

New Necessary Conditions for a Fixed-Point of Maps in Non-Metric Spaces

Ivan Raykov

Department of Mathematics and Computer Science, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA Email: raykovi@uapb.edu

How to cite this paper: Raykov, I. (2022) New Necessary Conditions for a Fixed-Point of Maps in Non-Metric Spaces. *Advances in Pure Mathematics*, **12**, 561-564. https://doi.org/10.4236/apm.2022.1210043

Received: August 20, 2022 Accepted: October 15, 2022 Published: October 18, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, $h: Y \rightarrow Y$ and present necessary conditions for a fixed point of this map on this map on Y. Therefore, this gives an opportunity to take a best conclusion in some sense, when non-metrizable matter is under consideration.

Keywords

Topological Space, Compact Metric Space, Fixed Point, Contraction Map, Non-Metric Space

1. Introduction

Classification in non-metric spaces is considered before (ref. [1]). Fixed point sets of non-metric spaces were also under interest (ref. [2]).

With this work, we introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, $h: Y \to Y$ and present necessary conditions for a fixed point of this map on Y.

For that purpose, we denote by X a compact metric topological space and $f: X \to X$ a contraction map of X onto X. We suppose that Y is a bounded closed non-metric space and $g: X \to Y$ is a map from X to Y satisfying Definition 3.

We remind next basic definitions and theorems:

Definition 1. Contraction Mapping

Let (X, d) be a complete metric space. Then the map $T: X \to X$ is called a contraction map on *X* if there exists $q \in [0,1)$ such that

$$d\left(T\left(x\right),T\left(y\right)\right) \leq qd\left(x,y\right)$$

for all $x, y \in X$ (ref. [3], ref. [4], ref. [5], ref [6], ref. [7], ref. [8], ref. [9]).

We remind that Banach contraction principle for multivalued maps is valid and also the next.

Theorem, proved by H. Covitz and S. B. Nadler Jr. (ref. [9]).

Theorem 1. Let (X, d) be a complete metric space and $F: X \to B(X)$ a contraction map. (B(X) denotes the family of all nonempty closed bounded (compact) subsets of X.) Then there exists $x \in X$ such that $x \in F(x)$.

Definition 2. Attracting Fixed Points

An *attracting fixed point* of a function *f* is a fixed point x_0 of *f* such that for any value of *x* in the domain that is close enough to x_0 , the iterated function sequence

$$x, f(x), f(f(x)), f(f(x))), \cdots$$

converges to x_0 (ref. [9]).

Theorem 2. Banach Fixed Point Theorem.

Let (X, d) be a non-empty complete metric space with a contraction mapping $T: X \to X$. Then T admits a unique fixed-point x^* in X (*i.e.* $T(x^*) = x^*$). Furthermore, x^* can be found as follows: start with an arbitrary element $x_0 \in X$ and define a sequence $\{x_n\}_{n \in N}$ by $x_n = T(x_{n-1})$ for $n \ge 1$. Then $\lim_{n \to \infty} x_n = x^*$ (ref. [3], ref. [4], ref. [5], ref. [6], ref. [7], ref. [8], ref. [9]).

Definition 3. Let $g: X \to Y$ be a function between a metric topological space X and non-metric topological space Y. We say that the limit of g at a point $x \in X$ is the point $y \in Y$ if for all neighborhoods N of y in Y, there exists a neighborhood M of x such that $g(M) \subset N$ (ref. [10]).

2. Main Result

We consider now the next theorem:

Theorem 3. Let *X* denote a non-empty compact metric topological space with a contraction set-valued map $f: X \to X$.

Let *Y* is a bounded closed non-metric topological space.

We suppose also that the map:

 $g: X \to Y$ exists and satisfies Definition 3.

Then we can construct a fixed-point of map in *Y*, $h: Y \to Y$.

Proof. If $x^* \in X$ is a fixed-point for $f(i.e. f(x^*) = x^*)$, $I \subset X$ is a neighborhood close enough of x^* . Let $x_0 \in I$ close enough to x^* and we suppose that that the contracting map f will satisfy Banach Fixed Point Theorem and the iterated function sequence

$$x_0, f(x_0), f(f(x_0)), f(f(x_0))), \cdots$$

will satisfy Definition 2 and will converge to x^* . Therefore x^* is an attracting fixed point of *f*. Let us denote $x_1 \in f(x_0)$, $x_2 \in f(x_1) = f(f(x_0))$,

 $x_3 \in f(x_2) = f(f(f(x_0)))$, and so on, or $x_{i+1} \in f(x_i), i = 0, 1, 2, 3, \cdots$. Hence we created a sequence $\{x_i\}$ such that $\lim_{i \to \infty} x_i = x^*$ and $f(x^*) = x^*$.

