Algebraic Points of Any Degree 1 with $(1 \geq 9)$ over \mathbb{Q} on the Affine Equation Curve
 $\mathcal{C}_{3}(11): y^{11}=x^{3}(x-1)^{3}$

Boubacar Sidy Balde, Mohamadou Mor Diogou Diallo, Oumar Sall
Mathematics and Applications Laboratory (MAL), U.F.R of Sciences and Technologies, Université Assane Seck of Ziguinchor, Ziguinchor, Senegal
Email: b.balde1244@zig.univ.sn, m.diallo1836@zig.univ.sn, osall@univ-zig.sn

How to cite this paper: Balde, B.S., Diallo, M.M.D. and Sall, O. (2022) Algebraic Points of Any Degree l with ($l \geq 9$) over \mathbb{Q} on the Affine Equation Curve $\mathcal{C}_{3}(11): y^{11}=x^{3}(x-1)^{3}$. Advances in Pure Mathematics, 12, 519-525.
https://doi.org/10.4236/apm.2022.129039

Received: July 28, 2022
Accepted: September 13, 2022
Published: September 16, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this work, we use the finiteness of the Mordell-weil group and the Riemann Roch spaces to give a geometric parametrization of the set of algebraic points of any given degree over the field of rational numbers \mathbb{Q} on curve $\mathcal{C}_{3}(11): y^{11}=x^{3}(x-1)^{3}$. This result is a special case of quotients of Fermat curves $\mathcal{C}_{r, s}(p): y^{p}=x^{r}(x-1)^{s}, 1 \leq r, s, r+s \leq p-1$ for $p=11$ and $r=s=3$. The results obtained extend the work of Gross and Rohrlich who determined $\bigcup_{[\mathbb{K}: \mathbb{Q}] \leq 2} \mathcal{C}_{1}(11)(\mathbb{K})$ the set of algebraic points on $\mathcal{C}_{1}(11)(\mathbb{K})$ of degree at most 2 on \mathbb{Q}.

Keywords

Mordell-Weil Group, Jacobian, Galois Conjugates, Algebraic Extensions, the Abel-Jacobi Theorem, Linear Systems

1. Introduction

Let \mathcal{C} be an algebraic curve defined on number field \mathbb{K}. We note $\mathcal{C}(\mathbb{K})$ be the set of algebraic points on \mathcal{C} defined on \mathbb{K} and $\bigcup_{[\mathbb{K}: \mathbb{Q}] \leq l} \mathcal{C}(\mathbb{K})$ the set of algebraic points on \mathcal{C} to be coordinated in \mathbb{K} of degree at most l over \mathbb{Q}. The degree of an algebraic point R is the degree of its defining field on \mathbb{Q}; $\operatorname{deg}(R)=[\mathbb{Q}(R): \mathbb{Q}]$. A famous theorem of Faltings states that if $g \geq 2$ then the set $\mathcal{C}(\mathbb{K})$ of algebraic points on \mathcal{C} defined on \mathbb{K} is finite. A generaliza-
tion to subvarieties of an abelian variety allows a qualitative study of the set $\bigcup_{[\mathbb{K}: \mathbb{Q} \leq l \leq} \mathcal{C}(\mathbb{K})$ of algebraic points on \mathcal{C} of degree at most lover \mathbb{Q}.

We propose to study in detail the set of algebraic points of any degree given on \mathbb{Q} on the curve $\mathcal{C}_{3}(11)$ of affine equation $y^{11}=x^{3}(x-1)^{3}$.

Our affine equation curve $\mathcal{C}_{3}(11): y^{11}=x^{3}(x-1)^{3}$ is a special case of quotients of Fermat curves of equations $\mathcal{C}_{r, s}(p): y^{p}=x^{r}(x-1)^{s}, 1 \leq r, s, r+s \leq p-1$ studied in [1].

