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Abstract 
In this paper, we study the traveling wave solutions of the fractional genera-
lized reaction Duffing equation, which contains several nonlinear conforma-
ble time fractional wave equations. By the dynamic system method, the phase 
portraits of the fractional generalized reaction Duffing equation are given, 
and all possible exact traveling wave solutions of the equation are obtained. 
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1. Introduction 

Some famous nonlinear fractional wave equations, such as the fractional Klein- 
Gordon equation, Landau-Ginzburg-Higgs equation, the fractional 4ϕ  equa-
tion, the fractional Duffing equation and the fractional Sine-Gordon equation, 
can be summarized as the fractional generalized reaction Duffing model. A lot of 
authors have done a lot of research on the exact solutions of this equation. By 
using the new ansatz method, the solitary wave solutions and periodic solutions 
of gRDM were obtained in [1]. Furthermore, the exact soliton solutions of gRDM 
have been obtained by using the generalized hyperbolic function method, the 
Bäcklund transformation obtained by the homogeneous balance method, the first 
integration method of the fractional derivative in the sense of the improved Rie-
mann-Liouville derivative, and the compatible fractional complex transformation 
method, respectively in [2] [3] [4] [5]. Based on an extended first-type elliptic 
sub-equation method and its algorithm, the new bell-shaped and kink-shaped so-
litary wave solutions, triangular periodic wave solutions and singular solutions 
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of gRDM were solved in [6]. The accurate soliton solutions were obtained by 
using Bäcklund transformation of fractional Riccati equation, function variable 
method, and general projective Riccati equation [7] [8] [9]. In addition, other 
authors have used auxiliary function methods, Hermite transformation and Ric-
cati equations, fractional sub-equations and other methods to study the exact 
solutions of gRDM in [10] [11] [12]. Recently, some new traveling wave solu-
tions of the (2+1)-dimensional time-fractional Zoomeron equation and the su-
perfield gardner equation have been obtained in [13] [14]. The fractional deriva-
tives and fractional derivative equations have been deeply studied in [15] [16] 
[17] [18]. In this paper, we consider the following fractional order generalized 
reaction Duffing equation 

2 2 3 0,t xxD u pu qu ru suα + + + + =                  (1) 

where , ,p q r  and s are all real constants, 0 1α< ≤ , and 2
t t tD D Dα α α=  is de-

fined in Section 2. The following equations are special cases of Equation (1), for 
example 

1) Fractional Klein-Gordon equation 
2 3 0, 0, 0 1.t xxD u u au bu tα α− − − = > < ≤  

2) Fractional Landau-Ginzburg-Higgs equation 
2 2 3 0, 0, 0 1.t xxD u u m u gu tα α− − + = > < ≤  

3) Fractional 4ϕ  equation 
2 3 0, 0, 0 1.t xxD u u u u tα α− + − = > < ≤  

4) Fractional Duffing equation 
2 3 0, 0, 0 1.tD u au bu tα α+ + = > < ≤  

5) Fractional Sine-Gordon equation 
2 3 0, 0, 0 1.tD u au bu tα α+ + = > < ≤  

In this paper, we use the dynamic system approach [19] [20] to study the 
phase portraits and traveling wave solutions of the Equation (1), and try to con-
struct all possible exact traveling wave solutions of this equation. 

The rest of this paper is organized as follows. In Section 2, we introduce some 
basic definitions and important properties of the fractional derivative. In Section 
3, by applying the dynamic system approach [19] [20], we give the phase por-
traits of the Equation (1). In Section 4, we give all possible exact traveling wave 
solutions of the Equation (1) under different parameters. In Section 5, we state 
the main conclusions of this paper. 