We suppose now that a function $g: X \to Y$ exists and satisfies Definition 3 and the limit of g(x) at the point $x^* \in X$ is the point $y^* \in Y$. According to Definition 3, a corresponding neighborhood M_0 of x^* to a neighborhood $N_0 \subset Y$ of $y^* \in Y$, $g(M_0) \subset N_0$, can be chosen such that it will contain the sequence $\{x_i\}_{i=0}^{\infty}$. We can find also a neighborhood $M_1 \subset M_0$ of x^* containing only the sequence $\{x_i\}_{i=1}^{\infty}$, such that $g(M_0 \setminus M_1) \subset N_0$ and $x_0 \in M_0 \setminus M_1$, and also a neighborhood $M_2 \subset M_1$ of x^* containing only the sequence $\{x_i\}_{i=2}^{\infty}$, such that $g(M_1 \setminus M_2) \subset N_0$, where $x_1 \in M_1 \setminus M_2$. This process of creating neighborhoods M_k of x^* can continue such that each M_k will contain only the corresponding sequence $\{x_i\}_{i=k}^{\infty}$, $x_{i-1} \in M_{i-1} \setminus M_i$, $g(M_{i-1} \setminus M_i) \subset N_0$, and so on. We created a sequence $\{M_i\}$ of neighborhoods of x^* . According to their construction neighborhoods M_i are closer and closer to x^* when i is larger and larger.

A correspondent sequence of neighborhoods $\{N_i\}$ of $y^* \in Y$ can be created also such that $g(M_i) \subset N_i$.

We can choose $N_{i+1} \subset N_i$ according to Definition 3, because by construction $M_{i+1} \subset M_i$ and g(x) has the limit the $y^* \in Y$ at the point $x^* \in X$, and therefore $g(M_{i+1}) \subset g(M_i)$.

Therefore, we can choose a sequence of neighborhoods $\{N_i\}$ of $y^* \in Y$ such that $g(M_i) \subset N_i$. Because the function g(x) has a limit $y^* \in Y$ as x approaches $x^* \in X$ then N_i from the correspondent sequence of neighborhoods $\{N_i\}$ becomes smaller and smaller and closer to $y^* \in Y$. By construction $y_i \in g(x_i)$, $x_i \in M_i \setminus M_{i+1}$, and therefore $y_i \in N_i \setminus N_{i+1}$.

It follows from Definition 3 that:

 $\lim_{x_i \to x^*} g(x_i) = g(x^*) = y^* = \lim_{x_i \to x^*} y_i = y^*.$ It means that when N^* is the only

point y^* then M^* will be only the point x^* and then $g(x^*) = y^*$.

Therefore, by using the sequence $\{y_i\}$, we can introduce the function $h: Y \to Y$, where $y_0, h(y_0), h(h(y_0)), h(h(h(y_0))), \cdots$.

If we denote $y_1 \in h(y_0)$, $y_2 \in h(y_1) = h(h(y_0))$, $y_3 \in h(y_2) = h(h(h(y_0)))$, and so on, or $y_{i+1} \in h(y_i)$, $i = 0, 1, 2, 3, \cdots$, for which $h(y_i) \to y^*$. Therefore the iterated function sequence $\{h(y_i)\}$ will have a fixed point y^* , or $h(y^*) = y^*$, if N^* contains the only point y^* .

Because every sequence $\{y_i\}$ constructed by this way will have the same limit y^* then y^* will be the fixed point of the so constructed function h(y), $h(y^*) = y^*$.

Acknowledgements

We express our gratitude to Professor Alexander Arhangel'skii from OU-Athens

for creating the problem.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- Martin, J.R. and Weis, W. (1984) Fixed Point Sets of Metric and Non-Metric Spaces. *Transactions of the American Mathematical Society*, 284, 337-353. <u>https://doi.org/10.1090/S0002-9947-1984-0742428-1</u>
- [2] Weinshall, D., Jacobs, D. and Gdalyahu, Y. (1998) Classification in Non-Metric Spaces. NIPS, December.
- [3] Arhangel'skii, A.V. and Fedorchuck, V.V. (1990) The Basic Concepts and Constructions of General Topology. In: Arhangel'skii, A.V. and Pontrjagin, L.S., Eds., *General Topology I, Encyclopedia of the Mathematical Sciences*, Springer, Berlin, 1-90. <u>https://doi.org/10.1007/978-3-642-61265-7_1</u>
- [4] Arhangel'skii, A.V. and Ponomarev, V.I. (1984) Fundamentals of General Topology: Problems and Exercises. Mathematics and Its Applications, Vol. 13, Springer, Dordrecht, Boston.
- [5] Arhangel'skii, A.V. (1991) Topological Function Spaces. Kluwer Academic Publishers, Dordrecht, Boston.
- [6] Arhangel'skii, A.V. and Tkachenko, M. (2008) Topological Groups and Related Structures. Atlantic Press, Dordrecht. <u>https://doi.org/10.2991/978-94-91216-35-0</u>
- [7] Dugundji, J. (1966) Topology. Allyn and Bacon, Inc., Boston.
- [8] Davis, S.W. (2005) Topology. McGraw-Hill, Boston.
- [9] Gorniewicz, L. (2008) Topological Fixed Point Theory of Multivalued Mappings. Springer Verlag, Berlin.
- [10] Eckman, E. (2012) Connect the Shapes Crochet Motifs: Creative Techniques for Joining Motifs of All Shapes. Storey Publishing, North Adams, Massachusetts.