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Abstract 
The solution of many conduction heat transfer problems is found by two- 
dimensional simplification using the analytical method since different points 
has different initial temperatures. The temperature at each point of a given 
element can be analyzed through the Heat Equation that, in some cases, con-
verges to analytical solutions without precision and is far from the real. 
However, with the application of the Finite Difference Method (FDM), it is 
possible to solve it numerically in a relatively fast way, providing satisfactory 
results for the most varied boundary conditions and diverse geometries, cha-
racteristics of heat transfer problems by conduction. This study solved two 
problems inside a plate with and without heat generation involved in temper-
ature distribution. Algorithms were built with the aid of the Matlab pro-
gramming language, and applied to obtain a numerical solution using the 
FDM numerical method. The computational and analytical solutions were 
then compared. Under certain conditions of the parameters involved in the 
phenomenon of each problem, the numerical method was very efficient for 
presenting errors less than or equal to 0.003 and 0.03, respectively, for cases 
without and with heat generation. 
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1. Introduction 

Heat conduction is a physical process in which heat propagates from a tempera-
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ture source along a section of area or volume, producing thermal gradients. This 
phenomenon can be classified as a steady state when the heat transmitted in a 
system is constant and only the temperature varies at each point in the system, 
or transient, the heat flow in a system is considered transient in which the tem-
perature at various points in the system varies with time [1]. 

This study aimed to analyze this process of heat conduction or transmission 
through a problem situation of a flat square plate, with a heating temperature 
source on one of its edges, determining the temperature field that develops under 
the conditions imposed on its borders and model such a problem situation. 

The study of heat flow using numerical models is a powerful tool because of 
their advantages over experimental methods and also interesting in view of their 
low cost and accuracy. There are several numerical methods that can be used to 
analyze this problem, such as the finite difference method—FDM, which solves 
partial differential equations by discretizing the continuous physical domain in a 
finite discrete mesh. 

2. Theoretical Background 
2.1. Heat Transfer 

Heat is a thermal movement that facilitates the exchange of energy from one 
body to another due to the difference in temperatures in space. Through the 
energy balance of a material, based on the law of conservation of energy, we can 
study heat transfer. Depending on the magnitude of the heat transfer in each di-
rection and the determination of the problem solution, heat transmission can be 
classified into one-direction, two-direction and three-direction. 

In the applications presented here, the two-dimensional (2D) mesh conduction 
mechanisms are addressed, considering an internal region in a steady state in 
rectangular coordinates using the finite difference method. Through the tem-
perature distribution in a medium, it is possible to determine the energy flow Q  
in two cases, without heat generation resulting in a zero-energy variation as in 
Equation (1), and with heat generation resulting in the sum of the generated 
energies in Equation (2):  

inflow outflow 0Q Q− =                          (1) 

inflow generated outflow 0Q Q Q+ − =   .                   (2) 

2.2. Heat Conduction in Permanent Regime 

Aiming at balancing temperature differences, the thermal conduction mechanism 
can be understood as a gradual transmission of thermal agitations in different 
ways [2]. In solids, it occurs through the propagation of vibration of the most 
energetic molecules. 

Considering a rectangular plate subjected to boundary conditions, we can 
quantify the heat flow from the region of higher to lower temperature, applying 
the first law of thermodynamics (conservation of energy) together with Fourier’s 
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Law [3]. So, we have the equation: 

Conduction ,TQ kA
x

∂
= −

∂
                        (3) 

where ( Q ) is given in (W), and A in (m2) is the surface area over which transfer 
takes place, T x∂ ∂  is the temperature gradient in the x-direction, is given in 
k/m. The k (W/m∙˚C) material property depends on the material studied, and is 
known as thermal conductivity.  

