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Abstract 
Ever since its mid nineteenth century inauguration, the logistic function and 
its numerous applications have received a great deal of attention from engi-
neers, and natural and social scientists. In particular, its discrete relative, the 
logistic map, has proven to be a principal and indispensable tool of scientists 
in their effort to describe the dynamics of a variety of physical and biological 
systems. Our purpose in this paper is to describe one such application, name-
ly, photoconductivity under pulsed excitation and show that the solution of 
the energy-independent kinetic rate equation for electron density  
d
d
n Q BNn Bpn
t
= − −  can be expressed as a logistic map. 

 

Keywords 
Photoconductivity, Logistic Map, Band Structure, Fermi Level,  
Recombination Coefficient, Trap Density 

 

1. Introduction and Basic Terminology 

The logistic function is a function of the form 

( ) ( )01 e c t t

Kf t
− −

=
+

                         (1) 

Obviously, ( )f t  approaches K as t →∞  and to 0 as t → −∞ , and is, there-
fore, bounded. Here, K denotes the maximum value of the function and c de-
notes the logistic growth rate, that is, the steepness of the curve. The midpoint  

of the curve is at 0 ,
2
Kt 

 
 

.  

The logistic function was first investigated (and named) by the Belgian ma-
thematician Pierre François Verhulst (1804-1849), who used it to model popula-
tion growth in his papers [1] [2] and [3]. In fact, in his 1845 paper, Verhulst 
writes. 
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Nous donnerons le nom de logistique à la courbe [We will give the name lo-
gistic to the curve]. 

Since then, it has found applications in neural networks, ecology, chemistry, 
physics, economics, probability, linguistics, sociology, and statistics. 

It is customary to talk about the standard logistic function where 1K = , 1c = , 
and 0 0t = . Thus, the standard logistic function is 

( ) 1
1 e tf t −=
+

                           (2) 

The graph of the standard logistic function is given in Figure 1. 
The derivative of the standard logistic function is  

( ) ( ) ( ) ( ) ( )1f t f t f t f t f t′ = − = −                   (3) 

Of course, this implies ( ) 0f t′ >  for all t, and that, consequently ( )f t  is an 
increasing function. 

The maps of the logistic function have received great deal of attention in the 
literature: [4]-[9], to name a few. Their popularity can be traced back to two 
reasons. First, the logistic function is a paradigm exhibiting much of the beha-
vior displayed by a very large class of noninvertible, nonlinear, discrete maps. Se-
condly, since the dynamics of many potentially chaotic systems can be cast into 
the logistic form, this particular map enables us to give a quantitative as well as a 
qualitative description of the transition to chaos—a property we will hinge on in 
this paper. 

The logistic map is a second-degree recurrence relation, often cited as a typi-
cal example of how complex, chaotic behavior can arise from simple non-linear 
dynamical equations. The map was popularized in [10]. If we put ( )x f t=  in 
the derivative of the general logistic function, we have 

( )d 1
d
x rx x
t
= −                           (4) 

for some parameter r. Now, we can discretize this equation and write it as a dif-
ference equation to obtain the logistic map: 
 

 
Figure 1. The graph of the Standard Logistic Function. 
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( )1 1j j jx rx x+ = −                         (5) 

Of course, we must have 0 1jx≤ ≤  for all 0,1,j =  .  
The first couple of iterations are 

( )1 0 01x rx x= −                          (6) 

( ) ( )2 2
2 0 0 0 01 1x r x x rx rx= − − +                   (7) 

In general, this recurrence equation cannot be solved in closed form.   
Of course, the behavior of the sequence depends on the value of the parameter  

r. In particular, for r between 2 and 3, the values eventually approach 1r
r
− . The  

rate of convergence is linear, except for 3r = , when it is much slower. For more 
information, see [11]. 

Let us now introduce another concept. A system is called dissipative if it loses 
energy to waste-heat. In the past decades, thanks to mostly the works of Prigo-
nine (see, for example, [12]), the study of dissipative systems and dissipative 
structures has gained added momentum. 

We will assume that the universe being a union of bounded subspaces, within 
the event horizon, all systems are dissipative, for there would always be a finite 
flow of energy across the boundaries. Consequently, in finite time, a portion of 
this energy would be dissipated in an irreversible process, implying there are no 
truly isolated systems in the observed universe.  

By a free electron, we mean an electron which is not attached to the nucleus of 
an atom and is free to move when external energy is applied. 

In solid-state physics, the electronic band structure (or simply band structure) 
of a solid describes the range of energy levels that electrons may have within it. 
The valence band and the conduction band are the bands closest to the Fermi 
level, the thermodynamic work required to add one electron to the body.  

For more information on these physical concepts, the reader is referred to the 
excellent works by Holgate [13] and Kittel [14].  

2. Photoconductivity under Pulsed Excitation  

Photoconductivity is the phenomenon evinced by the increase in the electrical 
conductivity of a material by the absorption of light or other electromagnetic 
radiation. Many materials exhibit a marked change in electrical conductivity when 
irradiated; this change, which is insignificant in highly conductive substances, be-
comes quite noteworthy in semiconductors.  

