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(ONom

Abstract

The authors have recently completed a partial classification of the ten-dimen-
sional real Lie algebras that have the non-trivial Levi decomposition, namely,
for such algebras whose semi-simple factor is 50(3). In the present paper,

we obtain a matrix representation for each of these Lie algebras. We are able
to find such representations by exploiting properties of the radical, principal-
ly, when it has a trivial center, in which case we can obtain such a representa-
tion by restricting the adjoint representation. Another important subclass of
algebras is where the radical has a codimension one abelian nilradical and for
which a representation can readily be found. In general, finding matrix repre-
sentations for abstract Lie algebras is difficult and there is no algorithmic
process, nor is it at all easy to program by computer, even for algebras of low
dimension. The present paper represents another step in our efforts to find
linear representations for all the low dimensional abstract Lie algebras.

Keywords

Levi Decomposition Lie Algebra, Lie Algebra Representation,
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1. Introduction

In this article, we continue the ongoing project of documenting, up to isomor-
phism, the low-dimensional Lie algebras and giving each such algebra a faithful li-
near representation. Recently, we have classified a subclass of ten-dimensional
indecomposable Lie algebras that admits a non-trivial Levi decomposition [1]. In
fact, it can be shown that apart from four exceptions, where the radical is of di-
mension six, the radical is either 50(3) or 5[(2,R) . We have classified all such
Lie algebras for which the radical is not s[(2,R), although the algebras associated
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to 5[(2,R) comprise a much more extensive class. Our results have appeared
in [1] and [2]. The present article is concerned solely with providing representa-
tions for this class of Lie algebras. We intend to revisit the cases involving s[(2,R)
in another venue.

The classification of the low-dimensional solvable Lie algebras, in general, has
been well documented in [3] as far as dimension six. Among many names, we
should mention [4] [5] [6] and [7]. Beyond [3], there is an encyclopaedic ac-
count of the seven-dimensional nilpotent [8]. On the non-solvable side, the classi-
fication of the semi-simple Lie algebras is well-known, see [9] [10] for a recent
account, and Lie algebras that admit a non-trivial Levi decomposition have been
studied by Turkowski in [11] [12] up to and including dimension nine. Thus, [1]
comprises the first foray into Lie algebras that admits a non-trivial Levi decompo-
sition in dimension ten.

Given a real Lie algebra L of dimension n, a well-known theorem due to Ado
asserts that Z has a fajthful representation as a subalgebra of g[( p,R) for some
p- However, Ado’s Theorem is essentially only an existence result and does not
provide a practical method for constructing such a representation. In [13], re-
presentations were given for each of the nine-dimensional Lie algebras that have
a non-trivial Levi decomposition. This class of Lie algebras was studied and clas-
sified by Turkowski [12]. Prior to [13], one of the current authors and others
have investigated the problem of finding minimal dimensional representations
of indecomposable Lie algebras of the dimension of eight and less [14] [15] [16]
[17] [18]. In fact, minimal dimensional representations are known for all Lie al-
gebras, indecomposable and decomposable alike, of the dimension of five and
less [15] [16]. Furthermore, minimal dimensional representations are known for
six-dimensional indecomposable nilpotent Lie algebras [17] [18] and also for Lie
algebras of the dimensions of five, six, seven and eight that have a non-trivial Levi
decomposition [14]. We refer the reader also to [19], where Turkowski’s algebras
were studied from the point of view of their invariants.

In general, to find minimal dimension representations for the ten-dimensional
Levi decomposition algebras is difficult, therefore, we address the problem of finding
just one faithful, linear representation for each of these 38 Lie algebras. None-
theless, it would not be difficult to assert in many, indeed most cases, that the re-
presentations given here are minimal, since many of the underlying algebras are
associated with irreducible representations. However, since we cannot be defini-
tive in every case, we prefer to defer the issue of minimality for the present.

We shall supply a few words about terminology and notation. Much of the
notation adopted here is based on [12]. The summation convention on repeated
indices, one a subscript and one a superscript, is usually in operation and some-
times with two separate ranges of indices. We generally use Sto denote a simple
or occasionally semi-simple Lie algebra. We use N for a solvable Lie algebra and
NR for its associated nilradical. Then a Levi decomposition is written as SxN .
Turkowski classified nine-dimensional, indecomposable Lie algebras that have a

non-trivial Levi decomposition. Actually, in [12], two algebras were omitted: one
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is denoted as Lz,7 in [19] and is a “real” form corresponding to L,s,. The
second shall be denoted here as L;” and is a semi-direct product of 50(3)
and R® coming from the irreducible 6 x 6 representation of 50(3). See [13]
for more details. Turkowski denotes by R the representation of the semi-simple
factor $'by automorphisms of the radical V. He discerns, up to isomorphism, 63
classes of such Lie algebras and they are denoted by L,, where 1<i<63. Fol-
lowing the lead given in [12], the Lie algebras for which representations are con-
structed, are listed below as L,,,, where 10 pertains to the dimension of the al-
gebra and 7to the /th algebra in the list.

