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Abstract 
Using translation 1 2β σ= −  and rotation 1 2s it izσ= + = + , z t iβ= − , 
Riemann got two results: (Theorem A) the functional equation  

( ) ( ) ( )z G s sξ ζ= , where ( ) ( ) ( )3 2G s C t σσ +≈  4e 0t− π > , ( )s Ctζ ≤ , and 

(Theorem B) the product expression ( ) ( ) ( )2 2
10 1 jjz z zξ ξ ∞

=
= −∏ , where jz  

are all roots of ( )zξ , including complex roots. He proposed Riemann con-

jecture (RC): All roots of ( )zξ  are real. As the product expression can only 
be used as a tool of contradiction, we prove RC by contradiction. To avoid the 
zeros of ( )1 2 itζ + , define a subset 

( ) ( ){ }0: 2 20 an 1 2d 0L R t t R it Cζ= ≥ > + ≥ > . We have basic estimate 

( ) ( ) ( ) ( ) ( )0 1 2ln ln ln ln 1 , on .C t G s it t O L Rξ ζ≤ = + ≤ +  

One can construct ( ) ( ) ( )2 2
10 1 jjw t t tξ ∞

=
= −∏  by all real roots jt  of ( )tξ . 

If ξ  has no complex roots, then ( ) ( ) ( )w t G s sζ=  for 1 2s it= + . If the 
product expression has a complex root z t iα′ ′= − , where 0 1 2α< ≤ ,  

10R z′= > , then ( )zξ  has four complex roots ( )t iα′± ± , and should 

contain fourth order factor ( )p z , i.e. ( ) ( ) ( )z w z p zξ = . But ( )p z  can not 

be contained in ( )sζ , as we have ( )0C s Ctζ≤ ≤  on ( )L R  and  

( ) ( )40.5p t t R≥ . As a result, we can rewrite  

( ) ( ) ( ) ( ) ( ) ( )t w t p t G s s p tξ ζ= =  on ( )L R  and get  

( ) ( ) ( ) ( )1ln ln ln 4ln 1 , 2 .
2

tt G s it p t O t R
R

ξ ζ  = + + ≥ + 
 

  

This contradicts the basic estimate. Therefore ( )zξ  has no complex roots and 
RC holds. 
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Functional Equation, Product Expression 

 

1. Introduction 

B.Riemann (1859) in his famous paper “On the number of primes less than a 
given magnitude” stated an important conjecture: all zeros of ξ-function are real, 
which is called Riemann conjecture (RC) (see [1], pp-299-305). D. Hilbert (1900) 
proposed 23 problems in The Second International Conference of Mathemati-
cians [2] (1976). The eighth problem contains Riemann Hypothesis (RH): All the 
non-trivial zeros of ( )sζ -function have the real part 1/2, which has not been 
solved in the 20th century. S. Smale [3] (1998, 2000) proposed 18 problems in 
“Mathematical problems for the next century”. RH is listed as the first problem. 
In 2000, Clay Mathematics Institute opened seven Millennium problems, in-
cluding RH, see E. Bombieri [4] (2000), P. Sarnak [5] (2005) and J. Conrey [6] 
(2004). Apparently RH has been one of the most difficult problems in mathe-
matics. In recent 20 years, several books are published to give overall introduc-
tion to RH, e.g. [1] [7]. So far, there are hundreds of important results based on 
the assumption that RH holds (see Chapter 5 in [7]). If RH is true, these results 
will be promoted as “theorems”, else, as pointed out by Bombieri [4], “The fail-
ure of the Riemann hypothesis would create havoc in the distribution of prime 
number”.  

In 1970 years, a close connection between the distribution of zeros of ζ-func- 
tion and the eigenvalues of quantity system with random matrix was found 
[6]. Later, one shows that RH and quasi-crystals have direct relation, which 
has added a mystery to RH. Physicist F. Dyson [8] (2008) in “Birds and Frogs” 
(on Einstein lecture of AMS) discussed the relation between RH and qua-
si-crystals. He said, “If the Riemann hypothesis is true, then the zeros of the 
zeta-function form a one-dimensional quasi-crystal according to the defini-
tion”. Now RH is not only the aim of mathematicians, but else the interest of 
physicists.  

In the 20th century, extremely large scale computations for ζ  ( 9 1310 ~ 10t = ) 
still did not find a counter example of RH [9] [10] [11] [12]. Indeed, these com-
putations have enhanced our belief to prove RH. We shall look for a clue of the 
proof by computing, follow Liuhui’s thought. 

From Riemann’s paper, we have found two mysteries. 1) the analytic con-
tinuation of Riemann integral ( )tξ  is an entire function ( )zξ  and satisfies 
functional equation ( ) ( ) ( )z G s sξ ζ= , s itσ= + , ( )1 2z t i σ= − − ; 2) the 
product expression has to admit complex roots, thus which can be used only 
as a tool of contradiction. We have found a flaw: if the product expression 
( )zξ  has a complex root, then functional equation will be destroyed, so RC 

holds.. Should point out that A. Hinkkanen [13] and J. Lagarias [14] proved 
the equivalence between RC and the positivity of ξ , by using the product 
expression (see Section 5). These works have provided some inspiration for 
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us.  
This paper is organized as follows. In Section 2 we analyze Riemann’s paper, 

state two theorems and Riemann conjecture (RC), then propose the method of 
contradiction; look for the correct research approach by computing ξ  and ζ  
in Section 3; prove RC by contradiction in Section 4; in the last section a rigor-
ous monotone of ( )t iξ β−  in β  is proved. 

