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1. Introduction

Let C be an algebraic curve defined on number field K. We note C(K) be
the set of algebraic points on C defined on K and U[]K:Q]gl C(K) the set of
algebraic points on C to be coordinated in K of degree at most /over Q.
The degree of an algebraic point R is the degree of its defining field on Q;
deg(R) = [(@(R) X Q] A famous theorem of Faltings states that if g>2 then
the set C(K) of algebraic points on C defined on K is finite. A generaliza-
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tion to subvarieties of an abelian variety allows a qualitative study of the set
U[K:@]g C(K) of algebraic pointson C of degree at most /over Q.

We propose to study in detail the set of algebraic points of any degree given
on Q onthecurve G (11) ofaffine equation Yy =x*(x—1)’.

Our affine equation curve C;(11): y't = XS(X—l)3 is a special case of quo-
tients of Fermat curves of equations C, ( p) cyP =X (X—l)s , 1<, s,r+s<p-1
studied in [1].

Let B, =(0:0:0), P =(1:0:1) and P, =(1:0:0) denote the point at in-
finity of C,(11). Consider the Jacobian folding defined by

1:6(1)(Q) - Q)
P - [P-P,]

We will designate / the Jacobian of C;(11) and by j(P) the class denoted
[P-P,] of P-P,.

Our approach relies on the knowledge of the Mordell-Weil group of the Jaco-
bian J-variety of C,(11) and the condition that it is finite: it consists in using
the Abel-Jacobi theorem to plunge the curve into its Jacobian and to study linear
systems on the curve C,(11).

The Mordell-Weil group J ((@) of rational points of the Jacobian J of
C;(11) is finite and given by J(Q)=(Z/11Z) ([2], p. 219 and [3]).

Our study results from the work of Gross-Rohrlich who determined
U[K:Q]gzcl (11)(K) the set of algebraic points on G (11)(K) of degree at most
2on Q and given by the following proposition:

Proposition 1.

The set of algebraic points on C,(11)(K) of degree at most 2on Q is given

by
[Kg]fl(ﬂ)(K) ={(%im yJ}U{Pw} (1)

We extend these results by giving a geometric parametrization of algebraic
points of any given degree on Q on the curve C;(11) of affine equation
yt =33 (x-1)".

Our essential tools are:

1) The Mordell-Weil group J (Q) of the Jacobian of C .

2) The Abel-Jacobi theorem (see in [4] page 156).

3) The study of linear systems on the curve C;(11).

4) The theory of intersection.

Our main result is as follows:

Theorem

The set of algebraic points of degree 1>9 on C;(11) is:

U 6(<)-7U(Ux | @

[K:Q]<l

with
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Zaiy5
|
Fy = _’Z—i,y lag #0,a, #0if s even,
2 by :
1-11

j<
J2

b,_,;, #0if lisodd and y root of the equation (3)
2
2 3
i i
i X by = Zay | Sayts X by
111 f =
== i<— i< I
& y
11—ksisw
F = _—Zj,y |b, #0,a,,,, , =0if liseven,

> bjy§ 2

2 3

Ik 11—kgis$ 11—ksig$ j<!=k

(4)
2. Auxiliary Results

Let xand y be the rational functions defined on C, (11) by: X(X Y, Z) = ; and

Y
y(X.Y.Z)=—.

For a divisor Don (;(11),let £(D) be the Q -vector space of the rational
functions fdefined by

£(p)={t <Q(c (1)) Idiv(f)=-DjU{0} 5)

The projective equation of the curve C, (11) is: Y1 =X3%2° (X -Z )3.
We have the following Lemma:

Lemma 1
G (11): y* =3 (x-1)’
div(x)=11P, ~11P, ;
div(y)=3P, +3P,-6P,;
div(x—1)=11P ~11P, .

Proof 1 It is a calculation of type
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div(x—i)=((X -iz)=0).G,(11)-(Z =0).G, (12) (6)
From (6), we have div(x) = (X = 0).C —(Z = 0).C’.
For X =0, the projective equation gives Y™ =0; and for Z =1, we obtain
the point B, = (0 :0 :1) of multiplicity equal to 11.
For Z =0, the projective equation gives Y" =0; and for X =1, we obtain
the point P, =(1:0:0) of multiplicity equal to 11. Thus div(x)=11P, -11P, .
In the same way we show that div(x—1)=11F, -11P, and
div(y)=3P, +3P,-6P,.
Consequence 1
11j(Ry)) =11j(P,)=0;
3j(Ry)+3j(R)=0

so j(P)) and j(P) generate the same subgroup J(Q).
Lemma2 A Q -base of L(IP,) isgivenby:

2 i 2 j
X2 (x-1 ) o x*(x-1 ) . 1-1
B= [%J lieNiso U x[%] jeNjs—=t @)

Proof 2. It is clear that 3 is free. It remains to show that
dim(B)=dim(L(IP,)).

