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Abstract

The weak-type (1, 1) boundedness of the higher order Riesz-Laguerre trans-
forms associated with the Laguerre polynomials and the boundedness for the
Riesz-Laguerre transforms of order 2 are considered. We discuss a polynomi-
al weight wthat makes the Riesz-Laguerre transforms of order greater than or
equal to 2 continuous from L' (Wd ,ua) into L"” (d U, ) , under specific value

o ,where u, isthe Laguerre measure.
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1. Introduction

The aim of this paper is to discuss the weak-type (1, 1) boundedness of R"'
and the polynomial weight w that makes the Riesz-Laguerre transforms of order
greater than or equal to 2 continuous from L (wd ,ua) into L"” (d M, ) , under
specific value « . Following the same notions appear in [1] [2]. The (m + 1)th
Riesz-Laguerre transform with m e Z¢, associated with the multidimensional
Laguerre operator L, , where oc=(oc,---
oc, 20,i=1,---,d .

The Laguerre operator L, , is a self-adjoint “Laplacian” on L’ (d ,ua) , where

,oc,) is a multi-index with

4, is the Laguerre measure of type oc:(ocl,-~~,ocd) with o, >-1,i=1,---,d;
defined on Rf={xeRd:xl,>O,foreachi=1,-~,d},by
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It is well known that the spectral resolution of £ is

‘Coc = zn,’)ﬂm’
n=0
where P” is the orthogonal projection on the space spanned by Laguerre po-
lynomials of total degree nand type o in dvariables [3] [4]. The operator L
is the infinitesimal generator of a “heat” semigroup, called the Laguerre semi-

group, {e”ﬂ“ 2 O} , defined in the spectral sense as

e—tﬂm — z e_mROC.
n=0
For any multi-index m+1= (a] ,---,ad) € Z{,, the Riesz-Laguerre transforms

R oforder |m+1=a,+--+a, aredefined by

—|m-+1]/2

R:IH — vZH—I (Ea) R)DCL,

where V_ isassociatedto £ definedas V_ = (\/Zaxl b %g 0, ), and B,
denotes the orthogonal projection onto the orthogonal complement of the ei-
genspace corresponding to the eigenvalue 0 of £, .

In order to use the well-known relationship with the Ornstein-Uhlenbeck
context, but not too much exploited in the weak-type inequalities, we are going
to perform a change of coordinates in RY . If x=(x,,---,x,) isa vector R{,
then x> will denote the vector (xlz,---,xj). Let ¥ :Rf —)Rf be defined as
Y(x)=x" and let djz, =du,0o¥"' be the pull-back measure from dy, .
Then the modified Laguerre measure dji, is the probability measure

d X-ZOC' Jrle—x,-2 d 20c;+1

~ d i d X af?
d,ux(x):2 E}[mdx:Z Hme b dx, (1)
on R’.

The map f — U, f = fo¥ isan isometry from L’ (d yoc) onto Lf (d ,[zoc)
and from L**(dp,) onto L' (dfi,), for every gin [1, «]. So we may reduce
the problem of studying the weak-type boundedness of R”*' to the study of
the same boundedness for the modified Riesz-Laguerre transforms
R =U,R"'U," with respect to the measure dji, .

Observe that R coincides, up to a multiplicative constant, with
v, )"'””‘ P, being L, = U, LU, P =U,P~U;" andes V the gra-
dient of R associated to the Laplacian operator [5].

