  and 6s = . On the diagonal of ( ),s s∆ , namely 
( ) ( ), ,x y s s=  for [ ]1,6s∈ , we have  

( , ) ( , )ϕ s s  

( ) ( )

( )

[ )

( )

1

,

1

1 11 for 3 2 ,3 2 , 0,1,2, ,
2 2

1 for 3,4 ,
, = for 4,

1 11 for 4 2 ,4 2 , 0,1,2, ,
2 2

1 for 6.

n n

n n

n s n

s
s s s

n s n

s

ϕ

+

+

      + ∈ − − =          


∈
+∞ =
      + ∈ + + =         
 =





  

So,   is not a calm set, the problem is around the point A. 
 

 
Figure 7. The function ( ) ( ), ,x yϕ . 
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7. Continuity Properties of Size Function  

In this section we present continuity results of the size function ( ) ( ), ,x yϕ  
for a particular family of sets, namely calm set   in c

loc . New results will 
complete old ones that can be found in [2] [4]. We present simple proofs of all 
results. In particular, the assumption of calmness of a set, which might simplify 
proofs of old results, is mainly introduced to prove, using elementary topological 
tools, the right continuity of the size function ( ) ( ), ,x yϕ  with respect to the 
variable y. 

Let us now consider the size function ( ) ( ), ,x yϕ  defined on the set 
( ),s s∆  for s s< . 
Theorem 12. For ( ) ( ), ,x y s s∈∆ , 
1) there exists ( ), 0x yε >  such that the function ( ) ( ), , yϕ ⋅  is constant on 

the segments ( )( ) { }, ,x x y x yε− ×  and ( )( ) { }, ,x x x y yε+ ×  in ( ),s s∆ ; 
2) there exists ( ), 0x yε >  such that the function ( ) ( ), ,xϕ ⋅  is constant on 

the segments { } ( )( ), ,x y x y yε× −  and { } ( )( ), ,x y y x yε× +  in ( ),s s∆ .  
Proof. We know that ( ) ( ), ,x yϕ < +∞  and take only integer values. From 

the increasing property with respect to x, and the decreasing property with re-
spect to y, there exists only a finite number of discontinuities on the parallel 
segments to the axes in ( ),s s∆ . The result follows.                      □ 

Theorem 13. [4] Let 1x , 2x , 1y  and 2y  be real numbers such that 

1 2 1 2s x x y y s≤ ≤ ≤ ≤ < . Then we have the following inequality  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 2 2 1 2, , , ,, , , , 0,x y x y x y x yϕ ϕ ϕ ϕ− ≥ − ≥        

which can be written as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1 1 1 2, , , ,, , , , 0.x y x y x y x yϕ ϕ ϕ ϕ− ≥ − ≥        

Proof. Using notation of Section 2, set ( )i ixϕ= ≤   for 1,2i = , and 

( )j jyϕ= ≤   for 1,2j = . So, we consider the injections  

1/ 2/: .
j j j≡ ≡→

     

for 1,2j = , and the result follows from Theorem 1 and Theorem 3.         □ 
Corollary 1. Let 1x , 2x , 1y  and 2y  be real numbers such that 

1 2 1 2s x x y y s≤ ≤ ≤ ≤ < . If  

( ) ( ) ( ) ( )2 1 1 2, ,, , ,x y x yϕ ϕ=    

then ( ) ( ), ,x yϕ  is constant on the rectangle with vertices ( )1 1,x y , ( )2 1,x y , 
( )2 2,x y , and ( )1 2,x y .  

Remember that ( ) ( ), ,x yϕ  is increasing with respect to x and decreasing 
with respect to y, and let ( ) ( ), ,x y s s∈∆ . We will consider the following defi-
nitions.  

1) We will say that ( ) ( ), , yϕ ⋅  is left discontinuous at x  if  

( ) ( ) ( ) ( ), ,lim , , ,
x x

x y x yϕ ϕ↑
<    

and is right discontinuous at x  if  
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( ) ( ) ( ) ( ), ,lim , , .
x x

x y x yϕ ϕ↓
>    

2) We will say that ( ) ( ), ,xϕ ⋅  is left discontinuous at y  if  

( ) ( ) ( ) ( ), ,lim , , ,
y y

x y x yϕ ϕ↑
>    

and right discontinuous at y  if  

( ) ( ) ( ) ( ), ,lim , , .
y y

x y x yϕ ϕ↓
<    

Theorem 14. [4] Let ( ) ( ), ,x y s s∈∆ . We have the following two results.  
1) If x  is a point of left discontinuity of ( ) ( ), , yϕ ⋅ , then x  is also a 