2. Analysis of Riemann’s Paper and New Discovery 
2.1. Some Preliminaries 

There are two definitions for analytic function ( )f s u iv= + , s itσ= +  as 
follows. 

Def. 1. ( )f s  is continuously differentiable in domain Ω  and satisfies Cau- 
chy-Riemann conditions tu vβ = , tv uβ = − . 

Def. 2. ( )f s  at some point 0s  can be expanded as a power series  

( ) ( ) ( ) ( )2
0 1 0 2 0 0 0, ,n

nf s b b s s b s s b s s s s R= + − + − + + − + − <   

where s is real or complex, as they have the same convergence radius R.  
If ( )f s  is analytic over the whole complex plane, called an entire function, 

which has product expression (Hadamard theorem). We often meet a broad 
class of entire function of order 1: for any R, ( ) Rf s CR≤  holds for s R≤ . e.g. 

( ) ( )e ,cos ,s s sξ . If ( )f s  is analytic over the whole complex plane except sev-
eral poles, called meromorphic function.  

For s itσ= + , gamma function ( )sΓ  can be defined as  

( ) 1
0

e d , 0,s xs x x σ
∞ − −Γ = >∫  

using integration by parts many times we have  

( ) ( ) ( ) 0

1 e d , 1.
1

s n xs x x n
s s s n

∞ + −Γ =
+ + ∫ 



 

Thus ( )sΓ  is a meromorphic function with one order poles 0, 1, 2,s = − − 
. 

There is Stirling asymptotic expansion for 1s    

( ) ( )2
1 2 1 12 e 1 , arg ,

12 288
s ss s s

s s
− −  Γ = + + + < 


π


π

       (1) 

i.e. the negative real axis is excepted by the condition ( )arg s < π , in particular, 
except all poles 0, 1, 2,s = − − 

. We describe the growth of ( )sΓ . For 1σ  , 

( ) 1 22 eσ σσ σ − −Γ π≈  increases fast. For  
( ) ( ) 2 1 2 40 1, 1, 2 2π 2 e tt s t σ πσ − −≤ ≤ Γ ≈  has exponential decay, see (20).  

Euler (1737) proved product formula of the primes  

( )
1

1

1 11 , 1,
n p primesn pσ σζ σ σ

−
∞

= ∈

 
= = − > 

 
∑ ∏                (2) 

which diverges for 1σ ≤ . There are several estimates of ( )sζ  for 1t  , [1] 
pp. 184, 201,  
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( )
( )( )

( )

1 2

1 6

ln , 0 1,

, .1 2

O t t
it

O t

σ σ
ζ σ

σ

− ≤ ≤+ = 
=

               (3) 

Thus ( )sζ  increases slowly, this is very important. Although ( )sζ  can be 
continued analytically by Euler-Maclaurin expansion, which is only used as a 
computational formula in Section 3.  

2.2. Introduction of ζ and ξ 

In Riemann’s eight pages paper, only two pages focused on RC [1], pp. 300-302.  
Taking s itσ= +  and 2y n x= π  in gamma integral gives  

22 1 2 2 1
0 0

e d e d .
2

s y s s s n xs y y n x x
∞ ∞− − − − π Γ = =


π 

 ∫ ∫  

Summing over n, Riemann (1895) had  

( ) ( ) ( ) 22 1 2 1
0

1 1
d , e ,

2
s s s n x

n n

ss n x x x xζ ψ ψ
∞ ∞∞− − − −

= =

ππ  = = Γ = 
 

∑ ∑∫  

where Jacobi function ( )xψ  satisfies ( ) 1 2 12 1 2 1x x
x

ψ ψ−   + = +  
  

. By 1z x= , 

there is  

( ) ( ) ( )12
0 1

21 2 1 1d d .
1

s sz z z x x x
s s

ψ ψ
∞− − −= +

−∫ ∫  

Riemann got an integral representation  

( ) ( )
( )( ) ( )1 22 2 1

1

1 d ,
2 1

ss ss s x x x x
s s

ζ ψ
∞ − +− − Γ = + +


π   − ∫         (4) 

where ( )sζ  has already been continued analytically over the whole complex 
plane except for a pole point 1s = . Whereas ( )1 2s−Γ  has zeros 2, 4,s = − − 

, 
called trivial zeros, no interest for us.  

Multiplying (4) by ( )1 2s s − , define functional equation  

( ) ( ) ( ) ( ) ( ) 2
1

1, 1 .
2 2

s ss G s s G s s sξ ζ −  = = − Γ 
 

π            (5) 

As ( ) 0G s ≠  for 0σ > , then ( )1 sξ  and ( )sζ  have the same zeros. Insert-
ing ζ  into (5) and applying integration by parts twice, one has [1] p. 17,  

( ) ( ) ( ) ( )

( ) ( ) ( )

2 1 2
1 1

2 1 2 2

1 2

1 1
1 2

11 d ,
2 2

d , 2 3 ,

s s

s s

s s
s x x x x

r x x f x x f x x x

ξ ψ

ψ ψ

∞ − − −

∞ − − −

−
= + +

′′ ′= + + = +

∫

∫
 

where ( ) ( )1
1 1 4 1 0
2

r ψ ψ ′= + + =  and ( ) ( )2 2
1 2 3 e 0na x

n nnf x a x a x∞ −
=

= − >∑ ,  
2

na n= π . However Riemann did not like this. He directly took 1 2s it= +  and 
got a real function [1] pp.301-302,  