Considering the amount of heat absorbed in the change of temperature, 
equivalent to the heat that enters and leaves a material of heat propagation in 
solid bodies, the heat flow in Equation (3) can be submitted in the expression of 
Equation (4), this Fourier introduces the ρ density of the substance and the c 
specific heat. The latter is essential to understand the process of heat propaga-
tion as a function of a given time t in three coordinates (x, y, z): 

2 2 2

2 2 2

T k T T T
t c x y zρ

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

.                   (4) 

2.3. Finite Difference Method (FDM) 

Analytical solutions of differential equations exist for a limited number of prob-
lems with boundary conditions and diverse geometries. The most realistic solu-
tions must be numerically determined at discrete points in the domain, called 
mesh points. These points are equally spaced; that is, the mesh is regular. The 
FDM consists of discretizing the internal surface of a material and replacing the 
derivatives present in the differential equation with approximations using only 
the numerical values of the function. 

In order to obtain the temperature at the mesh point (m, n), Figure 1 illustrates 
an example of a two-dimensional mesh, however it depends on the temperatures 
of the mesh points around it. Displacements in the horizontal direction are 
identified by m, and those in the vertical direction by n. The closer the points  
 

 

Figure 1. Domain ( ),D x y ⊂  —finite difference mesh. (Source: p. 4, [4]). 

https://doi.org/10.4236/apm.2022.129038


V. Gonçalves de Brito dos Santos, P. T. Gomes dos Anjos 
 

 

DOI: 10.4236/apm.2022.129038 508 Advances in Pure Mathematics 
 

(Δx and Δy), the greater the accuracy of the method. In this case, the substitu-
tions of the first and second order derivatives, by the finite difference method, 
adapted from [5], are presented in Equation (11) and Equation (14) corres-
ponding to the value of each point of the temperatures of the material rectangu-
lar and an internal environment. 

The Finite Difference technique seeks to write the differential operators in 
their discrete form, that is, as a function of point values of the solution. For ex-
planation, the derivative of a function ( )u x  at a point ix  is given by: 

( ) ( )
0

lim ,
i

i i

h
x x

u x h u xT
x h→

=

+ −∂
=

∂
                  (5) 

where h x= ∆ . From this limit, taking 0h ≠  small (not too small to avoid ca-
tastrophic cancellation) is expected to obtain a reasonable approximation for the 
derivative [6]. Approximately, using an increment h, however finite, we can de-
note the progressive finite difference, being: 

1 .i i
i

u u
u

h
+ −′ ≈                           (6) 

2.4. Variable Separation Method 

Fourier’s Law of Equation (3) can also be applied to the energy balance of a 
two-dimensional material, assuming that there is only heat transfer by conduc-
tion under boundary conditions, giving rise to the general heat conduction ac-
cording to Equation (7). The term q  represents the rate of energy generated by 
an infinitesimal volume element, while α  is the thermal diffusivity of the ma-
terial, t is the time of the material diffusivity in the transient term and k is the 
conductivity of the material studied [4]: 

2 2

2 2

1 .T T q T
k tx y α

∂ ∂ ∂
+ + =

∂∂ ∂


                      (7) 

Considering an internal region of the material, with no convection effect, in a 
steady state and zero heat generation, it is possible to formulate the following 
heat equation: 

2 2

2 2 0.T T
x y

∂ ∂
+ =

∂ ∂
                          (8) 

With substitutions of the second order derivative by the finite difference me-
thod, we obtain:  

2
1, 1, ,

2 2

2m n m n m nT T TT
x x

+ −+ −∂
=

∂ ∆
                     (9) 

2
, 1 , 1 ,

2 2

2m n m n m nT T TT
y y

+ −+ −∂
=

∂ ∆
                    (10) 

As we determined that the values Δx and Δy are equal, and substituting in 
Equation (8), we have the calculation of the temperature at a point without heat 
generation in an internal environment in the steady state: 

https://doi.org/10.4236/apm.2022.129038


V. Gonçalves de Brito dos Santos, P. T. Gomes dos Anjos 
 

 

DOI: 10.4236/apm.2022.129038 509 Advances in Pure Mathematics 
 

1, 1, , 1 , 1
, .

4
m n m n m n m n

m n

T T T T
T + − + −+ + +

=                (11) 

Analyzing a discretized material with heat generation inside the piece in a 
steady state, since the real direction of the heat flow (into the mesh) is often un-
known; it becomes convenient to formulate the energy balance considering that 
all the heat flow is inside the point. 