2. Definition and Properties of the Fractional Derivative 

The idea of fractional derivatives originated from the semi-derivative discussed 
by Leibniz and Lopida in 1695. Subsequently, many authors studied fractional 
derivatives and formed several different definitions, such as Riemann-Liouville, 
Caputo and other fractional derivatives. In this section, we introduce the com-
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mon fractional derivatives proposed by Khalil et al. [21]. Let ( ): 0,f +∞ → R . 
Then, the conformal fractional derivative of f of order α  is defined as 

( )
( ) ( )1

0
lim ,t

f t t f t
D f t

α
α

ε

ε

ε

−

→

+ −
=                  (2) 

for all 0t > , ( ]0,1α ∈ . And the conformal fractional derivative has the follow-
ing properties. Let ( ]0,1α ∈ , and ,f g  be α -differentiable at a point 0t > . 
Then 

( ) ( ) ( ) ( ) ( ) ( )
, ,

.

s s
t

t t t

D t st s

D f t g t g t D f t f t D g t

α α

α α α

−= ∈

= +  

R
            (3) 

In addition, if f is differentiable, then 

( ) ( )1 d
.

dt

f t
D f t t

t
α α−=                       (4) 

3. Phase Portraits of Equation (1) 

Inspired by [22], we introduce the following fractional transformation 

( ) ( ), , ,nkx t U u t xαξ ξ
α

= − =                    (5) 

where ,k n  are all arbitrary constants. According to (3)-(4), it infers 

( ) ( ) ( ) ( )2
1 2

2

d d dd .
d d d dt t t t

U U U
D D u t D t D n n

t
α α α α αξ ξ ξξ

ξ ξ ξ
−   

= ⋅ = − =   
   

   (6) 

By (6), substituting Equation (5) into Equation (1), we get 

( )2 2 2 3 0,n pk U qU rU sU′′+ + + + =                 (7) 

where ' is the derivative with respect to ξ . Furthermore, it follows from [20] 
[23] that (7) is equivalent to the plane Hamiltonian system 

3 2

d ,
d
d ,
d

U V

V AU BU PU

ξ

ξ

=

= + +
                    (8) 

with the Hamiltonian 

( ) 2 4 3 21, ,
2 4 3 2

A B PH U V V U U U h= − − − =
 

where 2 2 2 2 2 2, ,s r qA B P
n pk n pk n pk

= − = − = −
+ + +

. 

In order to study the phase pictures of the system (8), it is necessary to study 
the equilibrium points of the system (8). Let 2 4B AP∆ = − . When 0∆ = , the 
system (8) has two equilibrium points ( ) ( )0 10,0 , 2 ,0E E B A− . When 0∆ > ,  

the system has three equilibrium points ( )0 20,0 ,
2

BE E
A

 − + ∆
  
 

 and  

3 ,0
2

BE
A

 + ∆
−  
 

. When 0∆ < , the system has only one equilibrium point 
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( )0 0,0E . Let ( ),e eM U V  be the coefficient matrix of the linearized system of the 

system (8) at an equilibrium point ( )0,1,2,3jE j = . Let ( )( )det ,e eJ M U V= . 

We have 

( )
( )

( )

( )

( )( ) ( )

0

1

2

3

,

0,

,
2

,
2

Trace 0, 0,1,2,3 .j

J E P

J E

BJ E
A

BJ E
A

M E j

= −

=

∆ −∆
=

∆ + ∆
= −

= =
 

By the planar dynamical theory [20], the above analysis and Maple, we obtain 
the following results and the phase portraits. 

Case 1. 0∆ = . 

When 0P > , ( )0 0,0E  is a saddle point and 1 ,0
2
BE
A

 − 
 

 is a cusp point. 

When 0P < , ( )0 0,0E  is a center point and 1 ,0
2
BE
A

 − 
 

 is a cusp point. 

The corresponding phase portraits of the system (8) are shown in Figure 1. 
Case 2. 0∆ > . 

When 0P > , 0A >  and 0B < , ( )0 0,0E  and 2 2
BE

A
 − + ∆
  
 

 are saddle 

points and 3 ,0
2

BE
A

 + ∆
−  
 

 is a center point. 