( ) ( ) ( )3 4
1 1

: 2 cos ln d .
2

1 2 tt it x x f x xξ ξ
∞ − = + =  

 ∫            (6) 
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Riemann said, “This function is finite for all finite values of t and can be de-
veloped as a power series in t2 which converges very rapidly” (i.e. ( )tξ  is an en-
tire function). Actually we can get  

( ) ( )
( )

2
0 2

1

1
,

2 !

j
j

j
j

t A A t
j

ξ
∞

=

−
= +∑  

with the coefficients  

( )
2

3 4
2 1

12 ln d 0, 0,1,2, .
2

j

jA x x f x x j
∞ − = > = 
 ∫   

This is an alternative series. As ( )f x  is of exponential decay e x−π , the coef-

ficients 2 jA  tend to 0 fast as j →∞ . Therefore ( )tξ  is high-frequency oscil-
lation with exponential decay.  

Why Riemann preferred ( )tξ  rather than ( )1 sξ ? This is the first mystery. 
For the symmetrization, Riemann used translation 1 2β σ= −  and rotation,  

1 , .2 1 2s it it iz z t iσ β β= + = + + = + = −  

Actually we can define an entire function ( )zξ  by (6) and ( ) ( )1z sξ ξ= , as 
they take the same ( )tξ  on the symmetric line 0β = . We state these results as  

Theorem A. The entire function ( )zξ  satisfies functional equation  

( ) ( ) ( ) 1, 1, , 2,2z G s s s it iz z t iξ ζ σ β β σ= = + = + = − = −        (7) 

which has symmetry ( ) ( )z zξ ξ= − , conjugate ( ) ( )z zξ ξ= .  

2.3. Riemann Conjecture 

Riemann said:  
“…, the function ( )tξ  can vanish only when the imaginary part of t lies be-

tween 1
2

i  and 1
2

i− . The number of roots of ( ) 0tξ =  whose real parts lie be-

tween 0 and T is about  

log
2 2 2
T T T

=
π
−

π π
, {remark. proved by Mangoldt, 1905} 

because the integral ( )d log tξ∫  taken in the positive sense around the domain 

consisting of all values whose imaginary parts lie between 1
2

i  and 1
2

i  and whose 

real parts lie between 0 and T is (up to a fraction of the order of magnitude of 
1/T) equal to ( )log 2T T T i−  π  and is, on the other hand, equal to the num-
ber of roots of ( ) 0tξ =  in the domain multiplied by 2 iπ . One finds in fact 
about this many real roots within these bounds and it is very likely that all of 
the roots are real. One would of course like to have a rigorous proof of this, 
but I have put aside the research for such a proof after some fleeting vain at-
tempts, …”  

We have seen that in the critical strip { }: ,1 02z t i tβ βΩ = = − ≤ ≤ < ∞ , 
Riemann continued to discuss ( )zξ  and proposed an exceedingly important 
statement, i.e.  
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Riemann conjecture (RC). All the zeros of ( )zξ -function are real, i.e., lying 
on the symmetric line 0β = .  

D. Hilbert (1900) reported RH and pointed out that [2] 
“… it still remains to prove the correctness of an exceedingly important state-

ment of Riemann, viz., that the zero points of the function ( )sζ  defined by the 
series  

( ) 1 1 11
2 3 4s s ssζ = + + + +  

all have the real part 1/2, except the well-known negative integral real zeros…”  
Most researchers use the classical formulation: 
Riemann Hypothesis (RH). All non-trivial zeros of ( )sζ -function lie on 

critical line 1 2σ = .  
Although ( )zξ  and ( )sζ  have the same roots, but they have quite differ-

ent properties. ( )sζ  is not an entire function. It is very difficult to study its 
roots due to the lack of useful analysis tools. As pointed out by J. Conrey [6], “in 
my belief, RH is a genuinely arithmetic problem, likely don’t succumb to the 
method of analysis”. Whereas ξ  has better properties. We note that some scho-
lars have turned to ξ , for example, Sarnak [5] (2004) pointed out that “Riemann 
showed how to continue zeta analytically in s and he established the functional 
equation  

( ) ( ) ( )2: 1 ,
2

s ss s sζ−  Λ = Γ = Λ − 
 

π                (8) 

Γ  being the Gamma function. RH is the assertion that all the zeros of ( )sΛ  
are on the line of symmetry for the function equation, that is on ( ) 1 2R s = .” 
He has proposed to study ( )zξ  and RC. Besides, J. Haglund [15] (2011) di-
rectly discussed ( )tξ . Hinkkanen [13] and Lagarias [14] have proved the equi-
valence between RC and the positivity of ξ . Thus studying ξ  is a hopeful way.  

2.4. Product Expression 

Riemann finally discussed the product expression of ( )zξ  and said: 
“If one denotes by α  the roots of the equation ( ) 0ξ α = , then one can ex-

press ( )log tξ  as  

( )
2

2log 1 log 0 ,t ξ
α

 
− + 

 
∑  

because, since the density of roots of size t grows only like ( )log 2t π  as t 
grows, this expression converges and for infinite t is only infinite like logt t ; 
thus it differs from ( )log tξ  by a function of t2 which is continuous and finite 
for finite t and which, when divided by t2, is infinitely small for infinite t. This 
difference is therefore a constant, the value of which can be determined by set-
ting 0t = .”  

