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Abstract 

In this work, we use the finiteness of the Mordell-weil group and the Rie-
mann Roch spaces to give a geometric parametrization of the set of algebraic 
points of any given degree over the field of rational numbers   on curve 

( )3 11 : ( )311 3 1y x x= − . This result is a special case of quotients of Fermat 

curves ( ) ( ), : 1 sp r
r s p y x x= − , 1 , , 1r s r s p≤ + ≤ −  for 11p =  and 

3r s= = . The results obtained extend the work of Gross and Rohrlich who 
determined [ ] ( )( )1: 2

11
≤     the set of algebraic points on ( )( )1 11   of 

degree at most 2 on  . 
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1. Introduction 

Let   be an algebraic curve defined on number field  . We note ( )  be 
the set of algebraic points on   defined on   and [ ] ( ): l≤     the set of 
algebraic points on   to be coordinated in   of degree at most l over  . 
The degree of an algebraic point R is the degree of its defining field on  ; 

( ) ( )deg :R R=     . A famous theorem of Faltings states that if 2g ≥  then 
the set ( )  of algebraic points on   defined on   is finite. A generaliza-
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tion to subvarieties of an abelian variety allows a qualitative study of the set 

[ ] ( ): l≤     of algebraic points on   of degree at most l over  . 
We propose to study in detail the set of algebraic points of any degree given 

on   on the curve ( )3 11  of affine equation ( )311 3 1y x x= − . 
Our affine equation curve ( ) ( )311 3

3 11 : 1y x x= −  is a special case of quo-
tients of Fermat curves of equations ( ) ( ), : 1 sp r

r s p y x x= − , 1 , , 1r s r s p≤ + ≤ −  
studied in [1]. 

Let ( )0 0 : 0 : 0P = , ( )1 1: 0 :1P =  and ( )1: 0 : 0P∞ =  denote the point at in-
finity of ( )3 11 . Consider the Jacobian folding defined by  

( )( ) ( )
[ ]

3: 11j J
P P P∞

→
−

 
 

We will designate J the Jacobian of ( )3 11  and by ( )j P  the class denoted 
[ ]P P∞−  of P P∞− . 

Our approach relies on the knowledge of the Mordell-Weil group of the Jaco-
bian J-variety of ( )3 11  and the condition that it is finite: it consists in using 
the Abel-Jacobi theorem to plunge the curve into its Jacobian and to study linear 
systems on the curve ( )3 11 . 

The Mordell-Weil group ( )J   of rational points of the Jacobian J of 
( )3 11  is finite and given by ( ) ( )11J ≅    ([2], p. 219 and [3]). 
Our study results from the work of Gross-Rohrlich who determined  

[ ] ( )( )1: 2
11

≤     the set of algebraic points on ( )( )1 11   of degree at most 
2 on   and given by the following proposition: 

Proposition 1. 
The set of algebraic points on ( )( )1 11   of degree at most 2 on   is given 

by  

[ ]
( )( ) { }11

1
: 2

1 111 ,
2 4

y y P∞
≤

   = ± +      




 
           (1) 

We extend these results by giving a geometric parametrization of algebraic 
points of any given degree on   on the curve ( )3 11  of affine equation 

( )311 3 1y x x= − .  
Our essential tools are: 
1) The Mordell-Weil group ( )J   of the Jacobian of  .  
2) The Abel-Jacobi theorem (see in [4] page 156).  
3) The study of linear systems on the curve ( )3 11 .  
4) The theory of intersection.  
Our main result is as follows: 
Theorem  
The set of algebraic points of degree 9l ≥  on ( )3 11  is: 

[ ]
( )( )

10

3 0
: 1

11 k
l k≤ =

 
=  

 


 

 
                   (2) 

with  
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0 if is odd and root of the equation

i

i
li

lj

j
lj

l

i j
j i

j i i j
l l l lj i i j

a y

y a a l
b y

b l y

y b y a y a y b y

≤

−
≤

−

− −
≤ ≤ ≤ ≤

 
 