Since we do not know the heat transfer that takes place in a control volume 
around the point (m, n), all heat conductions at the adjacent points are the input 
energies ( conductionq∑  ). As there is no convection effect, the generated energies 
( generatedE ) are equal at all points. The proper form for the energy conservation 
equation is then: 

inflow generated 0.E E+ =                       (12) 

For two-dimensional conditions with the generation, the heat exchange is ex-
erted by conduction between (m, n) and its four adjacent points and considering 
the unit depth (volume), their points around it are summarized as: 

( )4
1 . . .1 .i qcond q x y
=

+ ∆ ∆∑                      (13) 

Considering the values adopted for Δx and Δy, and substituting the sum of the 
energies generated at points adjacent to (m, n), we have the calculation of the 
temperature at a point with heat generation and an internal environment in the 
steady state. 

2

, 1, 1, , 1 , 1 .m n m n m n m n m n
q xT T T T T

k+ − + −
∆

= + + + +             (14) 

As stated by [7], the essence of numerical methods is in the discretization of 
the continuum. It is this discretization that makes the problem finite and thus 
makes its solution possible through computers. 

The representation of the finite difference method in practice is to replace the 
derivatives by the incremental ratio converging to the value of the derivative 
when the increment tends to zero and thus, we say that the problem has been 
discretized. In this study, we deal with the totally discrete domain problem 
( ),x t , that is, both space (x) and time (t) are discretized. Then, we can define the 
step mesh ,x t∆ ∆  associated with ( )0 0,x t  as the set of points  

( ) ( ), ,j nx t j x n t= ∆ ∆ , for all 0,1, , 1j j= +  and 0,1, , 1n n= + .  
The essential mathematical tool in calculating approximations for derivatives 

is the Taylor Series [8]. The heat conduction energy given by Equation (3) re-
quires approximations for the first derivative in time and second derivative in 
space. Therefore, assuming that there is the conductivity of material k without 
total loss and applying the progressive finite difference operators, we have: 

1
1 1

2

2
0.

n n n n n
j j j j ju u u u u

t x

+
+ −− − +

− =
∆ ∆

                 (15) 

So, from that and taking 2

t
x

θ ∆
=
∆

, we have: 
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( ) ( )1
1 11 2 ,   .n n n n

j j j ju u u u n Nθ θ+
+ −= − + + ∀ ∈              (16) 

3. Methodology—Problem Analysis 

Two heat conduction problems are presented, considering a steady state, which 
was analyzed by two-dimensional simplifications at the internal point of a mesh: 
with and without heat generation. They were subjected to a computational pro-
cedure, through the Matlab software, version 2017b. Initially, an algorithm was 
constructed, seeking a solution to the problem of the heat equation only using 
FDM on a square plate in order to know the mathematical behavior of this heat 
distribution. 

3.1. Numerical Simulation Results 

When creating an algorithm that considers only finite difference derivative cal-
culations using heat conduction without energy generation (11), with dimen-
sions 20 m 20 mA = × , and considering ( )1 W m Ck = ⋅ , the temperature 
reached in the middle of the plate was 37.5˚C The heat distribution in Figure 2 
shows a quadratic behavior in temperature distribution. 

3.2. Computational Modeling 

For better stability in the behavior of the program via numerical analysis, it was 
found necessary to build a quadratic function to model this problem of temper-
ature distribution on the plate. Then, a function was used to represent these da-
ta, with which it was possible to determine a temperature matrix at the points of 
the mesh of this plate, obtaining the analytical model. Then, a second algorithm 
was built using FDM to evaluate the temperatures of the mesh on the plate, ob-
taining data for the numerical model. Then, a comparison was made between 
the two models: analytical and numerical, evaluating the parameters responsible 
for their approximation and distance. 
 