We have seen that Riemann wanted to prove the following 
Theorem B. ( )zξ -function has product expression  
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( ) ( ) ( )
2

2
1

0 1 , 0 0,
j j

zz
z

ξ ξ ξ
∞

=

 
= − ≠  

 
∏                 (9) 

where { }jz  are all zeros of ( )zξ  (including complex roots), should take k-ple 
products for k-ple zeros.  

Proof. Riemann’s proof is not rigorous, but the conclusion is correct. For this, 
J. Hadamard [16] (1893) studied the product expression for general entire func-
tion, and got for ( ) ( ) ( )1 s G s sξ ζ= , [7], p. 16.  

( )1 1 e , ,A Bs sss a s itρ

ρ
ξ σ

ρ
+  

= − = + 
 

∏  

where ρ  runs over all roots of ( )1 sξ  (i.e. including ρ  and 1 ρ− ). Under 
above translation and rotation, ( ) ( )1 s zξ ξ=  has symmetry ( ) ( )z zξ ξ= − , its 
roots are jz±  and the factors e jz z±  are canceled, and eA Bz± , 0B = . There-
fore (9) is correct (a simplified proof, see [1], pp. 39-47).    

Hadamard’s work was called by Von Mangoldt (1895) “The first real progres-
sion in the field in 34 years” since Riemann’s paper, [1], p. 39. But they cannot 
prove these roots to be real. Because, let ( ) ( )2 2

1 1 jjW z z z∞

=
= −∏ , then  

( ) ( )z W zξ  is an entire function without zeros, which is a constant proved by 
Edwards [1] based on new method. Therefore ( )zξ  in (9) has to admit com-
plex zeros, which is more extensive than ( )zξ  in (7). But it’s pity, Riemann 
had used the same notation, which brought about misunderstanding. This is the 
second mystery. Whereas the product expression is often used to estimate ( )sζ , 
this is the second misguiding.  

2.5. New Recognition for Riemann’s Theorems 

For L-functions, including ( )sζ , Bombieri [4] pointed out that “we do not have 
algebraic and geometric models to guide our thinking, and entirely new ideas 
may be needed to study these intriguing objects”. Actually, for ( )zξ , Riemann 
had already provided an (strange) algebraic model: functional equation (7) and 
product expression (9). But they are different concepts. The functional equation 
(7) generated by ( )sζ  gives a sharp expression (we can compute all real roots 
of (7), and no complex roots are found, but no way to prove it, as if some condi-
tion is lacked, see Section 3.3). Whereas the product expression (9) must contain 
all roots, including complex roots (which contradicts RH, how to use it?). We 
recall that to solve an initial-boundary value problem in PDE’s, Fourier method 
can provide a series solution, whereas its uniqueness is proved by energy method. 
So we get the following. 

Conclusion. The product expression can only be used as a tool of contradic-
tion.  

Fortunately, we have found a flaw: if product expression has complex roots, 
then functional equation is destroyed. It derives RC to be true.  

Therefore, Riemann’s two theorems are successfully combined in the method 
of contradiction. This is our new idea. 
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3. Computational Comparison between ζ and ξ 

In large scale computations there were two algorithms: Riemann-Siegel formula 
( )Z t  on critical line and Euler-Maclaurin expansion of ζ  outside critical line. 

Many numerical experiments in the 20th century showed the RH is probably 
true, but cannot provide a clue for the proof. Ancient Chinese greatest mathe-
matician Liuhui (A.D.225-295) [17] had proposed Mathematical methodology: 
“computing can distinguish tiny and detect the unknown and method”. “Ana-
lyze the reason by logic, explain the essence by figures” in preface (A.D.263) of 
“Nine Chapters Mathematics”. We have gradually found the clue of proving RC 
in the computations.  

3.1. Euler Function U iVζ = +  

We consider the Euler-Maclaurin expansion [7] 

( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )( )

1

2 2
1

22
2 2 1

1 2
2 20

, , ,

1 2 21 ,
1 2 2 2 !

1 2 1
d ,

2 !

N
s

N m m N
n

sm
m m

s m
m m

j N

s s S R s n s it

s s s mBBN sS N
s N m N

s s s m
R B x j x x

m

ζ ζ ζ σ
−

−

=

−
−

∞
− −

=


= + + = = +


  + + −  = + + + +  

−   
 + + − = − +


∑

∑ ∫







   (10) 

where jB  is j-th Bernoulli number, 2
1
6

B = , 4
1

30
B −

= , 6
1
42

B = , 8
1

30
B −

= ,  

10
5
66

B = , 12
691

2730
B −

= , 14
7
6

B = , 16
3617
510

B −
= ,  , and ( )jB x  is j-th Ber-

noulli polynomial. For 7 ~ 10m =  and N t≥ , the remainder 2mR  can be omit-

ted. These curves { },U V  are depicted for several σ  in Figure 1.  

We can see that  
1) Along the critical line 0.5σ = , { },U V  are not symmetric. Near common 

zeros 0U V= = , { },U V  sometimes are tangent each other, one cannot find 
what structure of ζ . 