Let $P_{0}=(0: 0: 0), P_{1}=(1: 0: 1)$ and $P_{\infty}=(1: 0: 0)$ denote the point at infinity of $\mathcal{C}_{3}(11)$. Consider the Jacobian folding defined by

$$
\begin{array}{ccc}
j: \mathcal{C}_{3}(11)(\mathbb{Q}) & \rightarrow & J(\mathbb{Q}) \\
P & \mapsto & {\left[P-P_{\infty}\right]}
\end{array}
$$

We will designate J the Jacobian of $\mathcal{C}_{3}(11)$ and by $j(P)$ the class denoted [$\left.P-P_{\infty}\right]$ of $P-P_{\infty}$.

Our approach relies on the knowledge of the Mordell-Weil group of the Jacobian J-variety of $\mathcal{C}_{3}(11)$ and the condition that it is finite: it consists in using the Abel-Jacobi theorem to plunge the curve into its Jacobian and to study linear systems on the curve $\mathcal{C}_{3}(11)$.

The Mordell-Weil group $J(\mathbb{Q})$ of rational points of the Jacobian J of $\mathcal{C}_{3}(11)$ is finite and given by $J(\mathbb{Q}) \cong(\mathbb{Z} / 11 \mathbb{Z}) \quad([2]$, p. 219 and [3]).

Our study results from the work of Gross-Rohrlich who determined
$\bigcup_{[\mathbb{K}: \mathbb{Q}] \leq 2} \mathcal{C}_{1}(11)(\mathbb{K})$ the set of algebraic points on $\mathcal{C}_{1}(11)(\mathbb{K})$ of degree at most 2 on \mathbb{Q} and given by the following proposition:

Proposition 1.

The set of algebraic points on $\mathcal{C}_{1}(11)(\mathbb{K})$ of degree at most 2 on \mathbb{Q} is given by

$$
\begin{equation*}
\bigcup_{[\mathbb{K}: \mathbb{Q}] \leq 2} \mathcal{C}_{1}(11)(\mathbb{K})=\left\{\left(\frac{1}{2} \pm \sqrt{y^{11}+\frac{1}{4}}, y\right)\right\} \cup\left\{P_{\infty}\right\} \tag{1}
\end{equation*}
$$

We extend these results by giving a geometric parametrization of algebraic points of any given degree on \mathbb{Q} on the curve $\mathcal{C}_{3}(11)$ of affine equation $y^{11}=x^{3}(x-1)^{3}$.

Our essential tools are:

1) The Mordell-Weil group $J(\mathbb{Q})$ of the Jacobian of \mathcal{C}.
2) The Abel-Jacobi theorem (see in [4] page 156).
3) The study of linear systems on the curve $\mathcal{C}_{3}(11)$.
4) The theory of intersection.

Our main result is as follows:

Theorem

The set of algebraic points of degree $l \geq 9$ on $\mathcal{C}_{3}(11)$ is:

$$
\begin{equation*}
\bigcup_{[\mathbb{K}: \mathbb{Q}] \leq 1} \mathcal{C}_{3}(11)(\mathbb{K})=\mathcal{F}_{0} \cup\left(\bigcup_{k=1}^{10} \mathcal{F}_{k}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathcal{F}_{0}=\left\{\left.\left(-\frac{\sum_{i \leq \frac{l}{2}} a_{i} y^{\frac{i}{3}}}{\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}}, y\right) \right\rvert\, a_{0} \neq 0, a_{\frac{l}{2}} \neq 0 \text { if } l\right. \text { is even, } \\
& b_{\frac{l-11}{2}} \neq 0 \text { if } l \text { is odd and } y \text { root of the equation } \\
& \left.y^{11}\left(\sum_{j \leq \frac{l-11}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{i}\right)\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}\right) \\
& \mathcal{F}_{k}=\left\{\left.\left(-\frac{\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{\frac{i}{3}}}{\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}}, y\right) \right\rvert\, b_{0} \neq 0, a_{\frac{l+11-k}{2}} \neq 0 \text { if } l\right. \text { is even, } \\
& b_{\frac{l-k}{2}} \neq 0 \text { if } l \text { is odd and } y \text { root of the equation } \\
& \left.y^{k}\left(\sum_{j \leq \frac{l-k}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{i-(11-k)}\right)\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}\right) \tag{4}
\end{align*}
$$