For the sequel, it is convenient to express the kernel of R*' with respect to

the Polynomial measure (m+1) definedon R; as
d(m+1), (x)=eda, (x). @
According to [6] [7], for o, >—1/2,i=1,---,d, the kernel of the modified
Riesz-Laguerre transforms of order |m+l| with respect to the polynomial
measure (m+1)  is defined, off the diagonal, as
Kt (x,s) = J. ot (x,s)l_[a (s)(s)ds

[
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with

q—(rx2 ,xz ,s)

]),HZIZIEIH s(r=s)]e

1 i 1—r (l_r)‘a‘+d+l

dr (3)

o (x’s) _ j)‘(\/;)mﬂﬁ [_loﬂ

1-r

where H, is the Hermite polynomial of degree a, and

d
q.(x,8)=Y2x,(1%s,),
i1

d F(ai +1) 5 \@1/2
I, (s) = [[—— %) oy,
i_lr[aﬁ;j«/?( )

cos@ =cosf(x,s)=

d 2
sin@ =sin0(x,s) = (1 _ cos 9)1/2 _ 1_[2_1 XS, ]

The symbol a <b means a <Ch where Cis a constant that may be different

on each occurrence. And we write a~ bwhenever ¢ <b and b<a.

2. Main Results

For every multi-index oc we have the following result see [3].

Theorem 1: The second order Riesz-Laguerre transforms map L (d ,ua) con-
tinuously into L' (du, ).

Proof: The result follows by splitting the modified Riesz-Laguerre transforms
of second order into a local operator and a global one. Let us observe that for a
simple covering Lemma, we may pass from estimates with respect to the meas-
ure (m+1)x on the local part R, to estimates with respect to the modified
Laguerre measure /i, . Therefore the local operator is equivalent to 7,"*' for
|m+l| =2. The global operators bounded weak type (1, 1) and therefore so are
the second order modified Riesz-Laguerre transforms.

From [8] and [9], it is known that an upper bound for |/C'"+1 (x,s)| on Gis

Kt (x.5)
[m+1]-2
(|2x|2 )T e , cos@ <0
- lol-a

‘m+l‘—2
1 4 ., 1+cosd
5(4|x| sin 9) 4 (

(4)

jz (1 + (4|x|4 sin’ (9)Z e, cosd=20

1—cos®
with

() ()"

2

1/!0:

Proposition 2: For |m|=2,
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|IC'" (x, y,s)| = e‘x‘2 K (x,y,s)ef‘y‘2
on the global region

G=R'x[-L1]'\R, =R UR,UR, UR,,

with
) y s, 2 C
R, z{(y,S)e& x[-L1] g = (27 07s) < 1+|X|}’
R, :{(y,s)eRo :cosQ<0},
R, ={(v.5) & R, :cos0 2 0|y < [+]},
Ro={(0n5) 2R ceos0 20 <l 2
R, = {(y,s) g R, :cos0>0,]y|< 2|x|},
and
o (rs)er
P o Bl (x7.07) (y.5)eR, (6
_ cf'sn®o
K (x5,0.8) =1 L P P +sin0ls
|x|2‘ r2a || o e R (v.5) e R, @)
(Iof" =|xf* +simofa)
(1] o (rs)eR, @

Proof. In this proposition, |m| =2.1If cosf <0, itisimmediate that
|IC'" (x, y,s)

Let us then assume that cosd>0.

< J i (x,y,s)ef‘y‘2 )

1) First let us consider |x| > |y| .

12

Since c0s0>0,q)” >[x| and since |x|>|y|, then ¢!* <2|x|. Therefore

1/2 |x| On the other hand, since ¢"* > _L then |x|20.Thus
1+|x|
led el
K" (x.7.5)| < [q_J | +[qu (g ) e
q- q
- \a\+d+1/2
< lal+d 1+ ‘Q‘er
~ | | ( | |) \a\m 12
i q
e bEAE
S |x|2‘a‘+2d e_uo _ M |2‘a‘+2d - e e
Mql/Z(x2 7.s)
< f x|2\a\+2d . S e (x., s)ef\y\z_

2) Now let us assume | y| > |x| and rewrite u, in the following way:
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E | (0 () (2o0s)
2

(4. (. 575)q (.3%5)) " =(of =If")

~bf of +
2
)

= |y | @;@twh

2o~ +(g.9.)")
2sin26’|x|2 | |2
b = +(a.

o+
1/2 :

=bf -

Since
g.q = (3 +[f) 4 [y cos? 0= [y ~f') +4|af’ [y sin’ 0,

and taking into account that sin&is non-negative, we obtain that

(4.9.)" ~ [ =3 +|x||y[sin6 = [y =[x +|x] sin6. (10)

Thus, from (9) together with (10) we get
c|x|4 sin” @ (11)

> =|x? .
K RN

Claim 3: max (|y|2 —|x|2 ,|x|2 sin 49) >1.