point of left discontinuity of ( ) ( ), , yϕ ⋅  for all y in the interval [ ],x y .  
2) If x  is a point of right discontinuity of ( ) ( ), , yϕ ⋅ , then x  is also a 

point of right discontinuity of ( ) ( ), , yϕ ⋅  for all y in the interval [ ],x y .  
Proof. 1) Let us assume the contrary, i.e., the function ( ) ( ), , yϕ ⋅  is left 

continuous at x  for a y in the interval [ ),x y . We have  

( ) ( ) ( ) ( ), ,lim , , .
x x

x y x yϕ ϕ↑
=    

But we know that ( ) ( ), ,x yϕ  increases with respect to x. So, from Theorem 
13, for all x x y y< ≤ <  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,, , , , 0.x y x y x y x yϕ ϕ ϕ ϕ− ≥ − ≥        

Taking the limit for x x↑ , and using the left continuity at ( ),x y , we get  

( ) ( ) ( ) ( ), ,lim , , ,
x x

x y x yϕ ϕ↑
=    

which contradict the left discontinuity at ( ),x y . 
2) A similar proof holds for this result. Let us assume the contrary, i.e., the 

function ( ) ( ), , yϕ ⋅  is right continuous at x  for a y in the interval ( ),x y . 
We have  

( ) ( ) ( ) ( ), ,lim , , .
x x

x y x yϕ ϕ↓
=    

But we know that ( ) ( ), ,x yϕ  increases with respect to x. So, from Theorem 
13, for all x x y y< ≤ <  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,, , , , 0.x y x y x y x yϕ ϕ ϕ ϕ− ≥ − ≥        

Taking the limit for x x↓ , and using the right continuity at ( ),x y , we get  

( ) ( ) ( ) ( ), ,lim , , ,
x x

x y x yϕ ϕ↓
=    

which contradict the right discontinuity at ( ),x y .                       □ 
We have a similar proof for the next result. 
Theorem 15. [4] Let ( ) ( ), ,x y s s∈∆ . We have the following two results. 
1) If y  is a point of left discontinuity of ( ) ( ), ,xϕ ⋅ , then y  is also a 

point of left discontinuity of ( ) ( ), ,xϕ ⋅  for all x in the interval [ ],x y .  
2) If y  is a point of right discontinuity of ( ) ( ), ,xϕ ⋅ , then y  is also a 

point of right discontinuity of ( ) ( ), ,xϕ ⋅  for all x in the interval [ ],x y .  
Theorem 16. [4] At every point ( ) ( ), ,x y s s∈∆  such that x y< , the func-
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tion ( ) ( ), , yϕ ⋅  is right continuous with respect to x, i.e.,  

( ) ( ) ( ) ( ), ,lim , , .
x x

x y x yϕ ϕ↓
=    

Proof. Since the function is constant to the right, there is a finite number of 
equivalence classes. When x decreases to x , by continuity of ( )ϕ ⋅  and com-
pactness of the sets, all the equivalence classes decrease and remain non empty. 
The limit equivalence classes are non empty and no new equivalence class is 
created, so the size function remains constant, and hence is right continuous 
with respect to x.                                                  □ 

Theorem 17. At any point ( ) ( ), ,x y s s∈∆  such that x y s≤ < , the func-
tion ( ) ( ), ,xϕ ⋅  is right continuous with respect to y, i.e.,  

( ) ( ) ( ) ( ), ,lim , , .
y y

x y x yϕ ϕ↑
=    

Proof. The proof of this result proceeds in several steps.  
Step 1. Suppose ( ) ( ), ,xϕ ⋅  is not right continuous with respect to y at y , 

so  

( ) ( ) ( ) ( ), ,, lim , .
y y

x y x yϕ ϕ↓
>    

From Theorem 15, the discontinuity is extended to the point ( ),y y  on the 
diagonal of ( ),s s∆  and we have  

( ) ( ) ( ) ( ), ,, lim ,
y y

y y y yϕ ϕ↓
>    

Also, from Theorem 12 there exists ( ), 0y yε >  such that ( ) ( ), ,y yϕ  is 
constant for ( )( ), ,y y y x yε∈ + . 