2. Auxiliary Results

Let x and y be the rational functions defined on $\mathcal{C}_{3}(11)$ by: $x(X, Y, Z)=\frac{X}{Z}$ and $y(X, Y, Z)=\frac{Y}{Z}$.
For a divisor D on $\mathcal{C}_{3}(11)$, let $\mathcal{L}(D)$ be the $\overline{\mathbb{Q}}$-vector space of the rational functions f defined by

$$
\begin{equation*}
\mathcal{L}(D)=\left\{f \in \overline{\mathbb{Q}}\left(\mathcal{C}_{3}(11)\right)^{*} \mid \operatorname{div}(f) \geq-D\right\} \cup\{0\} \tag{5}
\end{equation*}
$$

The projective equation of the curve $\mathcal{C}_{3}(11)$ is: $Y^{11}=X^{3} Z^{5}(X-Z)^{3}$.
We have the following Lemma:

Lemma 1

$$
\begin{gathered}
\mathcal{C}_{3}(11): y^{11}=x^{3}(x-1)^{3} \\
\operatorname{div}(x)=11 P_{0}-11 P_{\infty} \\
\operatorname{div}(y)=3 P_{0}+3 P_{1}-6 P_{\infty} \\
\operatorname{div}(x-1)=11 P_{1}-11 P_{\infty}
\end{gathered}
$$

Proof 1 It is a calculation of type

$$
\begin{equation*}
\operatorname{div}(x-i)=((X-i Z)=0) \cdot \mathcal{C}_{3}(11)-(Z=0) \cdot \mathcal{C}_{3}(11) \tag{6}
\end{equation*}
$$

From (6), we have $\operatorname{div}(x)=(X=0) \cdot \mathcal{C}-(Z=0) \cdot \mathcal{C}$.
For $X=0$, the projective equation gives $Y^{11}=0$; and for $Z=1$, we obtain the point $P_{0}=(0: 0: 1)$ of multiplicity equal to 11 .

For $Z=0$, the projective equation gives $Y^{11}=0$; and for $X=1$, we obtain the point $P_{\infty}=(1: 0: 0)$ of multiplicity equal to 11 . Thus $\operatorname{div}(x)=11 P_{0}-11 P_{\infty}$.

In the same way we show that $\operatorname{div}(x-1)=11 P_{1}-11 P_{\infty}$ and $\operatorname{div}(y)=3 P_{0}+3 P_{1}-6 P_{\infty}$.

Consequence 1

$$
\begin{gathered}
11 j\left(P_{0}\right)=11 j\left(P_{1}\right)=0 ; \\
3 j\left(P_{0}\right)+3 j\left(P_{1}\right)=0
\end{gathered}
$$

so $j\left(P_{0}\right)$ and $j\left(P_{1}\right)$ generate the same subgroup $J(\mathbb{Q})$.
Lemma $2 \mathrm{~A} \mathbb{Q}$-base of $\mathcal{L}\left(l P_{\infty}\right)$ is given by:

$$
\begin{equation*}
\mathcal{B}=\left\{\left.\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i} \right\rvert\, i \in \mathbb{N}, i \leq \frac{l}{2}\right\} \cup\left\{\left.x\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j} \right\rvert\, j \in \mathbb{N}, j \leq \frac{l-11}{2}\right\} \tag{7}
\end{equation*}
$$

Proof 2. It is clear that \mathcal{B} is free. It remains to show that

$$
\operatorname{dim}(\mathcal{B})=\operatorname{dim}\left(\mathcal{L}\left(l P_{\infty}\right)\right)
$$

By the Riemann-Roch theorem, we have $\operatorname{dim}\left(\mathcal{L}\left(l P_{\infty}\right)\right)=l-g+1$ as soon as $l \geq 2 g-1$ with $g=\frac{11-1}{2}$

Let us consider the following cases:
Case 1: Suppose that l is even, and let $l=2 h$. Then we have

$$
i \leq \frac{l}{2}=h
$$

and

$$
j \leq \frac{l-11}{2} \Leftrightarrow j \leq \frac{2 h-11}{2} \Leftrightarrow j \leq \frac{2 h-11-1}{2}=h-6=h-g-1
$$