In a semiconductor, there are certain number of free electrons occupying 
energy levels in the conduction band and a certain number of positively 
charged holes left in the valence band by the free electrons that enter the con-
duction band due to natural vibration of atoms. If this substance is irradiated, 
the creation of free charge carriers (i.e., the electrons and the holes) increases, 
which produces an increased conductivity. This process continues until the 
carriers generated by the photon absorption can no longer move through the 
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material. 
Assuming the electrons are the majority carriers, the energy-independent ki-

netic rate equation for electron density 𝑛𝑛 is represented by the equation 

d
d
n Q BNn Bpn
t
= − −                          (8) 

Here, Q is the volume rate of carrier generation due to irradiation and p is the 
volume density of the holes. The constant B is the recombination coefficient and 
N, the trap density. Consequently, the term-BNn denotes the electron impurity 
capture rate and the term-Bpn represents the bimolecular recombination rate per 
unit volume. 

Since in uncharged matter p n= , this equation reduces to the form 

2d
d
n Bn BNn Q
t
= − − +                        (9) 

Let us now complete the square on the right-hand side and put 

2
Nnϑ = +  

and 
2

2

4
Q NK
B

 
= + 
 

 

The above equation becomes 

2 2

d dB t
K
ϑ

ϑ
= −

−
                       (10) 

By direct quadrature, we get 

2e BKtK
K

ϑ
ϑ

−−
=

+
                       (11) 

that is, 
2

2

e
1 e

BKt

BKt

K Kϑ
−

−

+
=

−
                      (12) 

Hence, 

( )
2

2

e
2 2

1 e

BKt

BKt

N NK K
n t

−

−

   − + +   
   =

−
               (13) 

Let sn  be the steady state solution, in other words, the solution that exhibits  

negligible change over an arbitrary long period (that is, d
0

d
sn
t
= ). This implies 

2 s
NK n− =  

that is,  

( )2 2 sKB n N B= +  

https://doi.org/10.4236/apm.2022.126031


I. M. Izmirli 
 

 

DOI: 10.4236/apm.2022.126031 423 Advances in Pure Mathematics 
 

Putting 

2 sn N
N

σ
+

=  

and 

1
BN

τ =  

we can write the solution in terms of the steady-state solution as 

( )

2

2

1 e
2

1 e

BKt
s

s
BKT

Nn
n

n t

σ −

−

  
+  
  =
−

                 (14) 

The pulsed beam can be modeled in a given interval [ ]0, p  as a square wave 
Q that has a fixed amplitude, say Q0, for part of the interval, and 0 throughout 
the rest. So, for some 0 1β≤ ≤ , we define Q as 

( ) 0 for 0
0 for 1
Q t p

Q t
p t

β
β
≤ <

=  ≤ ≤
                   (15) 

We extend ( )Q t  over the real line as 

( ) ( )Q t kp Q t+ =  

for any integer k. 
The net increment in ( )n t  per pulse is equal to the number of electrons li-

berated minus the number of electrons recombined, that is 

( ) ( ) ( ) ( )0n t p n t Q p Bn t n t N pβ+ − = − +                (16) 

or equivalently, 

( ) ( ) ( )2
0 1 p pn t p Q p n t n t

N
β

τ τ
   + = + − −   
   

             (17) 

Putting  
t jp=  

( ) jn jp n=  

and 
p bτ =  

our equation can be written in a recursive form as 

( ) 2
1 0 1j j j

bn Q p b n n
N

β+
 = + − −  
 

                 (18) 

We claim (18) can be written as the logistic equation. To this end, let us apply 
the homogenous affine transformation 

j jn xγ ω= −  

Now, (18) can be written as 

( )( ) ( )2
1 0 1j j j

bx Q p b x x
N

γ ω β γ ω γ ω+
 − = + − − − − 
 

         (18') 
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Rearranging terms we get 

( ) 2
0

2
1

1
21j j j

bQ p b
b bNx b x x
N N

β ω ω ω
ω γ

γ+

 − − − +      = + − + −      
    (19) 

Recalling, 

b pB
N
=  

we obtain 

( ) ( ) 2
1 0 1 2j j j

px Q B N pB N x pB xβ ω ω ω γ
γ+

 
= − − + + − −        
 

       (20) 

To put (20) in logistic form, we must choose the undetermined coefficients γ, 
ω, and r such that  

( )0 0Q B Nβ ω ω− − =  

( )1 2pB N rω+ − =  

pB rγ =  

The solutions are 

0

0

0

4
1

4
1 1

2

4
1 1

Q
N

p N

QN
N

Qpr
N

τβτγ

τβ
ω

τβ
τ

 
= + +  

 
 

= + +  
 

= + +

                    (21) 

Consequently, the affine transformation 

j jn xγ ω= −                          (22) 

that is, the affine transformation 

0 04 4
1 1 1

2j j
Q QNn N x

p N N
τβ τβτ   

= + + − + +      
   

          (23) 

puts Equation (20) in logistic form. 
By studying the onset of bifurcation as a function of b and Q0, it is possible to 

determine the recombination coefficient B and the trap density N. From 

04
1 1

Qpr
N
τβ

τ
= + +                       (24) 

we get 
2

041 1
Qr

b N
τβ−  = + 

 
                     (25) 

Putting 3r =  and 2

4y
b

= , we get 
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01y mQ= +                          (26) 

i.e., a linear function of Q0 with slope 4m
N
τβ

= . 

The quantities b, τ, and β are measurable. As given in [15], the quantity Q0 
can be calculated as the product of quantum efficiency and incident radiation 
intensity. Hence, we now have 

4N
m
τβ

=  

and 

24
mB
τ β

=  

implying N and B can be determined experimentally.  
For some applications of photoconductivity we refer the reader to the excel-

lent papers [16] [17] [18]. 
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