 

 
Figure 1. The phase portraits of the system (8). (a) 0, 0P∆ = > ; (b) 0, 0P∆ = > . 
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When 0P > , 0A >  and 0B > , ( )0 0,0E  and 3 ,0
2

BE
A

 + ∆
−  
 

 are sad-

dle points and 2 2
BE

A
 − + ∆
  
 

 is a center point. 

When 0P > , 0A < , ( )0 0,0E  is a saddle point, and 2 2
BE

A
 − + ∆
  
 

 and 

3 ,0
2

BE
A

 + ∆
−  
 

 are center points. 

When 0P < , 0A > , ( )0 0,0E  is a center point, and 2 2
BE

A
 − + ∆
  
 

 and 

3 ,0
2

BE
A

 + ∆
−  
 

 are saddle points. 

When 0P < , 0A <  and 0B > , ( )0 0,0E  and 3 ,0
2

BE
A

 + ∆
−  
 

 are 

center points and 2 2
BE

A
 − + ∆
  
 

 is a saddle point. 

When 0C < , 0A <  and 0B < , ( )0 0,0E  and 2 2
BE

A
 − + ∆
  
 

 are center 

points and 3 ,0
2

BE
A

 + ∆
−  
 

 is a saddle point. 

When 0C =  and 0A > , ( )0 0,0E  and ( )2 0,0E  are cusp points and 

3 ,0
2

BE
A

 + ∆
−  
 

 is a saddle point. 

When 0C =  and 0A < , ( )0 0,0E  and ( )2 0,0E  are cusp points and 

3 ,0
2

BE
A

 + ∆
−  
 

 is a center point. 

The corresponding phase portraits of the system (8) are shown in Figures 2-6. 
Case 3. 0∆ <  
When 0P > , ( )0 0,0E  is a saddle point. 
When 0P < , ( )0 0,0E  is a center point. 
The corresponding phase portraits of the system (8) are shown in Figure 7. 

4. Exact Solutions of Equation (1) 

We use the elliptic integral theory and direct integration method to give all 
possible explicit parameter representations of the traveling wave solution of Eq-
uation (1). We first denote 

( )0

4 2

1 3 2

0,0 0,

5,0 ,
2 192 8

h H

B B PBh H
A A A

= =

 = − = − 
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4 3 2
1 1 1

2 3 2

4 3 2
2 2 2

3 3 2

3 8
,0 ,

2 192 8

3 8
,0 ,

2 192 8

W BW PWBh H
A A A

W BW PWBh H
A A A

  +− + ∆
= = − −  

 
  − ++ ∆

= − = −  
 

           (9) 

where 1W B= − + ∆ , 2W B= + ∆ . 
 

 
Figure 2. The phase portraits of the system (8). (a) 0, 0, 0, 0A B P∆ > > < > ; (b) 0, 0, 0, 0A B P∆ > > > > . 
 

 
Figure 3. The phase portraits of the system (8). (a) 0, 0, 0, 0A B P∆ > < > > ; (b) 0, 0, 0, 0A B P∆ > < < > . 
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Figure 4. The phase portraits of the system (8). (a) 0, 0, 0, 0A B P∆ > > < < ; (b) 0, 0, 0, 0A B P∆ > > > < . 
 

 
Figure 5. The phase portraits of the system (8). (a) 0, 0, 0, 0A B P∆ > < > < ; (b) 0, 0, 0, 0A B P∆ > < < < . 

4.1. Consider Case 1 in Section 3 

By 0∆ = , it obtains 0PA > . 
(1) If 0P > , 0A > , corresponding to the homoclinic orbit ( )0 0,0E  de-

fined by ( ) 0,H U V h=  from (9), the Equation (1) has a solution of shown in 
Figure 1(a). By ( ) 0, 0H U V h= = , it gets 
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Figure 6. The phase portraits of the system (8). (a) 0, 0, 0A P∆ > > = ; (b) 0, 0, 0A P∆ > < = . 
 