Proof. If sin® > —-, the inequality is immediate.
x

If sinf < € then | y|2 > |x|2 +1. This inequality is immediate when |x| <1

by adjusting conveniently the constant C'in the definition of the global zone and
it is also immediate for d = 1 and |x| >1. Now let us assume that d 22 and

|x|>1.
cr)y ¢
(|x|2) <(1+| |) _( ) s) |x| +|y| =2|x[|y|v1-sin’
1
<+l 2l -
[
Hence
2
of =2 fi——e o -2 5
[

]
1__ J C/2

for all |y| > |x| , then
2]
which implies that
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CZ
b 2| +2(C/2) - /1_x_ / (€2) 22, e,

Therefore by applying this claim to inequality (10) we obtain that ¢g,q_>c¢ in

c|x|4 sin* @
(12)

>y’ =[x +
R B NN

then
‘a‘ﬂ{ ‘aHd
2 2
o (x’ y,s)| § [Z_J'j (q+q )1/4 —uy < %(%q )/4 —u
- (q.9-) *

|x|2‘a‘+2d

< 7u0

~ 2oc|+2d-1

[((mf )" Jf

4 .2
2af+2d _ ZCMZS'" 0 bf
X |y =[x +|x sin 6

b’
<e e

2foc+2d -1

(| o =+ sin@) 2

To get the last inequality we have used (10) and (12). On the other hand, since

q.9_=c itisimmediate the following inequality
o XZ_ V2
e () S
Thus

|IC'" (x,y,s)| < e‘x‘zK* (x,y,s)ef‘y‘z.

, and thus

Now if |y| > 2|x| then (q+q_ )1/4 < (|x|2 +|y|2 )1/2 S |y2

s e St

Besides ¢_ >(|y| |x|) >c|y| and q+<C|y| therefore L+ < C. On the other
q_

hand, from (9) together with (q+q 1/2 < |y| |x| + 2|x||y|sm9 and
|y|2 —|x|2 +|x||y| sinf < 2|y|2 we get

Sil’l2 0|X|2 |y|2 | |2 _| |2 n Sil’l2 9| |2
" Il +|lyfsine 2

uy, 2 |y|2 —|x|2 +
Therefore

|IC’” (x, y,s) < eM2 K (x,y,s)e_‘y‘z.

Proposition 4: The operator K defined as

Kf(x) =’ i S 26 (2:5) K7 (o)L ()| ()| d 2 ().
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is of weak type (1, 1) with respect to the measure /i, .

Proof. The method of proof used in [1] is an adaptation to our context of the
techniques developed in [10] [11] [12] which allows us to get rid of the classical
one called “forbidden regions technique”.

The kernels (5) and (6) define strong type (1, 1) operators. Indeed,
o Jp 2 (v8)e L () (], (x) = €],

Moreover, for semi-integer values of the parameter a, by [6]

oc|+ —ClxP —cos /2
|x|2(\ |+d) e Cl”(2(1-co0s0)) (13)

isin L (d ya) uniformly in x and s and so the operator is of strong type with
respect to fi, on R,. Finally the result for the other values of oc is obtained
via the multidimensional Stein’s complex interpolation Theorem. So to get the
weak-type (1, 1) inequality for the operator X it suffices to prove that the op-

erators
2
S.f(x)=¢ Legj[—u]" Ir, (x.5) K" (x,5)TL, (s)ds|f (x)|d i, (x).i=0,1

map L (d i, ) continuously into L (d i, ) .
Without loss of generality, we may assume that f >0.Fix A>0 and let