By the Riemann-Roch theorem, we have dim(ﬁ(lP@ )) =l-g+1 as soon as

1>2g-1 with ¢ =L2_1
Let us consider the following cases:

Case 1: Suppose that /is even, and let | = 2h . Then we have

and

jgl—zllc)jS2h2—11C>jSZh—le—l:h_eszh_g_l'

So we obtain

B= 1,X2(X_1)2,...7{)(2()(_1)2} U X,X)(Z(X—_l)z’,”’){)@(x—_l)?}g |

y7 y7 y7 y7
and therefore dim(B)=(h+1)+(h—g)=2h-g+1=I-g+1=dim(L(IP,)).
Case 2: Suppose that /is odd, and let | =2h+1.

| . _2h+1 .
|£E<:>|s <i<h

and
. 1-11 . 2h-10
< &< =h-
J 5 J > g

So we obtain
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7

Y y

and therefore

dim(B)=(h+1)+(h-g+1)=2h+1-g+1=1-g+1=dim(L(IP,)).

3. Demonstration of the Theorem

Let ReCs(ll)(@) with [Q(R):szl. Let R, -,R, be the Galois conju-
gates of R, and let t=[R +---+R —IP,] which is a point of
J(Q)={mj(R,),0sm<10}; so t=mj(R,) with 0<m<10. This gives the
relation

[R+++R ~IP, ] mi(R). ®

We note that R ¢ {PO, R, Pw} .

Case m=0

Then there exists a rational function fsuch that div(f)=R +--+R —IP_,so0
f € L(IP,). According to Lemma 2, we have

et

T .
i< ===
with a, #0 if / is even (otherwise the R, would be equal to P,) and

2
b, #0 if /is odd (otherwise the R, would be equal to P,). At the points R,

2
we have

hense

i<l y
X=——2
i
x* (x —1)2
bl 7
e y
2
and therefore
1 2 2
11 3 3 3_X (X_l)
yr=x*(x-1) oy = —,
y
SO

i
zai y?

i<k

X=-—2

T
3
le bJ y
=
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So the equation y" = X* (x —1)3 becomes
2 3

yt Zlbjy" = 2aY Zay + Z by5
j<T i<E |<E i

F = _Z—J_,y la, # 0,2, #0if | is even,

2. b y? ’

b,_,; #0if l is odd and y root of the equation
2

2 3

y _;lb,»y" Zay Zay + Z by
IST

|<— i<l
2

In the same way we show that for m=k with ke {l, ‘e ,10} , the relation (8)
gives [R +--+R —IP,]=kj(P,)=(k—11) j(R)). Then there exists a rational
function fsuch that div(f)=R +---+R +(11-k)PR, —(I+11-k)P,_, s0

f € £L(1+11-k)P, . According to the Lemma 2, we have

2 2 J
- 1
f=> a{MJ+XZb[ (e ) ] ;andas ordf, =11-k,
Ik Yy
T2

y'

therefore

AR

with a4, #0 if /is even (otherwise the R, would be equal to P,) and
2
b, #0 if /is odd (otherwise the R, would be equal to P, ). At the points R
2

we have
i j
x? (x-1)° x? (x—-1)*
Z a; # + X Z bj —( - ) =0
11-k<ic K y Tk y
SERL e
i
X2 x-1 2 i
2 @ ( 7 ) > Ay
11 ki K y 11ksig K
hense x=- 2 . and therefore X =-—
2 2! i
o | X (x-1) b,y?
oY Tk
je— ==

So the equation y" = x° (X —1)3 becomes
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2 3

i<k it PR S

which is an equation of degree /in y: We thus find a family of points of degree /

ay?
ll—ksi£$ o
Fo=q|————— ¥ Iy #0,a,5, #0if liseven,
3 2
x5
137

2 3

j<k TR PR SO
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