  = − ≠ ≠
 
   

≠


    
    = +               


∑

∑

∑ ∑ ∑ ∑



      (3) 
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+ −

−
≤

−

− −

− + − + −
≤ − ≤ ≤ − ≤ ≤

 
 
  = − ≠ ≠
 
   

≠

   
   =      
   

∑

∑

∑ ∑ ∑



3

3 3

2

i j

i j
l kj

y b y
−

≤


 
 +      


∑

(4) 

2. Auxiliary Results 

Let x and y be the rational functions defined on ( )3 11  by: ( ), , Xx X Y Z
Z

=  and 

( ), , Yy X Y Z
Z

= . 

For a divisor D on ( )3 11 , let ( )D  be the  -vector space of the rational 
functions f defined by  

( ) ( )( ) ( ){ } { }*
3 11 | 0D f div f D= ∈ ≥ −               (5) 

The projective equation of the curve ( )3 11  is: ( )311 3 5Y X Z X Z= − . 
We have the following Lemma:  
Lemma 1 

( ) ( )311 3
3 11 : 1y x x= −  

( ) 011 11div x P P∞= − ; 

( ) 0 13 3 6div y P P P∞= + − ; 

( ) 11 11 11div x P P∞− = − . 

Proof 1 It is a calculation of type  
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( ) ( )( ) ( ) ( ) ( )3 30 . 11 0 . 11div x i X iZ Z− = − = − =            (6) 

From (6), we have ( ) ( ) ( )0 . 0 .div x X Z= = − =  . 
For 0X = , the projective equation gives 11 0Y = ; and for 1Z = , we obtain 

the point ( )0 0 : 0 :1P =  of multiplicity equal to 11. 
For 0Z = , the projective equation gives 11 0Y = ; and for 1X = , we obtain 

the point ( )1: 0 : 0P∞ =  of multiplicity equal to 11. Thus ( ) 011 11div x P P∞= − . 
In the same way we show that ( ) 11 11 11div x P P∞− = −  and  
( ) 0 13 3 6div y P P P∞= + − . 

Consequence 1  

( ) ( )0 111 11 0j P j P= = ; 

( ) ( )0 13 3 0j P j P+ =  

so ( )0j P  and ( )1j P  generate the same subgroup ( )J  .  
Lemma 2 A  -base of ( )lP∞  is given by :  

( ) ( )2 22 2

7 7

1 1 11| , | ,
2 2

i j
x x x xl li i x j j

y y

      − − −      = ∈ ≤ ∈ ≤               

    (7) 

Proof 2. It is clear that   is free. It remains to show that 

( ) ( )( )dim dim lP∞=  . 

By the Riemann-Roch theorem, we have ( )( ) 1dim lP l g∞ = − +  as soon as 

2 1l g≥ −  with 11 1
2

g −
=  

Let us consider the following cases: 
Case 1: Suppose that l is even, and let 2l h= . Then we have 

2
li h≤ =  

and  

11 2 11 2 11 1 6 1
2 2 2

l h hj j j h h g− − − −
≤ ⇔ ≤ ⇔ ≤ = − = − − . 

So we obtain 

( ) ( ) ( ) ( )
12 2 2 22 2 2 2

7 7 7 7

1 1 1 1
1, , , , , ,

h h g
x x x x x x x x

x x x
y y y y

− −      − − − −      =                

   , 

and therefore ( ) ( ) ( ) ( )( )1 2 1 1dim h h g h g l g dim lP∞= + + − = − + = − + =  . 
Case 2: Suppose that l is odd, and let 2 1l h= + . 

2 1
2 2
l hi i i h+

≤ ⇔ ≤ ⇔ ≤   

and 

11 2 10
2 2

l hj j h g− −
≤ ⇔ ≤ = −  

So we obtain 
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( ) ( ) ( ) ( )2 2 2 22 2 2 2

7 7 7 7

1 1 1 1
1, , , , , ,

h h g
x x x x x x x x

x x x
y y y y

−      − − − −      =                

   , 

and therefore  

( ) ( ) ( ) ( )( )1 1 2 1 1 1dim h h g h g l g dim lP∞= + + − + = + − + = − + =  . 