E,.:{xeRf:Sif(x)>l},

L eyechl

for i=0,1. We must prove that , (E,)< .Let 7, and 7 be the posi-

tive roots of the equations

) g

f||1 =2 and rle:"2

We may observe that indeed, if E, () {x eR!:|x|< ri} =J:indeed, if |x|<7, we
have

2(|oc+d) CMZ

Sof(x) < |x|

<2

I

Sf <|x

fm<l

On the other hand, we may take A4>K || f || in [1], and by choosing K large

enough we may assume that both 7, and 7 are larger that one. Hence

i, {xeRf A < 2rl_} < J"X‘Qrﬁxjoc e g < 1 el ? C"f”
(i

Thus we only need to estimate ji, {x eR':r < |x| < 2};} .
We let E/ denote the set of x'eS”" for which there exists a pe[r;,2r]

with px'e E. For each x'eE/ we let p(x') be the smallest such p. Ob-

serve that
sin@(x,s)=sin@(x’,s)=siné.

Then Sif(p(x')x') = A, by continuity. This implies for i=0 and x'e€E;,
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A=58,f(py (x)x')

_c‘x‘zsinzﬁ
s 2 (lof+a) © sinohf
—J. J. X e JUN 2(‘(1‘”{)_1 Ha (s)dsf(x)dﬂa ()C)
R (sin0|x|2) ?
(14)
5 e \a\+d S)de
C’O sin? 0
‘x‘ V() +sm0r0
X

2(|af+a)-1
2

H] |x| -7 +s1n9r0)

andfor i=1 and x'€E/,
l:Sf(pi(x')x’)
—I I xR5 x M 1+|x|) “sin GMH ()dsf(x)dﬁa (x) (15)

R -7
Sel’o( )2,,1-" I x(x)efcsngnzna (S)dsf(x)dﬁa (x)

R [ (o)
Clearly, since r, and r, are greater than one, we have

[ta{eri:rl. S|x|£2r _[do- I e ” \oc\+d
Ef x

‘oc‘er 1

=

e’

o (x')

rru_,

combining this estimate for i =0 with (14), we get

i, {x ek 1< |x| < 2};} < % _[ roz((z‘xmd)_l)do(x’)(]o +IIO), (16)
£
with
cr045in20
1, = .[d I e f(x)dﬂa (x)l_[a (s)ds,
i 2<c .
[-L1] {smGVO < } ( x|2 _ 7’62 +sin 0}’02) )
and

1, = J. J. f(x)dﬂa (x)IT,, (s)ds.

[—l.l]d {‘x‘Zq sin0rf Sc}
Similarly for i=1 with (15), we obtain

_ C ¢ afps
A, {xeE SMS%‘}SL{, W g (3) (1, + 1), (17)
with

L= | [ ™ f(x)d, (x)11,(5)ds,

[—l.l]d {MZrI sin 0 Zc}
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and

[—l,l]d {sin 6’1‘12 Sc}

It is immediate to verify that

R G (s)ds < C

-1 {x';sin o gc}

and

R [ [ do(x)m

[—l,l]d {x':sin or¢ S(:}

Which give, after changing the order of integration in (16) and (17), the de-
sired estimate for the terms involving 7 and I, respectively as in [5]. Now let
us prove that for |x| >,

er sin? 0

FOZ(Z(‘MWH) .[ .[ : 2(Jocf+)-1 dO'(x')Ha (s)ds <C
[—l,l]d {x':sinHrOZSC} (| B

2 .
x| =1y +sin6r; )

and for |x| >r

rlz(\oc\+d)f1 J' J‘ e—csinz o dG(x')H

[—l,l]d {x’:sin 9712 Zc}

(s)ds <C.

a

n n
Firstly, one considers the case where o = (?1,—1,‘--,7"—1) with n, e N and
n,>1 for each i=1,---,d . In this case the inner integrals can be interpreted as

integrals over § " with respect to the Lebesgue measure, expressed in polyradial
d

N
coordinates in [11]. The same estimates are obtained also for o € T—lﬂ'Rd .