2) Increasing 0.6,0.8,1.0σ = , the curves U will gradually go away from t-axis, 
the number of its zeros decreases, whereas V has many zeros. This is why all the 
theoretical results obtained so far go away from critical line.  

3.2. Find Alternative Oscillation of u ivξ = +  

For z t iβ= − , we decompose cos ln
2
z x 

 
 

 into real and imaginary parts, and 

rewrite Riemann integral (6) as  

( ) ( ) ( ) ( )2 2 2 2
1

cos ln sin ln d .
2 2
t tz x x x i x x x F x xβ β β βξ

∞ − −    = + + −    
    

∫  (11) 

So the real part ( ),u t β  is an even function of β  and the imaginary part 
( ),v t β  is an odd function of β . By Cauchy-Riemann conditions tu vβ = ,  

tv uβ = − , we have the following  
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Figure 1. { },U V  are not alternative oscillation for any [ ]0.5,1σ ∈ . 

 
Symmetry. If 0β = , the imaginary part ( ),0 0v t ≡ . In general,  

0, 0, , 0, if 0.t tt tttv v u v v v uβ ββ βββ β= = = = − = = =          (12) 

Denote the norm ( )1 22 2u vξ = +  and define a strong norm in critical strip  

( ] [ )
( ) ( ) [ )

, 0, , 0, ,
,0 ,0 , 0, 0,

1 2
.t

u v t
u t u t t

β β
ξ

β
 + ∈ ∈ ∞=  + → + ∈ ∞

           (13) 

To enlarge curves v, we use v β . Note that if 0β → +  and ( ),0 0ju t = , 

( ),0 0jv t = , then 0ξ = . At the same time, we have 0ξ > , if ( ),0 0t ju t ≠ . 

Due to the exponential decay of ξ , we take variable scale ( ) ( )7 4 41 e tM t t π−= +  
(see (20)) and investigate u M , which increases slowly. In Figure 2-1, for 

0β = , ( ),0u t  is highly oscillating and ( ),0 0v t ≡  (symmetry). In Figure 

2-2, for 0.1,0.2,0.5β = , { },u v β  are alternative oscillation without common 
zeros, which intuitively imply that RC holds. In each root-interval in Figure 2-3,  
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Figure 2. 1-4. Alternative oscillation { },u v β  and PVS { },u v β . 

 
0u >  is peak, v β  is valley, and { },u v β  form peak-valley structure. In 

Figures 2-4, 0.59Mξ > , so RC holds locally. Note that ( )zξ  resembles a 

complex function ( )e cos sintf t i tβ−= + , ( )e cos sin et tf t t− −= + ≥ .  

3.3. Geometric Model of u ivξ = +  

We further consider the peak-valley structure (PVS) of ξ , [18] [19]. 
Definition 1 (root-interval). [ ]1,n n nI t t +=  is called a root-interval, if nt  and 

1nt +  (dependent on β ) are two adjacent zeros of ( ),u t β  and ( ), 0u t β >  
inside nI .  

Definition 2 (single peak). Inside each root-interval [ ]1,n n nI t t += , if ( ),u t β  
has only one peak, called single peak. Else, called multiple peak.  

Using Newton-Leibnitz formula, symmetry ( ),0 0v t ≡  and C-R conditions, 
we get 

Lemma 1 (expression of v). The imaginary part v of ξ  can be expressed as  
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( ) ( ) ( )

( ) ( ) ( ]
0

0

, ,0 , d

, d , ,0 0, 1 20, .t

v t v t v t r r

u t r r v t

β
β

β

β

β

= +

= − = ∈

∫

∫
          (14) 

Corollary 1. ( ),v t β β  is uniformly bounded with respect to ( ]1 20,β ∈ .  
Lemma 2 (expression of u). The real part u of ξ  can be expressed as  

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )

0

0 0

0

, ,0 , d

, , d

, d , as ,0 0.tt

u t u t u t r r

u t r r u t r r r

u t r r r u t

β
β

ββ
β ββ

β
β

β

β β

β

− =

= − − −

= − − =

∫

∫

∫

      (15) 

Corollary 2. Increasing 0β > , the peak ( ),u t β  develops always toward its 
convex direction.  

Lemma 3. Assume ( ), 0u t β >  for nt I∈ . If ( ), 0t nu t β > , then  
( ), 0t nu t r >  for any ( ]0,r β∈ . If ( )1, 0t nu t β+ < , then ( )1, 0t nu t r+ <  for any 
( ]0,r β∈ . Similarly discuss ( ), 0u t β < .  

Using the three Lemmas above, we have proved the following important re-
sult. 

Lemma 4. If the initial value ( ),0u t  are single peak and single zero, then RC 
holds.  