Step 2. From the calmness assumption, ( ) ( ), ,y y Lϕ = < +∞ , so there are L  
equivalence classes in ( )

( )/ y
y

ϕ
ϕ

≤≡
≤


  which are disjoint compact subsets of  

n . Let 0d >  be less than the distance between any pair of equivalence classes  
of ( )

( )/ y
y

ϕ
ϕ

≤≡
≤


 . This d is well defined because there is a finite number L of 

compact subsets of n  to consider. Each element ( )
( )/ ylP y
ϕ

ϕ
≤≡

∈ ≤


  can  

be covered by the open set  

( ); 4 .
l

l l
p P

P U B p d
∈

⊆ =


 

From the definition of d, those lU 's are disjoint open sets and we have  

( ) .
L

l
l

y U Uϕ ≤ ⊆ =


  

Step 3. Equivalence classes of ( )
( )/ y

y
ϕ ε

ϕ
≤ +≡

≤


 , for any ε  such that 

y y sε< + ≤  are union of a finite number of those of ( )
( )/ y

y
ϕ

ϕ
≤≡

≤


 , so  

they are also compact subsets of n . Our assumption on the right discontinuity 
implies that we can join two equivalence classes, say 1P  and 2P , of 

( )
( )/ y

y
ϕ

ϕ
≤≡

≤


  in ( )yϕ ε≤ +  but we cannot join them in ( )yϕ ≤ .  
Step 4. Let us built now an open covering of ( )yϕ > . Take 
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( )0 , 2x yε ε=  and take a path in ( )0yϕ ε≤ +  to join the two equivalence 
classes 1P  and 2P  that we cannot join in ( )yϕ ≤ . Let us suppose that this 
path has (at least) one point 1q  in \U  with ( )1 0y q yϕ ε< ≤ + . Take 

( )( )1 1 02 2q yε ϕ ε= − ≤  and ( )1 1V yϕ ε= > + . Take a path in  
( )1yϕ ε≤ +  which join the two equivalent classes that we cannot join in 
( )yϕ ≤ . Let us suppose that this path has (at least) one point 2q  in \U  

with ( )2 1y q yϕ ε< ≤ + . Take ( )( )2 2 12 2q yε ϕ ε= − ≤  and  
( )2 2V yϕ ε= > + . And so on, we construct a sequence of open sets { } 1k k

V ∞

=
, 

and a sequence of points { } 1k k
q ∞

=
, such that the open set 

1 kk
V∞

=
 cover 

( )yϕ > .  
Step 5. So 

1 kk
U V∞

=
∪


 covers  . Any finite subcovering of this covering is 
included in an open covering of the form 

1

K
kk

U V
=

∪


 for a certain K. But this 
open set does not contain 1Kq + ∈ . Since   is compact, it means that we 
cannot construct the sequence of open sets { } 1k k

V ∞

=
.  

Step 6. If we cannot build the sequence of open sets { } 1k k
V ∞

=
, there is 

( )00 , 2x yε ε ε< < =  such that for each path joining the two equivalence 
classes 1P  and 2P  in ( )yϕ ε≤ + , either 1) there exists p on the path such 
that ( )p yϕ >  and then p U∈ , or else 2) any point p on the path is such that 
( )p yϕ ≤ .  
1) In the first case it means that all points of the path are in U, and the path is 

covered by a finite union of non empty disjoint open sets, at least the two sets 

1U  and 2U , which is not possible because the path is a connected set.  
2) In the second case 1P  and 2P  are joined in ( )yϕ ≤ , which is con-

trary to the assumption.  
In both cases we get a contradiction and the result follows.               □ 
Now we can establish the next result. 
Theorem 18. [4] Any open ball around a point of discontinuity ( ),x y  of the 

size function ( ) ( ), ,ϕ ⋅ ⋅  in ( ),s s∆  contains at least one point of discontinu-
ity with respect to x or to y in ( ),s s∆ , and this point is not ( ),x y .  