3. Demonstration of the Theorem 

Let ( )( )3 11R∈   with ( ) :R l=    . Let 1, , lR R  be the Galois conju-
gates of R, and let [ ]1 lt R R lP∞= + + −  which is a point of  
( ) ( ){ }0 ,0 10J mj P m= ≤ ≤ ; so ( )0t mj P=  with 0 10m≤ ≤ . This gives the 

relation  
[ ] ( )1 0 .lR R lP mj P∞+ + − =                     (8) 

We note that { }0 1, ,R P P P∞∉ .  
Case 0m =  
Then there exists a rational function f such that ( ) 1 ldiv f R R lP∞= + + − , so 

( )f lP∞∈ . According to Lemma 2, we have 

( ) ( )2 22 2

7 7
11

2 2

1 1
i j

i j
l li j

x x x x
f a x b

y y−
≤ ≤

   − −
   = +
   
   

∑ ∑  

with 
2

0la ≠  if l is even (otherwise the iR  would be equal to P∞ ) and 

11
2

0lb − ≠  if l is odd (otherwise the iR  would be equal to P∞ ). At the points iR  

we have 

( ) ( )2 22 2

7 7
11

2 2

1 1
0

i j

i j
l li j

x x x x
a x b

y y−
≤ ≤

   − −
   + =
   
   

∑ ∑  
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2
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2
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j
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−
≤

 −
 
 
 

= −
 −
 
 
 

∑

∑

 

and therefore 

( ) ( )221
311 3 3

7

1
1

x x
y x x y

y
−

= − ⇔ = , 

so 

3

2

3

11
2

i

i
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j

j
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a y

x
b y

≤

−
≤

= −

∑

∑
. 
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So the equation ( )311 3 1y x x= −  becomes 
2 3

11 3 3

11 11
2 2 2 2

i j
j i

j i i j
l l l lj i i j

y b y a y a y b y
− −

≤ ≤ ≤ ≤

    
    = +        
    
∑ ∑ ∑ ∑  

which is an equation of degree l in y. We thus find a family of points of degree l 
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In the same way we show that for m k=  with { }1, ,10k ∈  , the relation (8) 
gives [ ] ( ) ( ) ( )1 0 011lR R lP kj P k j P∞+ + − = = − . Then there exists a rational 
function f such that ( ) ( ) ( )1 011 11ldiv f R R k P l k P∞= + + + − − + − , so  

( )11f l k P∞∈ + − . According to the Lemma 2, we have 

( ) ( )2 22 2

7 7
11
2 2

1 1
i j

i j
l k l ki j

x x x x
f a x b

y y+ − −
≤ ≤

   − −
   = +
   
   

∑ ∑ ; and as 
0

11Pordf k= − , 

therefore  

( ) ( )2 22 2

7 7
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   − −
   = +
   
   

∑ ∑   

with 11
2

0l ka + − ≠  if l is even (otherwise the iR  would be equal to P∞ ) and 

2

0l kb − ≠  if l is odd (otherwise the iR  would be equal to P∞ ). At the points iR  

we have 

( ) ( )2 22 2

7 7
1111
2 2

1 1
0

i j

i j
l k l kk i j

x x x x
a x b

y y+ − −
− ≤ ≤ ≤

   − −
   + =
   
   

∑ ∑  

hense 

( )

( )

22

7
1111
2

22

7

2

1

1

i

i
l kk i

j

j
l kj

x x
a

y
x

x x
b

y

+ −
− ≤ ≤

−
≤

 −
 
 
 

= −
 −
 
 
 

∑

∑

 and therefore 

3

1111
2

3

2

i

i
l kk i

j

j
l kj

a y

x
b y

+ −
− ≤ ≤

−
≤

= −

∑

∑
. 

So the equation ( )311 3 1y x x= −  becomes 
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which is an equation of degree l in y. We thus find a family of points of degree l 
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