A sketch of proof. Assume that ( ),0 0u t >  is single peak inside root-interval 
0 0 0

1,j jI t t + =   . When increase ( ]1 20,β ∈ , by corollary 2, ( ), 0u t β >  still is 
single peak inside root-interval 1,j j jI t t + =   . As ( ), 0ju t β =  and 

 ( ), 0t ju t β >  at left end-point jt , by lemma 3, ( ), 0t ju t r >  for all [ ]0,r β∈ , 
we have  

( ) ( ) ( ) ( )0
0 0

,
, , d 0, lim ,0 0.j

j t j t j

v t
v t u t r r u t

β

β

β
β

β→+
= − < = − <∫        (16) 

And ( )1, 0ju t β+ =  and ( )1, 0t ju t β+ <  at right end-point 1jt + , similarly  

( ) ( ) ( ) ( )1 0
1 1 10 0

,
, , d 0, lim ,0 0.j

j t j t j

v t
v t u t r r u t

β

β

β
β

β
+

+ + +→+
= − > = − >∫     (17) 

So ( ),v t β  has opposite signs at two end-point of jI , and there exists an 
inner point jt′  such that ( ), 0jv t β′ = . Thus ( ),v t β  is a valley, and 

 { },u v β  form peak-valley structure, see Figure 3. Continuous function ξ  
in the closed interval jI  has a positive lower bound independent of t  

( ) ( ){ } ( ) ( ]min , , 0 0,1, ,2
j

jt I
u t v tβ β β µ β β

∈
+ = > ∈          (18) 

i.e. RC holds in jI . The peak-valley structure is repeated in each root-interval 

jI , we get an irregular infinite series ( ){ }0jµ β > . As the zeros { }jt  of ana-
lytic function ( ),u t β  do not have finite condensation point (else .u const≡ ), 
Therefore any finite point t surely lies in some root-interval jI  such that 

( ) 0jµ β > . That implies RC holds for any t.    
In our geometric analysis, only Theorem A has been used. We have proved 

RC under some conditions. Here the condition of single zero is not essential, as  
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Figure 3. ( )nw t  approaches ( )u t . Scale ( ) 1345 3.64 10M −= ×  very small. 

 
RC can be proved for multiple zero, [19]. But proving the single peak has met 
essential difficulties, several attempts are unsuccessful. From this we have rea-
lized that only Theorem A is not enough, and new tool is needed. Thus we have 
to consider the product expression (Theorem B). It leads to the proof by contra-
diction presented in this paper.  

3.4. Numerical Experiments of Product Expression 

We take the first 510n =  zeros { }jt  in Odlyzko [11] and compute 
 

( ) ( ) ( )2 2
10 1n

n jjw t t tξ
=

= −∏ , which is a good approximation of ( )tξ . By scal-
ing ( ) ( )7 4 41 e tM t t π−= + , the curves Mξ  are depicted in Figure 3, [19]. 
Therefore we believe that ( )tξ  can be uniquely determined by ( )0ξ  and all 
real roots { }jt  of ( )tξ , i.e. ( ) ( )t w tξ = , which inspired us in the proof of RC. 

4. Proof of Riemann Conjecture 

4.1. Estimates of ( )zξ  and ( )sζ  

Expanding ( )ln 2sΓ  by (1) and decomposing the real part and imaginary part, 

( )ln 2c = π , we have,  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2
2

2

2

2
2

1ln 2 ln 2 arctan ,
2 2 6

1 11 ln
2 2 2 2 62

1ln 1 ln 2 ,
2

2 1ln 2 ln 1 1 .
2 4

1

6

2

4

4

s t sc s s i O t
s

t ic it i it O t
t tt

Re c t t O t

tIm t O t
t t

σ

σ σσ σ

σ

σ σσ

−

−

−

−

   Γ = + − + − + +  
   

 π = + − + + + − − + − +  
  

Γ = + − − +

− Γ = − + − + − + 


π


π
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Denote 1 2σ β= + , then  

( )
( )

( )( )
2 1 4

242 2 e 1 .
2

tts O t
β −

− −π Γ = +
 

π              (19) 

Noting that ( ) ( )2 11 1 2s s t i tβ −− = − +  and ( )2 ln2 2e i ts σ −− − ππ π= , we get  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

,

2 7 4 24

2

e , , ,

e 1 0,

1 12 12, ln 2 7 .
2 2e 8 48

i t

t

z G s it s it z t i

G s C t O t

t tt O t
t t

φ β

β

ξ ζ σ σ β

β

β ββφ β β

+ − −

−

π

 = + = + = −

 = + >

 + −
 = − + +

π
+ +

 π

     (20) 

In the period of Riemann, for 1σ > , using Euler’s method and integration by 
parts one has  

( ) ( )( )
( ) ( )

1

0 1
1 1

1 1

0
1

d d

1 1 d ,
1

ss s s

n n

s

n

s n n n x x y y

s n x x x
s

ζ
∞ ∞ ∞−− − −

= =

∞
− −

=

= = − + +

= + + −
−

∑ ∑ ∫ ∫

∑ ∫
 

which is analytically continued to ( ) 0Re s > . One can get a coarse estimate  

( ) [ ]1
1

1 d 1 2, ,1 , 10.
1

s s x x Ct t
s

σζ σ
∞ − −≤ + ≤ ∈ >

− ∫         (21) 

4.2. Proof of Riemann Conjecture 

Main Theorem. Riemann conjecture holds, i.e. ( )sξ  has no complex roots.  
Proof. In the functional equation ( ) ( ) ( )z G s sξ ζ= , ( ) 0G s >  is exponen-

tial decay, so this equation is one-to-one mapping between ( )zξ  and ( )sζ .  
Follow Riemann’s derivation, ( ) ( ) ( )t G s sξ ζ=  on 1 2s it= + , where ( )sζ  

is unbounded, ( )s Ctζ ≤ , and has infinitely many zeros (Hardy theorem). To 
avoid all zeros of ( )sζ , we propose a new technique to define subset of sym-
metric line (remark 1)  