Proof. Let ( ) ( ), ,x y s s∈∆  be a point of discontinuity of ( ) ( ), ,ϕ ⋅ ⋅ . Then, 
any open ball in ( ),s s∆  around ( ),x y  contains one point ( ) ( )ˆ ˆ, ,x y s s∈∆  
such that  

( ) ( ) ( ) ( ), , ˆ ˆ, , .x y x yϕ ϕ≠    

We can connect ( ),x y  and ( )ˆ ˆ,x y  with a path which belongs to the open 
ball composed of at least two parallel segments to the axes Ox and Oy. We can 
arrive to the point ( ),x y  from the right, in x or in y, and from the right conti-
nuity, on this segment the value is ( ) ( ), ,x yϕ . It is therefore necessary that 

( ) ( ), ,ϕ ⋅ ⋅  be discontinuous along at least one of these segments, i.e., that 

( ) ( ), ,ϕ ⋅ ⋅  admits at least one point of discontinuity, either with respect to x or 
with respect to y.                                                   □ 

Theorem 19. [4] For any ( ) ( ), ,p x y s s= ∈∆ , with x y< , there is 
( ) 0pε >  such that the open set  
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( ) ( ) ( ) ( ) ( ) ( ){ }, , : , , ,pW p x y s s x x p y y p x x y yε ε ε= ∈∆ − < − < ≠ ≠  

contains no point of discontinuity of the size function ( ) ( ), ,ϕ ⋅ ⋅ .  
Proof. If p  is a point of continuity, the result follows. So let us suppose that 

p  is a point of discontinuity and for any integer 0n >  there is a point of dis-
continuity ( ),n n np x y=  in the neighborhood ( )1 nW p . From Theorem 18, the 
points np  can be supposed to be points of discontinuity with respect to x or to 
y. We can extract a subsequence { }

1kn k
p

∞

=
, of { } 1n n

p ∞

=
 such that 

knp  are all 
points of discontinuity with respect to x or all points of discontinuity with re-
spect to y. Let us select the case where the 

knp  are points of discontinuity with 
respect to x (we could repeat the same step in case of discontinuity with respect 
to y). Fixing the integer N such that 1 1x N y N+ < − , and let us consider the 
function  

( ) ( ) ( ), , 1 : 1 , 1 .y N x N x Nϕ ⋅ − − + →   

We know that the discontinuity of the function ( ) ( ), , 1y Nϕ ⋅ −  with re-
spect to x is repeated for inferior values towards the diagonal. Consequently 

( ) ( ), , 1y Nϕ ⋅ −  as an infinite number of point of discontinuity. Otherwise, 

( ) ( ), , 1y Nϕ ⋅ −  is increasing with respect to x. Since each discontinuity implies 
an increasing value of at least 1, it follows that ( ) ( ), 1 , 1x N y Nϕ + − = +∞ . But 
this contradict the fact that ( ) ( ), ,x yϕ  is finite for all x y<  (Theorem 10), 
hence the result follows.                                             □ 

Let us look now at the closed subset of ( ),s s∆  well defined for 0ε >  by  

( ) ( ) ( ){ }, , , |s s x y s s x yε ε∆ = ∈∆ + ≤  

The diagonal of this set is given by ( ) ( ){ }, , |x y s s x yε∈∆ + = . 
Theorem 20. For all 0ε > , ( ),s sε∆  contains a finite number of vertical 

lines having discontinuities with respect to x and a finite number of horizontal 
lines having discontinuities with respect to y. Consequently, ( ),s sε∆  contains 
a finite number of intersections of vertical and horizontal lines which contain 
the discontinuities.  

Proof. We cover the compact set ( ),s sε∆  with the family ( ) ( ){ }
( ),p p s s

W p
ε

ε ∈∆
  

for which we can extract a finite subcovering. Each element of this subcovering 
has a vertical segment and a horizontal segment which can both be extended in 
( ),s s∆  to the boundary. So there is a finite number of vertical and horizontal 

lines, and consequently of intersections, in ( ),s sε∆  which contains all the 
discontinuities.                                                    □ 

Thanks to Theorems 13, 14, 15, and 19, we can now classify the intersections. 
To any intersection points of these lines ( )ˆ ˆ ˆ,p x y= , let us choose the neighbor-
hood  

( ) ( ) ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , : , , ,pW p x y s s x x p y y p x x y yε ε ε= ∈∆ − < − < ≠ ≠  

for an ( )ˆ 0pε >  small enough such that this neighborhood contains no other 
vertical or horizontal lines of the preceding result except ˆx x=  and ˆy y= . 
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Consequently, around this point, the discontinuities will be on the horizontal 
and vertical segments passing through that intersection point. 