Finally the result for the other values of oc are obtained via the multidimen-
sional Stein’s complex interpolation Theorem. Indeed, let F:C? — C the func-
tion defined by

cro4 sin? 0

e Mz —roz +sin Hroz

P(&)=R L ()

sin 01 <c 2 .
fsnerg }(|x| -7 +sm6r02) :

)

F(%— lj‘ , whenever nis a integer vector and ¢ e R”.

We have seen that

‘F(%—Hig’j

Now we introduce the possible roots of the equations mentioned in the fol-

< C and itis easy to prove that

<

lowing Remark see [13]
Remark 5: 1) a) if 7y =7 then we have

2af+2d-1
7 3 =1,
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and

2|a|+2d-1=0,
which implies that
1
=—(1-2d),
= 1(1-20)
b) if 7, #r we have the quadratic equation
(2|(Z|+2d>ln7’0 =Inn +r12 —ro2
we assume, for simplicity, that 7, =e” and 7, =e* we can find
(2|a| +2d)ln e =Ine” +e* —¢
()~ +2n(1-|a|-d)=0

so that

2n=111/1—8n(1—|a|—d)

e )
2
where n2>1, we can easily find 7,.
2) S, and S, aremonotone.
. 2
3) Since <1, then |x| < |x| <C.

[

Proposition 6: For all m, the operator

T f(x)= p.v.J J' Xr, (X:8) K™ (o, 8)TL, (s)dsf (x)d (m+1), (),
R [
which is the modified Riesz-Laguerre transform restricted to the local region R,
is of weak type (1, 1) with respect to the measure /i,

Proof. The proof of this result follows the same steps like the proof of the
weak-type boundedness on the local zone of the first order Riesz-Laguerre
transforms done in [4] [9]. For the former we have the Calderon-Zygmund-type
estimates for the kernel K"*'.

Lemma 7: There exists a constant Csuch that
e (x5 () < € (2f (1-cos0) .

910 (7 () ()] < €2l (1-cose))

being go(x,s) acut-off function defined in [3]and (x,s) eR,.
Proof. Since ‘xi (\/_—sl. )‘ <q"? (rxz,x2,s) , then

d X; (\/; — Si) _qf(rxz,xz,x)
H Ha,» — ‘e 1=r

i=1 1-r
k/2
il ' (rxz,xz,s) ! ,‘1*(”"2"‘2’8)
S Z e 1-r
k=0 l-r
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where last inequality follows from this one:
q. (rxz,x2,s) > (2|x|2 (1 —cos 0))1/2 - 2C(1 —? )
when (x,s)eR, in[6]. Thuson R,

2 .2
|m-+1]-2 76‘1*("“ )

|’Cm+1 (x,S)|€0(x,S)A<JJ-1 («/;)‘mﬂ‘*l (_IOgrj e

1/2 (l_r)\achdﬂ

q,(rx2 o2 ,.v)

1-r

[m+1]-2

< J‘l/z(\/;)‘ml‘iz (-logr) 2 dr+ e

0 12 (1 _ r)\x\+d+1 dr
<1+ (2|x|2 (1-cos 9))7(‘0(‘%) )

In computing the gradient to fthe kernel with respect to x we are going to have
. m+1
integrals such as K (x,s)@xj (x,s) R

[ () a2

1-r oy 1-r

with H =0 and

m+1]— q‘(rxz’xz’s)
T e R | e Pt
I—r =y =r (=)t

In order to estimate these three integrals we use the same estimates described at

the beginning of this proof. For the first one we have to use
1

’ (2|x|2 (1-cos 9))1/2

Vx(p(x,s)| <

The gradient with respect to x is treated similarly.
For the latter we have the following Theorem regarding the [”d fi, -bounded-
ness for 1< p <o of the modified Riesz-Laguerre transform of any order on G.
Theorem 8: The operator
R;”f(x) = I '[ o (x,s)IC'”+1 ()C,S)HDc (s)dsf(x)d,ux (x)
R [-11)?
is strong-type ( p,p) for 1< p<oo with respect to the measure /i, .
Proof. The proof of this result in [1] is an adaptation to our context of the
same result for the higher order Riesz-Gauss transform s done in [6]. Taking

into account thaton G, ¢, (xz,s)qf (xz,s) >c¢ when cosé >0, an upperbound
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for |/Cm+1 (x,s)| is

fmet2
. (2|x|2) 2 e if cosf <0,
’Cm+l (X,S):