( ) ( ){ }0: 2 , and 1 2 0 ,L R t t R it Cζ= ≥ + ≥ >  

where 10R t iα′= + >  to be defined below and constant ( ]0 0,1C ∈ . Thus we 
have a basic estimate  

( ) ( ) ( ) ( ) ( )0ln ln ln ln 1 , 1 2 , .C t G s s t O s it t L Tξ ζ≤ = ≤ + = + ∈     (22) 

Let { }jt  be all real zeros of ( ) 0tξ = , one can define product expression 
 

( ) ( ) ( )2 20 1 jjw z z tξ ∞= −∏ . If ξ  has no complex roots, then  
( ) ( ) ( )w z G s sζ= .  
By contradiction. If the product expression ( )zξ  has complex roots, then 

the functional equation is destroyed.  
Actually, if ( )zξ  has a complex roots t iα′ + , where 0 1 2α< ≤ ,  

2 2 10R t α′= + >  (because no roots for 10t′ ≤ ), by Theorem A, ( )zξ  has four 
conjugate complex roots ( )t iα′± ± . Thus by Theorem B, ( )zξ  must contain 
four factors  
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( )

( ) ( )

2 2

2 2

2 2 4
2

4 4

22 2
2

2 4

1 1 1 1

1 1

1 2

1 4 .

z z z zp z
t i t i t i t i

z z
t i t i

t zz
R R

z z
R R

α α α α

α α

α

α

    = − + − +    ′ ′ ′ ′+ + − −    
  
  = − −
  ′ ′+ −  

′ −
= − +

 
= − + 
 

 

On symmetric line 0β = , ( ) 0p t >  and when 2 20t R> > ,  

( ) ( ) ( )
24 2 2

2 2

1, 1 4 2.
2

t Rp t g t R g t R
R t t

α  = < = − + <  
   

      (23) 

We have an estimate of growth  

( ) ( ) ( )ln 4 ln 1 , 1 2 , 2 .p t t R O s it t R= + = + >             (24) 

We consider product formula ( ) ( ) ( )z w z p zξ = , this factor ( )p z  can not 
be contained in ( )sζ . Because ( )0C s Ctζ≤ ≤  on ( )L R , then ( )sζ  can 
not contain the fourth order factor ( ) ( )40.5p t t R≥  and should rewrite 
( ) ( ) ( ) ( ) ( ) ( )t w t p t G s s p tξ ζ= = . We have  

( ) ( ) ( ) ( ) ( ) ( ) ( )ln ln ln 4ln 1 , ,t G s s p t t R O t L Rξ ζ= + ≥ + ∈      (25) 

which for 2t R  contradicts the basic estimate (22). Thus ( )zξ  can not have 
complex roots. If ( )tξ  has several factors ( )kp t , then (25) contains summa-
tion of these ( )ln kp t  and still contradicts (22), here should take maximal R in 
( )L R . Therefore the Main theorem is proved.    
By Main Theorem, the Theorem B is promoted as  
Theorem 1 (product formula). ( )zξ  is uniquely expressed by product for-

mula  

( ) ( ) ( )
2

2
1

0 1 , , 0 0.497120778188312 ,
j j

zz z t i
t

ξ ξ β ξ
∞

=

 
= − = − =  

 
∏     (26) 

where { }jt  are all real roots of ( )tξ , should take k-ple products for k-ple 
roots.  

Remark 1. A hole in [19] is also repaired by introducing the subset ( )L R .  
Remark 2. We point out that Riemann had already approached to a proof of 

RC, but lacked the last step. Riemann said, “I have put aside the research for 
such a proof after some fleeting vain attempts”. It’s impossible to know what at-
tempts have been done by Riemann. Siegel (1932) found a computing formula in 
Riemann’s manuscript unpublished, now called R-S formula. Edwards pointed 
out in [1] (p. 164), “Siegel states quite positively that the Riemann papers con-
tain no steps toward a proof of the Riemann hypothesis”. Now we find a clue. 
Recall R-S formula [1] p. 145,  

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ){ }
1

1 1 2 3
0 1 2

2

1 2
3

12 cos ln , 2 ,

1 ,

N
n N

N
N

Z t n t t n R N t

R t y a r a r y a r y a r y

θ−

≤ ≤

−

 = − + =


 = − + + + +





π ∑



    (27) 
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where [ ]N X=  is the integer part of 2X t= π , [ ]r X X= − , 1y X=  and 
the coefficients  

( ) ( )
( )( )
( ) ( ) ( )
2

0 1 5 2

cos 2 1 16 1, , .
cos 2 2 3

r r
a r r a r r

r
ψ ψ

π

π π

− −
′′′= = = −

⋅
  

It is easy to get an estimate [1] p.200,  

( ) ( )
1

1 4

1 2

1 2 1 2 1 4 1 4
1

2 2

d

1 2

.

N
n N

N

Z t it n R

C x x Ct CN Ct Ct

ζ −

≤ ≤

− − −

= + ≤ +

≤ + ≤ + ≤

∑

∫
          (28) 

So we guess, Riemann omitted the following fact: if ( )zξ  has a complex 
roots, then ( )Z t  should contain the fourth order factor ( ) 0p t >  and this es-
timate on ( )L R  is destroyed (so RC holds). Therefore we know that R-S for-
mula has already provided the first step toward a proof of RC. But this fact has 
not been found for a long time, and the R-S formula is only used in computing. 
This is another misunderstanding for Riemann. 