 

Figure 2. Temperature distribution on the 2D plate by FDM. (Source: prepared by the 
authors). 

https://doi.org/10.4236/apm.2022.129038


V. Gonçalves de Brito dos Santos, P. T. Gomes dos Anjos 
 

 

DOI: 10.4236/apm.2022.129038 511 Advances in Pure Mathematics 
 

It is worth noting that the continuous heat source used to simulate heat dis-
tribution in this problem was an electric heater applied to the upper edge of the 
plate [L, t], where L is the distance corresponding to the total length of the plate 
given in meters, x is the measure of the abscissa traveled to the studied point and 
t is the variable which coincides with the ordinate at the studied point, this re-
sulted in a function that fits the model of temperature variation, in which the 
highest temperature reached is located in the middle of the plate. In this way, a 
quadratic function with an exponential coefficient was created: 

( ) ( ), exp 0.545
2

T tx t x x L
L

µ −     = ∗ ∗ − ∗ − ∗    
    

.          (17) 

The model is presented on a uniform flat geometry 2D, square with an area of 
400 m2, exposed to different temperatures in its boundary region, which was di-
vided into 100 parts horizontally, characterizing a discretization in space [0, L] 
and in 20 parts vertically representing the discretization for the time domain [0, 
t], as shown in Figure 3. 

The Cartesian product of discretization gives the domain [0, L] × [0, t]. To 
reach the highest temperature in the middle of the plate, we considered the up-
per edge a temperature ranging from 85˚C to 500˚C, in the lower edge, a tem-
perature of 25˚C, and on the left and right edges, a temperature of 25˚C. With 
this, we obtained a mesh of coordinate points represented by ( ) ( ), ,j nx t j x n t= ∆ ∆ , 
where: 

   and   .
1 1

L Tx t
N j

∆ = ∆ =
+ +

                   (18) 

The algorithm script built follows the flowchart in Figure 4, which calculates 
the temperatures of the mesh nodes referring to the first column of the matrix 
( ),u x t , using the model equation given by Equation (17) where 10t =  (ordi-

nate of the mesh midpoint), and from the second column, the FDM is applied, 
which solves the problem using Equation (16). And the temperature distribu-
tions with and without heat generation are obtained, which can be seen in Fig-
ure 5 and Figure 6. 
 

 

Figure 3. Domain [0, L] × [0, t] discretized: [100 × 0.20] × [1 × 20]. (Source: prepared by 
the authors). 
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Figure 4. Flowchart of the script used to solve the numerical case without heat generation 
by the FDM. (Source: prepared by the authors). 
 

 

Figure 5. Graphic with numerical solution by the FDM with temperature source without 
heat generation: initial condition T= 100˚C. (Source: prepared by the authors). 
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Figure 6. Graphic with numerical solution by the FDM with temperature source without 
heat generation: initial condition T = 100˚C. (Source: prepared by the authors). 

4. Results and Discussion 
4.1. Without Heat Generation 

For comparison between the analytical model given by Equation (17) and the 
computational model given by Equation (16), we considered ( )1 W m Ck = ⋅ , 
the values of temperatures reached at the midpoint of the plate are listed in Ta-
ble 1.  

The results obtained by the numerical method were very close to the calcu-
lated analytical values. Thus, expressions obtained by the FDM through the 
energy balance can be considered valid for numerical analysis of temperatures. 
Figure 7 and Figure 8 show that the numerical model used is validated by the 
good results obtained. 

4.2. With Heat Generation 

A simulation of temperature distribution on the plate was also performed, con-
sidering heat generation, as well as in the situation without heat generation, we 
also used the hypothetical situation of a plate whose material is a type of con-
crete, with ( )1.8 W m Ck = ⋅ . In order to adapt to the analytical model based 
on Equation (17), the addition of the term of energy generated as the heat was 
introduced, following the same idea presented in heat conduction with energy 
generation as in Equation (14). The term is given by ( )q x k⋅ ∆ , where  

reached at the midpoint initialq t T T= ∆ = −  and 0.2x∆ = . 
The results are presented in Table 2 with the temperature values obtained in  
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Figure 7. Comparison between analytical and numerical data without heat generation. 
(Source: prepared by the authors. 
 