[m+1-1

(2|x| 1+cos€) (2|x| smH) 20 e 050> 0.

Thus

P
J.Rf J‘Gﬂ{cosﬁ<0} ]Cm+l (x’S)l_[‘X (S)dsf(x) d/uoc (x) dﬂcx
= P
’S Rfrl (-[Gﬂ{cos@d)} ICMH (x S dS|f |d’u°( ()C)) d’u*
) p'(‘m+l‘72) pl
S.“R‘{ .[Rf (2|x| ) ’ d'&“ d/um "f”Lﬂ (di.)
For the region G[1{cos@ >0} we are going to use the following estimates:

22 <q, <[24".q_20,(q,9. )% >0,

OSI

|x|2 sinf < |x|2 sin@, since p > 1,

p

J.Rfrl -[Gﬂ{cosr9<0} ’Cm+l (x S) ( )dsf( )d/uf (x) d[loc
= r
S" Rf (IGﬂ{c056<O} ’Cmﬂ (x s ds|f |d’uOC (x)) d/,lx

(m+1)-1 2l sing I

21 () (2|x| smH)Te > M0, (s)dsx|f(x))e dex(x)] du,(x)

S J.Rf jGﬂ{cos@<0}

p 2

(m+1)-1 ,[1,

(loef+d) 3 J\ P %m@ kP
2JC| (2|x| smH) 2

s)ds><|f(x)|e pd,uo((x)} d,ux(x)

5 J.Rf -..Gﬂ{cos¢9<0}

(m+1)-1 >

P
S e e 22 (2 sin0) 2 T ()| () 7 (x >] du, (2).

AN
=
ES

To finish the proof we just need to check that the kernel
2 .
H |2x| ‘ac‘+d —cl, 2| snn@)(@ ﬂ {COS 0> 0} ,

for &= {(x,s) : qé (xz,s) > %2')4} isin L' (d(m +1)Dc (x))

and independently of the remaining variables. Due to the symmetry of the kernel

we are going to check only the first Claim given in [1].
Ld H(x,s)d(m—i—l)m (x)
o]+ —c, ¥ ZMZ (1-cos @) &
ST T g ) ()

+f 2 ) P g (m 1) (x).
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It is clear that the second integral is bounded independentl y of xand s, for the
first one see (13) for any x.

It is known that the first order Riesz-Laguerre transforms are weak-type (1, 1).
Furthermore, we also know from that the the Riesz-Laguerre transforms of order
higher than 2 need not be weak-type (1, 1) with respect to 1, . However, we can
prove the following result that has to do with certain kind of weights we can add
on the domain of these transforms to make them satisfy a weak-type inequality.

Let us mention that in the Gaussian context something quite similar occur
with the higher order Riesz-Gauss transforms. Perez proved that for |m + 1| >2,
the Riesz-Gauss transforms of order |m + 1| associated to the Ornstein-Uhlenbeck

[m+1]-2

semigroup, map r ((1+|x| )d 7| continuously into Vi (d }/) , with
d;/(x)=ef‘x‘ dx . Regarding the weights for the Riesz-Laguerre transforms of
order higher than 2, then [1] proved the following

Theorem 9: The Riesz-Laguerre transforms order |m+1| with |m+1|>2,

map L (wdy,) continuouslyinto L**(dy,). Where

w(x)= (1 + |x| )‘mHH

Proof. As we mention in the preliminaries to prove this theorem is equivalent
to prove that the modified Riesz-Laguerre transforms of order higher than 2 map
L (w,df,) continuously into L'"(dA, ), with w(x)=(1+ |x|)‘m+l‘_2 . For each

x € R?. Let us write

4
R x[-1,1]" =R,
i=0
Therefore, in order to get the result, it will be enough to prove that each of the
following operators
" f(x)= f J Zr, (%,8) K" (x,8) 10, (s)dsf (x)d u, (x),
RY -1

for i=0,---,4 maps L (W,df,) continuouslyinto L (df,).