As regards the other classes of low-dimensional indecomposable Lie algebras,
algebras of dimension less than or equal to five and the nilpotent algebras of di-
mension 7are denoted by 4, ; where 3<i/<6, and signifies the jth algebra in
the list, following the listing in [20]. The indecomposable solvable Lie algebras of
dimension six that have a five-dimensional nilradical were classified by Mubara-
kzyanov [5] and are denoted by g,, where 1<i<99;seealso [7] for an updated
classification. The indecomposable Lie algebras of dimension six that have a four-
dimensional nilradical classified by Turkowski [6] are denoted by N,; where
1<i<40. For much more information about low-dimensional Lie algebras in
general, the reader may refer to [3]. There is also a memoir devoted to studying
the invariants of the nine-dimensional, Levi decomposition algebras [19]. For abe-
lian Lie algebras of dimension n, we usually say “Abelian” and refer to R" rather
than writing 74, . The trivial representation of dimension n is denoted by nD, .
The irreducible representation of s0(3) of dimension nis denoted by R, for
n>3 and for n=3 by adso(3). We shall refer to the n-dimensional Lie alge-
bra with non-zero brackets given by:

[e.e,]=¢. (1<i<n-1)

i°"n

as the “Milnor algebra”. The reason for so doing, is that it was introduced in [21]
albeit in a rather different way; Milnor described the algebra as the unique up to
isomorphism, non-abelian Lie with the property that the Lie bracket of any two
elements is a linear combination of those same two elements. This algebra and small
variants of it, occur repeatedly in the study of Lie algebras that have a non-trivial
Levi decomposition.

The Lie algebra of dimension 2n+1 that has brackets:
[ei’en+j:| =085, (1 Si<j< ”)

is the Heisenberg Lie algebra and for n=3 it is denoted by 17 in [8]. On the oth-
er hand, the Lie algebra of dimension 2n+1 that has brackets:

e.e =J.e 1<i<j<n
127 2n+l1

iyt

is the anti-Heisenberg Lie algebra and for n=3 it is denoted by 374 in [8].
Unfortunately the Heisenberg and anti-Heisenberg coincide for n=1 but in any
case, that Lie algebra is denoted by A. Another indecomposable seven-dimen-

sional nilpotent Lie algebra that is needed is denoted by 37.D1 in [8].
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Finally, we should like to say that it might be assumed that finding representa-
tions for low-dimensional Lie algebras is simply a matter of implementing a suita-
ble computer program. However, in our opinion, such an assessment is overly
optimistic. Such a routine can prove effective for nilpotent algebras of dimen-
sion up to about seven; even then, one is likely to obtain a representation that is
wanting in elegance and that has to be simplified “by hand”. An important rea-
son for having to restrict attention to nilpotent algebras is that up to dimension
six, such algebras are “atomic”, by which we mean that the algebras do not de-
pend on essential parameters. In dimension seven, there are some algebras that
depend on a single parameter [8] and the situation is bound to be worse in di-
mension eight. Without intervention, a computer routine will assume generic
values for the parameters and a given representation may fail for special values.
In higher dimensions, the conditions seem to us to be too complicated to be
amenable to a conventional routine. However, the reader is referred to a recent
paper [22] which does claim success in finding representations for six and sev-
en-dimensional nilpotent algebras. When it comes to Lie algebras that admit a
non-trivial Levi decomposition, it seems to us that it is necessary to understand
the role of the R-representation in constructing a representation for the entire
algebra.

An outline of the paper is as follows. In Section 2, we consider the problem in
general of constructing Lie algebras that have a Levi decomposition. In Section 3,
we give a list of the possible R-representations of 50(3) that occur in the ten-
dimensional Levi decomposition algebras. In Section 4, we briefly discuss the pro-
perties of the subalgebra of R-constants. In Section 5, we provide a few general
comments about our classification of the ten-dimensional Levi decomposition
algebras, which attempt to put the arguments given in [1] and [2] into context.
In Section 6, we outline several techniques that we have used to construct repre-
sentations and we refer the reader to [13] for more details. Finally, Section 7 gives
the matrix representations of the 37 classes of Lie algebra that are concerned. We
supply also the Lie brackets of the Lie algebra and the R-representation (see next
paragraph) for each case where the semi-simple factor is just 50(3) .