 
Figure 7. The phase portraits of the system (8). (a) 0, 0, 0A P∆ < > > ; (b) 0, 0, 0A P∆ < < < . 

 
2

2

2 2 .
2 3 9
A B PAV U U

A A
 = ± + + 
 

                 (10) 

Using the first equation of system (8) and equation (10), we get the following 
parameter expression 
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( )
1

1 1

1
2 3

1
2 1

2 2 23 3
1

8 e
, ,

e 72 24 e 144

AM

AM AM

A Mu t x
A A M AB B

ξ

ξ ξ

−

− −
= ±

− − +
      (11) 

where 
2

1 2

2AP BM
A
+

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, 

and 
( )1

nkx tαξ
α

= −
Γ +

. The solution (11) is shown in Figure 1(a) with 1A = , 

2B = , 1C = . 
2) If 0P < , 0A < , corresponding to the homoclinic orbit ( )0 0,0E  defined 

by ( ) 0,H U V h= , the Equation (1) has a solution of shown in Figure 1(b). By 
( ) 0, 0H U V h= = , it gets 

2

2

2 2 .
2 3 9
A B PAV U U

A A
 = ± − + + 
 

                (12) 

By (8) and Equation (12), we get 

( )
1

1 1

1
2 3

1
2 1

2 2 23 3
1

8 e
, ,

e 72 24 e 144

AM

AM AM

A Mu t x
A A M AB B

ξ

ξ ξ

− −

− − − −
= ±

− − +
      (13) 

where 
2

1 2

2AP BM
A
+

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, 

and 
( )1

nkx tαξ
α

 
= −   Γ + 

. The solution (13) is shown in Figure 1(b) with 

1A = − , 2B = , 1C = − . 

4.2. Consider Case 2 in Section 3 

1) If 0P = , 0A > , corresponding to the homoclinic orbit ( )0 0,0E  defined 
by ( ) 0,H U V h= , Equation (1) has a solution of shown in Figure 6(a). By 

( ) 0, 0H U V h= = , it infers 

4 .
2 3
A BV U U U

A
 = ± + 
 

                   (14) 

Combining the first equation of system (8) and Equation (14), we have 

( ) 2 2

12, ,
2 9

Bu t x
B Aξ

=
−

                     (15) 

where 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, and 
( )1

nkx tαξ
α

= −
Γ +

. The solution 

(15) is shown in Figure 6(a) with 1A = , 3B = . 
2) If 0P = , 0A < , corresponding to the homoclinic orbit ( )0 0,0E  defined 

by ( ) 0,H U V h= , the Equation (1) has a solution of shown in Figure 6(b). By 
( ) 0, 0H U V h= = , it gets 

4 .
2 3
A BV U U U

A
 = ± − + 
 

                  (16) 
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Appling (8) and (16), we get 

( ) 2 2

12, ,
2 9

Bu t x
B Aξ

= −
+

                    (17) 

where 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, and 
( )1

nkx tαξ
α

= −
Γ +

. The solution 

(17) is shown in Figure 6(b) with 1A = − , 3B = . 
3) If 0P > , 0A >  and 8PA∆ >  or 0P < , 0A <  and 8PA∆ > , corres-

ponding to the homoclinic orbit ( )0 0,0E  defined by ( ) 0,H U V h= , Equation 
(1) has the solution of shown in Figure 2 or Figure 5. By ( ) 0, 0H U V h= = , it 
obtains 

2 2

2

2 18 4 .
2 3 9
A B PA BV U U

A A
− = ± + + 

 
              (18) 

It follows from (8) and (18), we obtain 

( )
( )

2
2

2
2 2 2

2

24 e
, ,

e 72 8 e 16

P

P P

A Mu t x
A A M A B B

ξ

ξ ξ
=

− − +



 

 

where 2
PM
A

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, and  

( )1
nkx tαξ
α

= −
Γ +

. 