Observe that for all m 1 the operator T,;"*' is weak-type (1, 1) with respect
to /i, . On the other hand, for the “global parts™ R, R, R,, and R,, we have the
following estimate for the kernel "'

‘m+1‘72

(2|x|2) K (x,9), if cosd <0,

|IC"”1 (x,s)| <

[m+1]-2

(2|x|2 sin@) > K'(x5), cos§=0

If (x,5)eR, |k"Hl (x,s)| is controlled by C(l+{|x|})‘m+l‘72 e_M2 and there for
it is immediate to prove that 7;"*'maps L'(W,dfi, ) into L (da,).
Now if (x,s)e R, with i=2,3,4, we claim that

|IC'”+1 (x,8) S w(x)K" (x,5)

If (x,s)eR, since

a. <(2)" <",
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then
[m+1]-2 4 1/2 4 1/2
|IC’”+1 (x,s)| < (2|x|2 sin 9) : e_C(M (c0) < ﬂ)(x)e_c(‘x‘ (1) .
Also
q.9 = 4|x|4 sin” 6.
Thus

[m+1]-2

|IC"Hl (x,s)| < (2|x|2 sin H)T K (x,s) < vT/(x)IC* (x,s).

And this concludes the proof of the Theorem.

It should be noted that there is another proof of Theorem 9 for multi-indices
of half-integer type by taking £, as the function fin [3] [7].

Now we introduce a sharp estimate for w

Corollary 10: The Riesz-Laguerre transforms of order |m + 1| with |m + 1| >2,

map L' (wdu,) continuouslyinto L**(du,). Where

gn(1-d)-1-(2¢ -1)
g 20D

and

|m+1-2

_ K\mH\—Z

w(x)<(1+4c])

Proof. From Theorem 9 and Remark 5: We can directly see that

w(x) :(1+\/|;)\m+1\72 S (1+\/|?)\,,,+1‘,2 <

where m=>2.
Theorem 11: The weight w is the optimal polynomial weight needed to get
the weak type (1, 1) inequality for the Riesz-Laguerre transforms of order |m + 1| .
Proof. This proof follows essentially in [9]. With the notation of that Theorem
1 One takes 77 e R? with |77| sufficiently large, away from the axis and obtains
the following lower bound for et (x,f])

2oc|—d -1 egz |

K™ (en)=C | K™ (e )L, (s)ds =l (19)

L

for er:{§ﬁ+v:an,|v| <1,%|7]| <& <%|77|}

Now if we assume that the Riesz-Laguerre transforms of order |m+l| >2
map L (ﬂ/gd[tm) continuously into )i (d[tx) with W, = (1 +|x|)€ and
0<é&<|m+1/-2 then by taking />0 in L (W,dfi,) close to an approxima-

tion of a point mass at 7, with | /] =1 we have that R f(x) is close

L(wdi,)

to e\u\z o+l ()6’77)|77|7'g and by applying in equality (18) we get that

(Y
eln| k" (x,n)|n| " = |77|‘m+1‘72‘a‘7d7175 e {2] . Therefore setting
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(Y
‘m+l‘72‘a‘fdflf( 2
€

/1:|77

we obtain
(Y
. 4] " < B, ()<, {x e REREF(x) > A

Y’
S % _ C|n|2\a\+d—\m+l\+l+e 67(7 .

€

m+1—2—
Hence |77|‘"+ | must be bounded which is a contradiction. Therefore the con-

clusion of Theorem 11 holds.
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