4.3. Some Future Research Topics 

Riemann’s algebraic model contains two theorems: 
1) Functional equation ( ) ( ) ( )z G s sξ ζ= , where ( )sζ  increases slowly. 
2) Entire function ( )zξ  has product expression, but admit complex roots 

(contradicts RC). 
From them Riemann conjecture can be proved by contradiction.  
In analytic number theory, besides RH, there are several important generali-

zations, for example, (Grand RH) GRH, (Generalization RH) gRH and (Exten-
sion RH) ERH. If they have analytic continuation and corresponding functional 
equation, therefore our method of contradiction is useful. 

Sarnak [5] reviewed RH and GRH. Let χ  be a primitive Dirichlet character 
of modulus q (i.e. ( ) ( ) ( )mn m nχ χ χ= , ( )1 1χ = , ( ) ( )m bq mχ χ+ = ), then 
L-series is defined by  

( ) ( ) ( )( ) 1

1
, 1 .s s

n p
L s n n p pχ χ χ

∞ −− −

=

= = −∑ ∏  

As with zeta, ( ),L s χ  extends to an entire function and satisfies the func-
tional equation  

( ) ( ) ( )2, , ,
2

s a s a
s L sχ χχ χ+ + 

Λ = Γ 
 

π  

where ( )( )1 1 2aχ χ= + − . There is  
Grand Riemann Hypothesis: The zeros of ( ),s χΛ  all lie on ( ) 1 2Re s = .  
Sarnak added a footnote: 
“Hardy (Collected Papers, Vol.1, p.560) assures us that latter will be proven 

within a week of a proof of the former”.  
Besides, to compute ( )zξ  by (20), reducing the factor 4e t− π  and symmetric 

function ( )1s s−  etc., we get a simplified formula  
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 ,, e , , ,

1 12 1
, ln 2 7

2 2e 8 48

2 1 2i tZ t t s s it

t tt
t

β θ ββ ζ σ β σ

β β
θ β β

 = = +π = −

 + −

= + + +
π

+
π



       (29) 

where ( )sζ  is computed by E-M formula (10). This formula is of product-type, 
the algorithm simple. We have computed ( ),Z t β  to 610t =  and peak-valley 
structure is preserved. However E-M formula requires N t≥ , its efficiency is 
lower. We expect that follow R-S formula, consider a contour integral [1] (p. 137)  

( ) ( ) ( )
1

1 e d ,
2 e 1

sNxN
s

x
n

s x xs n
i x

ζ
−

∞−

−∞
=

Γ − + −
= + ⋅

−π∑ ∫  

and get a computational formula to take ( )N O t=  enough. This is an open 
problem.  

5. A Stronger Conclusion 

Hinkkanen [13] (1997) and Lagarias [14] (1999) proved the positivity of  
( ) ( ) ( )1 s G s sξ ζ=  to get  
Lemma 3 (Equivalence) [13] [14]. For any 1 2σ > , 0t ≥ , the positivity 

 ( )
( )

1

1

0
s

Re
s

ξ
ξ
′ 

>  
 

 is equivalent to RC.  

This is a new property and shape conclusion.  
Extension to 1 2β ≤ . Let 1 2s it izβ= + + = , z t iβ= − . By Theorem A, 

we have ( ) ( )1 s zξ ξ=  and derivatives ( ) ( ) ( )1sD s D z i zβξ ξ ξ ′= = − . Take the 
logarithm in (26) and derivation, we have  

( )
( )

( )
( )

( ) ( )

1

2 22 21

1 1

1 2, .

j j j

j j

j
j j

D z z
i i

z z z t z t

t t i t t i
i

t t t t

βξ ξ
ξ ξ

β β
β

β β

∞

=

∞

=

 ′  = − = − + 
− +  

 − + + + = − + ≤ 
− + + +  

∑

∑
 

Its real part is  

( )
( ) ( ) ( )2 22 21

1 1 0, 0.
j

j j

D z
J Re

z t t t t
βξ β β
ξ β β

∞

=

    = = + > >     − + + +    
∑    (30) 

If 0β <  then 0J < . This series converges for finite t.    
Theorem 2 (monotone) [18] [19]. The strict monotone  
( ) ( )0t i t iξ β ξ β− > −  holds for 0β β> .  
Proof. Denoting ( )z u ivξ = +  and D u ivβ β βξ = + , we rewrite  

( ) ( )
( )

( )
( )

( )2 2

,
, , .

D z z t
J Re t uu vv

z z
β

β β

ξ ξ ψ β
ψ β

ξ ξ
= = = +  

Using 2 2 2u vξ = +  and 2 2Dβ ξ ψ= , for 0β β> , we have  

( ) ( ) ( )
0

22
0 2 , d 0,t i t i t

β

β
ξ β ξ β ψ β β− − − = >∫            (31) 

and strict monotone (i.e. ordering, Figure 4) ( ) ( )0t i t iξ β ξ β− > −  for any t. 
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Figure 4. Monotone ( ) ( )0t i t iξ β ξ β− > − , 0 0β β> ≥ .  
 

Ancient Greek Aristotle thought, “order and symmetry are important ele-
ments of beauty”. Therefore we say, the symmetry and ordering of ξ  are ma-
thematical beauty of Riemann conjecture.  
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