So we obtain

$$
\mathcal{B}=\left\{1, \frac{x^{2}(x-1)^{2}}{y^{7}}, \cdots,\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{h}\right\} \cup\left\{x, x \frac{x^{2}(x-1)^{2}}{y^{7}}, \cdots, x\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{h-g-1}\right\},
$$

and therefore $\operatorname{dim}(\mathcal{B})=(h+1)+(h-g)=2 h-g+1=l-g+1=\operatorname{dim}\left(\mathcal{L}\left(l P_{\infty}\right)\right)$.
Case 2: Suppose that l is odd, and let $l=2 h+1$.

$$
i \leq \frac{l}{2} \Leftrightarrow i \leq \frac{2 h+1}{2} \Leftrightarrow i \leq h
$$

and

$$
j \leq \frac{l-11}{2} \Leftrightarrow j \leq \frac{2 h-10}{2}=h-g
$$

So we obtain

$$
\mathcal{B}=\left\{1, \frac{x^{2}(x-1)^{2}}{y^{7}}, \cdots,\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{h}\right\} \cup\left\{x, x \frac{x^{2}(x-1)^{2}}{y^{7}}, \cdots, x\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{h-g}\right\}
$$

and therefore

$$
\operatorname{dim}(\mathcal{B})=(h+1)+(h-g+1)=2 h+1-g+1=l-g+1=\operatorname{dim}\left(\mathcal{L}\left(l P_{\infty}\right)\right)
$$

3. Demonstration of the Theorem

Let $R \in \mathcal{C}_{3}(11)(\overline{\mathbb{Q}})$ with $[\mathbb{Q}(R): \mathbb{Q}]=l$. Let R_{1}, \cdots, R_{l} be the Galois conjugates of R, and let $t=\left[R_{1}+\cdots+R_{l}-l P_{\infty}\right]$ which is a point of $J(\mathbb{Q})=\left\{m j\left(P_{0}\right), 0 \leq m \leq 10\right\}$; so $t=m j\left(P_{0}\right)$ with $0 \leq m \leq 10$. This gives the relation

$$
\begin{equation*}
\left[R_{1}+\cdots+R_{l}-l P_{\infty}\right]=m j\left(P_{0}\right) \tag{8}
\end{equation*}
$$

We note that $R \notin\left\{P_{0}, P_{1}, P_{\infty}\right\}$.
Case $m=0$
Then there exists a rational function f such that $\operatorname{div}(f)=R_{1}+\cdots+R_{l}-l P_{\infty}$, so $f \in \mathcal{L}\left(I P_{\infty}\right)$. According to Lemma 2, we have

$$
f=\sum_{i \leq \frac{l}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}+x \sum_{j \leq \frac{l-11}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}
$$

with $a_{\frac{l}{2}} \neq 0$ if l is even (otherwise the R_{i} would be equal to P_{∞}) and $b_{\frac{l-11}{2}} \neq 0$ if l is odd (otherwise the R_{i} would be equal to P_{∞}). At the points R_{i} we have

$$
\sum_{i \leq \frac{l}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}+x \sum_{j \leq \frac{l-11}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}=0
$$

hense

$$
x=-\frac{\sum_{i \leq \frac{l}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}}{\sum_{j \leq \frac{l-11}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}}
$$

and therefore

$$
y^{11}=x^{3}(x-1)^{3} \Leftrightarrow y^{\frac{1}{3}}=\frac{x^{2}(x-1)^{2}}{y^{7}}
$$

so

$$
x=-\frac{\sum_{i \leq \frac{1}{2}} a_{i} y^{\frac{i}{3}}}{\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}} .
$$