4) If 0P > , 0A <  or 0P < , 0A >  corresponding to the homoclinic orbit 
( )0 0,0E  defined by ( ) 0,H U V h= , Equation (1) has the solution of shown in 

Figure 3 or Figure 4. By ( ) 0, 0H U V h= = , it gets 
2 2

2

2 18 4 .
2 3 9
A B PA BV U U

A A
− = ± − + + 

 
             (19) 

Using the first equation of system (8) and Equation (19), we get the following 
parameter expression: 

( )
( )

2
2

2
2 2 2

2

24 e
, ,

e 72 8 e 16

P

P P

A Mu t x
A A M A B B

ξ

ξ ξ

−

− −
=

− − +



 

 

where 2
PM
A

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, and  

( )1
nkx tαξ
α

= −
Γ +

. 

5) If 0P > , 0A >  or 0P < , 0A >  corresponding to the homoclinic orbit 
( )0 0,0E  defined by ( ) 0,H U V h=  has the solution of shown in Figure 2 or 

Figure 4. It follows from ( ) 0, 0H U V h= =  that 

( )( )( )( )4 5 6 7 .
2
AV U U U U U U U U= ± − − − −           (20) 

The relation 4 5 6 7U U U U U< < < <  holds on the U-axis. Therefore, by using 
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the first equation of system (8) and equation (20), we get the following parame-
ter expression 

( ) ( )

( )

7 5 6 7 5 6

2
5 6 5 7

, 1 ,

2

U U U U U U
u t x

Asn U U U U
g
ξ

+ − −
= +

 
− − +  

   

where ( )2 2A s n pk= − + , 
( )( )7 5 6 4

2g
U U U U

=
− −

 and  

( )1
nkx tαξ
α

= −
Γ +

. 

4.3. Consider Case 3 in Section 3 

1) If 0P < , 0A < , corresponding to the homoclinic orbit ( )0 0,0E  defined 
by ( ) 0,H U V h= , Equation (1) has the solution of shown in Figure 7(b). By 

( ) 0, 0H U V h= = , it gets 
2

2

2 2 .
2 3 9
A B PAV U U

A A
 = ± − + + 
 

                (21) 

Using the first equation of system (8) and Equation (21), we get the following 
parameter expression 

( )
1

1 1

1
2 3

1
2 1

2 2 23 3
1

8 e
, ,

e 72 24 e 144

AM

AM AM

A Mu t x
A A M AB B

ξ

ξ ξ

− −

− − − −
= ±

− − +
     (22) 

where 
2

1 2

2AP BM
A
+

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, 

and 
( )1

nkx tαξ
α

= −
Γ +

. The solution (22) is shown in Figure 7(b) with 

2A = − , 1B = , 1C = − . 
(2) If 0P > , 0A > , corresponding to the homoclinic orbit ( )0 0,0E  de-

fined by ( ) 0,H U V h= , Equation (1) has the solution of shown in Figure 7(a). 
By ( ) 0, 0H U V h= = , it gets 

2

2

2 2 .
2 3 9
A B PAV U U

A A
 = ± + + 
 

                 (23) 

Using the first equation of system (8) and Equation (23), we get the following 
parameter expression 

( )
1

1 1

1
2 3

1
2 1

2 2 23 3
1

8 e
, ,

e 72 24 e 144

AM

AM AM

A Mu t x
A A M AB B

ξ

ξ ξ

−

− −
= ±

− − +
      (24) 

where 
2

1 2

2AP BM
A
+

= , 2 2

sA
n pk

= −
+

, 2 2

rB
n pk

= −
+

, 2 2

qP
n pk

= −
+

, 

and 
( )1

nkx tαξ
α

= −
Γ +

. The solution (24) is shown in Figure 7(a) with 
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2A = , 1B = , 1C = . 

5. Conclusion 

In conclusion, we obtained the phase portraits of the traveling wave system by 
using the fractional complex transformation and the dynamical system method 
[19] [20]. Moreover, we construct all possible accurate traveling wave solutions 
of Equation (1) under different parameter conditions. 
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