We will discuss discontinuity on horizontal segments (increasing x and de-
creasing x, for ˆy y= ) and vertical segments (increasing y and decreasing y, for 

ˆx x= ) from p̂ . Let us consider the values of ( ) ( ), ˆ ˆ,x yϕ  for the 4 following 
points in this neighborhood:  

( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2NE E Np x y x p y pε ε = = + + 

 
 

( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2NO O Np x y x p y pε ε = = − + 

 
 

( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2SO O Sp x y x p y pε ε = = − − 

 
 

( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , .
2 2SE E Sp x y x p y pε ε = = + − 

 
 

Figure 8 presents those points. 
There are 7 cases to analyze. The first case corresponds to a point of continui-

ty, and the six remaining cases correspond to points of discontinuity. Figure 9 
presents each case. 

Case (C). We have  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆSE NE NOp p pϕ ϕ ϕ= =      

and  
 

 
Figure 8. ( ) ( )ˆ ˆpW pε  neighborhood of a point p̂ . 
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Figure 9. Possible configurations of an intersection point p̂ . 
 

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ= =      

Decreasing x and increasing y segments contain no discontinuity up to the 
vertical boundary x s=  or the horizontal boundary y s=  of ( ),s s∆ . The 
increasing x and decreasing y segments contain no discontinuity up to the next 
intersection point on these segments or up to the diagonal boundary of 

( ),s sε∆ . 
Case (D1). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ> >      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ> >      

The increasing x and decreasing y segments contain discontinuities up to the 
diagonal boundary x y=  of ( ),s s∆ . Decreasing x and increasing y segments 
contain discontinuities at least until the next intersection point on each of these 
segments or up to the vertical boundary x s=  or the horizontal boundary 
y s=  of ( ),s s∆ . 

Case (D2). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ> =      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ> >      

The increasing y segment contains no discontinuity up to the horizontal 
boundary y s=  of ( ),s s∆ . For the other segments we have the same conclu-
sions as in the Case (D1). 
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Case (D3). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ> >      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ> =      

The decreasing x segment contains no discontinuity up to the vertical boun-
dary x s=  of ( ),s s∆ . For the other segments we have the same conclusions 
as in the Case (D1). 

Case (D4). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ> =      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ= >      

The increasing y segment contains no discontinuity up to the horizontal 
boundary y s=  of ( ),s s∆ . The decreasing y segments contain no disconti-
nuity up to the next intersection point on these segments or up to the diagonal 
boundary of ( ),s sε∆ . The decreasing x segment contains discontinuities up to 
the next intersection point or up to the vertical boundary x s=  of ( ),s s∆ . 
The increasing x segment contains discontinuities up to the diagonal of ( ),s s∆ . 

Case (D5). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ= >      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ> =      

The decreasing x segment contains no discontinuity up to the vertical boun-
dary x s=  of ( ),s s∆ . The increasing x segment contains no discontinuity up 
to the next intersection point or up to the diagonal of ( ),s sε∆ . The increasing 
y segment contains discontinuities up to the next intersection point or up to the 
horizontal boundary y s=  of ( ),s s∆ . The decreasing y segment contains 
discontinuities up to the diagonal of ( ),s s∆ . 

Case (D6). If  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ ,SE NE NOp p pϕ ϕ ϕ> =      

and  

( ) ( ) ( ) ( ) ( ) ( ), , ,ˆ ˆ ˆ .SE SO NOp p pϕ ϕ ϕ> =      

The decreasing x segment contains no discontinuity up to the vertical boun-
dary x s=  of ( ),s s∆ . The increasing x segment contains discontinuities up 
to the diagonal of ( ),s s∆ . The increasing y segment contains no discontinuity 
up to the horizontal boundary y s=  of ( ),s s∆ . The decreasing y segment 
contains discontinuities up to the diagonal of ( ),s s∆ . 
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8. Conclusion 

We did an overview of the main properties of the size functions by giving basic 
demonstrations of each of the results using elementary topology. In particular, 
we presented the decomposition of the size function (Theorem 9) and estab-
lished results of continuity to the right of the size function (Theorem 16 and Theo-
rem 17) under an assumption that the set   is calm. This assumption could 
be removed but a proof of the right continuity with respect to the y variable 
would be much more difficult to establish [8]. An interesting problem would be 
to find a way to approximate a set by a calm set and study the difference between 
the two size functions. The reader interested by a survey using more advanced 
tools of topology, like Morse theory, could consider [9]. A modern approach 
used in topological data analysis is to use persistent homology and Betti num-
bers [10]. 
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