 

Figure 8. Relative error of numerical data without heat generation. (Source: prepared by 
the authors). 
 
Table 1. Comparasion between FDM temperature without heat generation. 

Temperature inside the mesh (˚C) 

Upper 
edge temperature 

By analytical calculation 
at the midpoint 

By numerical calculation 
at the midpoint Matlab 

85 27.86 27.96 

100 32.77 32.89 

120 39.33 39.48 

200 65.55 65.79 

250 81.93 82.24 

360 117.98 118.43 

500 163.87 164.48 
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the problem simulation. There was a greater increase in values of temperatures 
reached analytically and there was a gap between the results obtained by the two 
methods, as the source temperature increased (Figure 9). 

This caused a larger error (Figure 10) between the values obtained by the 
analytical and numerical methods. So, the numerical method did not achieve 
high accuracy in the heat distribution process in this case, but this can be justi-
fied by the insertion of the heat generation term, since this increase was not li-
near, it depended on the variation between the initial temperatures and the one 
reached at the midpoint. There was a resistance of the algorithm to closely fol-
low high values of temperature, but even so, results with an acceptable error 
were obtained. 
 

 

Figure 9. Comparison between analytical and numerical results with heat generation. 
(Source: prepared by the authors). 
 
Table 2. Comparison between FDM temperature with heat Generation. 

Temperature inside the mesh (˚C) 

Upper 
edge temperature 

By analytical calculation 
at the midpoint 

By numerical calculation 
at the midpoint Matlab 

85 27.89 26.81 

100 32.92 31.63 

120 39.61 38.07 

200 66.38 63.83 

250 83.11 79.92 

360 119.91 115.33 

500 166.76 160.39 
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4.3. Relative Error Evaluation 

According to Figure 8 and Figure 10, using the Euclidean norm, the relative 
errors were estimated, for the cases with and without heat generation, indicating 
values smaller than or equal to 0.003, and 0.03, respectively, evidencing a better 
accuracy for the case without heat generation (Figure 11). Probably, in the si-
mulation with heat generation, besides the non-linearity of the term added in the 
equation of the analytical model, the lower accuracy is justified by the resistance 
of the algorithm to follow higher temperatures. 
 

 

Figure 10. Relative error of numerical data with heat generation. (Source: prepared by 
the authors). 
 

 

Figure 11. Relative error between analytical and numerical data without and with heat 
generation. (Source: prepared by the authors). 
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5. Final Considerations 

The initial objective of this study was to use the finite difference method (FDM) 
to solve the problem of heat conduction in a plate under steady state conditions. 
It was realized that it was possible to develop a model. Numerical tests were then 
performed, by two-dimensional simplifications, at the internal point of a mesh 
with and without heat generation. The results show proximity between the re-
sults in the analytical and numerical calculations, determining the temperature 
value reached the midpoint of the plate. Even for the case in which heat generation 
in the temperature distribution process was considered, the result was still satis-
factory. The errors found using the Euclidean norm indicate values smaller than 
or equal to 0.003, in the simulations without heat generation, and errors smaller 
than or equal to 0.03, in simulations with heat generation. 

The first study done by an algorithm that only evaluated the temperatures by 
the FDM on the plate, indicated that the temperature distribution behavior was 
similar to that of a quadratic function, this information was fundamental for the 
construction of computational modeling. The function of Equation (17) used to 
calculate the first column of the discretized numerical data of plate temperatures, 
in the models, is quadratic following what is already known in the literature, but 
something novel was used, an exponential coefficient that depends on the variable 
t, which was taken as the midpoint of ordinates in the mesh, it served to dampen 
the sudden rise of temperatures in the algorithm process, avoiding divergence. 

With the results obtained, it can be stated that the FDM is a practical and effi-
cient choice for thermal analysis since it has good precision and accuracy, espe-
cially in the case where there is no heat generation. In addition, its background and 
formulation are understandable, which facilitates the use of the computational re-
source, as the distributions of temperatures and thermal gradients in graphic form 
were evident when generated by the developed algorithm, facilitating the prob-
lem analysis and understanding. 
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