2. Constructing Algebras with Levi Decompositions in
General

Let us consider the problem of constructing a Lie algebra that has a Levi decom-

position L=NXS§ in general. We have the following structure equations:

[e..e,]=Cie., [e,.e,]=Che,, [e[,ej} = C;;ek (1)

where 1<a,b,c,d <r and r+1<i,j,k,/<n and {ea} is a basis for the semi-
simple subalgebra Sand {ei} is a basis for the radical V.

To find all possible Lie algebras of dimension n that have a Levi decompose-
tion L=NXS we can proceed as follows: choose a semi-simple algebra § of
dimension r. Then pick any solvable algebra N of dimension »n—r and consider

a representation of Sin NV, considered simply as a vector space of dimension
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n—r, should one exist. All such representations are known and are completely
reducible since Sis semi-simple. Finally, it only remains to check that the matrices
representing S act as derivations of the Lie algebra M. In the affirmative case, we
have our sought after Lie algebra; in the negative case, there is no such algebra
and we have to choose a different representation of S'in M. If all such representa-
tions lead to a null result, then there can be no non-trivial Levi decomposition

involving Sand M.

3. R-Representations for so(3)

It can be shown [1] that in the enumeration of the ten-dimensional Levi de-
composition algebras, either the semi-simple factor Sis of dimension six, or else
it is either 50(3) or 5[(2,]R) . The case where S = 5[(2,R) leads to a very
extensive list of Lie algebras and was not the concern of [1] or [2], nor will it be
here.

Since we are interested from now on only with the case where the semi-simple
part of the Levi decomposition algebra is 50(3) , we shall need to find all possi-
ble representations of s0(3) in gl(7,R). They are as follows:

° R7 ;

o R ®2D,;

e R, ®3Dy;

* ad(s0(3))®4D,;
e ad(s0(3))®R,;
* 2ad(s0(3))®D,.

We are following here the notation used in [12] so that ad(50(3)) denotes
the standard, or equivalently, adjoint representation of 50(3) and D, the one-
dimensional trivial representation and kD, signifies k copies of it. Moreover, by
R, we mean the standard irreducible representation of 50(3) in gI(q,R) where
1< g <7.We shall not write down the matrices for these representations here.
However, they can be gleaned from the representations supplied in Section 7 by
taking the span of the s,,s,,s, matrices and deleting zero rows and matching
columns. For example, algebras L, ,L,,L,,s and L, engender
ad(50(3)),R4,R5 and R,, respectfully. There is only one Levi decomposition
Lie algebra for R, and a unique class depending on one parameter for R;. Sev-
eral “accidental” algebras are associated to R,, as a result of the failure of Schur’s
Lemma. In [1] it was incorrectly stated that there is an irreducible representation
R, . However, R, is actually conjugate to the representation Zad(50(3)) . Accor-
dingly algebra L, in [1] must be removed from the list.

4. R-Constants

Following Turkowski [12], we call an element in a Levi decomposition Lie alge-
bra SXN,an R-constant if it commutes with the R-representation. The termi-
nology arises from the fact that the R-representation also acts as a derivations on

N, and the R-representation maps the R-constants to zero. We shall denote the
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space of R-constants by R and it readily follows that R forms a solvable subalgebra
of N containing a complement to NRin M. In fact, R may even be nilpotent, see
for example, algebra L, ,, in Section 7. The nilradical of R contains RN NR, the

latter being an ideal in R.

5. Supplementary Remarks about the Classification of
Ten-Dimensional Levi Decomposition Lie Algebras

In this section, we shall make a few comments that are intended to elucidate and

supplement the accounts in [1] and [2].

5.1. Dimension of NR Is Four

It can be shown that it is not possible to have the nilradical NR of dimension
four if the semi-simple factor S contains just one copy of 50(3). However, if Sis
of dimension greater than three, then it can be one of 50(4) X 50 (3) @ so (3) )
50(2,2) ~ 5[(2,R)® 5[(2,R) or 50(3,1) . In each of the first two cases we obtain
just a single indecomposable Levi decomposition Lie algebra and in the case of

50(3,1) , two up to isomorphism. In all of these cases NR is abelian.

5.2. Dimension of NR Is Five

The nilpotent Lie algebras of dimension five are

A3 Ay Asyy As s As 5y As g A, DR, H @R R . Of these nine, only 4, and R’
admit subalgebras of derivations that are isomorphic to 50(3). In the case of
A4 ,, the R-representation comes in the form of R,.In the case of R, only the
R-representations, R; R, ®D, and s0(3)®2D, are possible. However, R’
leads to a decomposable ten-dimensional Levi decomposition Lie algebra in view
of Schur’s Lemma. For R, @ D, there is a unique class of Levi decomposition
Lie algebras, but only because Schur’s Lemma fails for R, .