So the equation $y^{11}=x^{3}(x-1)^{3}$ becomes

$$
y^{11}\left(\sum_{j \leq \frac{l-11}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{i}\right)\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}
$$

which is an equation of degree l in y. We thus find a family of points of degree l

$$
\begin{aligned}
& \mathcal{F}_{0}=\left\{\left.\left(-\frac{\sum_{i \leq \frac{l}{2}} a_{i} y^{\frac{i}{3}}}{\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}}, y\right) \right\rvert\, a_{0} \neq 0, a_{\frac{l}{2}} \neq 0 \text { if } l\right. \text { is even, } \\
& b_{\frac{l-11}{2}} \neq 0 \text { if } l \text { is odd and } y \text { root of the equation } \\
&\left.y^{11}\left(\sum_{j \leq \frac{l-11}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{i}\right)\left(\sum_{i \leq \frac{l}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-11}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}\right\}
\end{aligned}
$$

In the same way we show that for $m=k$ with $k \in\{1, \cdots, 10\}$, the relation (8) gives $\left[R_{1}+\cdots+R_{l}-l P_{\infty}\right]=k j\left(P_{0}\right)=(k-11) j\left(P_{0}\right)$. Then there exists a rational function f such that $\operatorname{div}(f)=R_{1}+\cdots+R_{l}+(11-k) P_{0}-(l+11-k) P_{\infty}$, so $f \in \mathcal{L}(l+11-k) P_{\infty}$. According to the Lemma 2, we have

$$
f=\sum_{i \leq \frac{l+11-k}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}+x \sum_{j \leq \frac{l-k}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j} ; \text { and as } \quad \operatorname{ord} f_{P_{0}}=11-k
$$

therefore

$$
f=\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}+x \sum_{j \leq \frac{l-k}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}
$$

with $a_{\frac{l+11-k}{2}} \neq 0$ if l is even (otherwise the R_{i} would be equal to P_{∞}) and $b_{\frac{l-k}{2}} \neq 0$ if I is odd (otherwise the R_{i} would be equal to P_{∞}). At the points R_{i} we have

$$
\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}+x \sum_{j \leq \frac{l-k}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}=0
$$

hense $x=-\frac{\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{i}}{\sum_{j \leq \frac{l-k}{2}} b_{j}\left(\frac{x^{2}(x-1)^{2}}{y^{7}}\right)^{j}}$ and therefore $x=-\frac{\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{\frac{i}{3}}}{\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}}$.
So the equation $y^{11}=x^{3}(x-1)^{3}$ becomes

$$
y^{k}\left(\sum_{j \leq \frac{l-k}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{i-(11-k)}\right)\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}
$$

which is an equation of degree l in y. We thus find a family of points of degree l

$$
\begin{aligned}
& \mathcal{F}_{k}=\left\{\left(-\frac{\left.\sum_{\frac{11-k \leq i \leq \frac{l+11-k}{2}}{} a_{i} y^{\frac{i}{3}}}^{\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}}, y\right) \mid b_{0} \neq 0, a_{\frac{l+11-k}{2}}^{2} \neq 0 \text { if } l \text { is even, }}{}\right.\right. \\
& b_{\frac{l-k}{2}} \neq 0 \text { if } l \text { is odd and } y \text { root of the equation } \\
&\left.y^{k}\left(\sum_{j \leq \frac{l-k}{2}} b_{j} y^{j}\right)^{2}=\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{i-(11-k)}\right)\left(\sum_{11-k \leq i \leq \frac{l+11-k}{2}} a_{i} y^{\frac{i}{3}}+\sum_{j \leq \frac{l-k}{2}} b_{j} y^{\frac{j}{3}}\right)^{3}\right\}
\end{aligned}
$$

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Sall, O. (2003) Algebraic Points on Some Quotients of Fermat Curves. Comptes Rendus Mathematique, 336, 117-120. https://doi.org/10.1016/S1631-073X(02)00028-6
[2] Gross, B.H. and Rohrlich, D.E. (1978) Some Results on the Mordell-Weil of the Jacobian of the Fermat Curve. Inventiones Mathematicae, 44, 201-224. https://doi.org/10.1007/BF01403161
[3] Faddeev, D. (1961) On the Divisor Class Groups of Some Algebraic Curves. Soviet Mathematics, 2, 67-69.
[4] Griffiths, P.A. (1989) Introduction to Algebraic Curves. Translations of Mathematical Monographs, Providence. https://doi.org/10.1090/mmono/076