In the case where the R-representation is 50(3) @2D,, four classes of algebra
appear. Assuming that the Jacobi identities arising from the R-representation
have been satisfied, the remaining Jacobi identities come from the condition that
R-constants R should be a subalgebra. It is found that in the various cases, R is one
of 4, ®4,,, 4,,, A4.9(b:0) or A,, corresponding to algebras (L —Llog) ,

respectively.

5.3. Dimension of NR Is Six

In dimension six the following nilpotent Lie algebras admit subalgebras of deri-
vations that are isomorphic to s0(3): 4, 4¢5,4;, ®R,H®R’ and R°. For
NR = 4, there is a unique ten-dimensional Levi decomposition Lie algebra for
which the R-representation is 2adso(3)® D, and for A, a class of algebras that
depend on two parameters and R-representation R, ®3D,.For NR=4,, ®R
there is one class of algebras that depend on two parameters and the R-represen-
tationis R, ®3D,.For NR=H ®R’ there is a unique Lie algebra for which the
R-representation is ad(s0(3))@4D, .
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There is a variety of cases for which NR is six-dimensional abelian. As we ex-
plained in Section 3, the algebra L, must be removed from the list. There is a
unique classes of algebra arising from the R-representations R, @ 2D, (Llo.15 )
For the R-representation R, ®3D,, three cases arise (Ly¢,Lyg175Lyg,5) > which
may be distinguished by their algebra of R-constants (4;,,4;5, 4, ) , respectively.
For the R-representation ad(50(3)) @4D,, there are five class of algebra
(ng - Ll(m) that may be distinguished by their algebra of R-constants
(1414'2 — A6 ) Finally, for the R-representation 2ad(5o(3)) @ D,, there are three
classes of algebra (L10A24,L10‘25,L1026) that as far as we can ascertain, are not mu-

tually isomorphic.

5.4. Dimension of NR Is Seven

In dimension seven, the following seven-dimensional nilpotent Lie algebras ad-
mit subalgebras of derivations that are isomorphic to 50(3), using the listing
given in [8]: 17, 374, 37D1. For 17, the seven-dimensional Heisenberg algebra,
the R-representations R, ®3D, and 2adso(3)® D, both occur and lead to the
unique algebras L,,,,) and L, ). In the case of 374, the R-representation is
2adso(3)® D, and gives the unique algebra L,,,). For 37D1 each of the R-
representations, R, ®ad(s0(3)), R, ®3D, and 2adso(3)® D, is possible. The
first two of these representations lead to the unique algebras L., and L,
respectively. The case of the R-representation 2adso (3) @ D, produce four alge-
bras (Ll(m,L10.33,L10.34,L10A35), which, although very similar, appear to us not to
be mutually isomorphic.

Taking into account the various R-representations and the decomposable
seven-dimensional nilpotent Lie algebras that can occur, the only case for which
there can be an indecomposable Levi decomposition Lie algebra, is for NR = R’
with R-representation either R, or R, ®ad(so0(3)). Each of these cases gives a
unique algebra (Ll(m,LlO‘37 )

6. Summary of Main Techniques for Finding Representations

6.1. Radical Has Trivial Center

If the radical has trivial center then the whole Lie algebra has trivial center. In-
stead of taking the full adjoint representation, we take the adjoint representation
restricted to the radical N.

6.2. Abelian Codimension One Nilradical

If the radical NV has a codimension one abelian nilradical then we have a repre-
sentation of NV in g[(n,R) where 12 is the dimension of N. After finding a re-

presentation of the radical it remains to add the semi-simple factor, if possible.

6.3. Radical Is Abelian

If the radical Nis Abelian then L=SXN has a representation in g[(n + I,R)

where the dimension of Nis n. We have the following result.
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Theorem 6.1. Let a simple Lie algebra Shave a faithful representation in End(N)
for some vector space N. Then there is a Lie algebra SXN that has a Levi de-
composition with N being an abelian radical. Conversely, every Lie algebra that
has a Levi decomposition with abelian radical arises in this way. Such a Lie alge-
bra is decomposable if and only if the representation of S, being completely re-
ducible, contains a trivial subrepresentation.

The representation is obtained by augmenting the R-representation by an ex-
tra row and column, the row consisting of zeroes and the column consisting of n

arbitrary entries and (n+1,n+1) -entry zero.

6.4. Entire Lie Algebra Has Trivial Center

If the Lie algebra as a whole has trivial center, whereas the radical has non-trivial
center, then we can take full the adjoint representation.

6.5. Using the R-Representation

An interesting question is to what extent the R-representation helps to determine a
representation of the Lie algebra L =S5xN. It may be helpful, for example, to
consider the invariant subspaces coming from the R-Representation when a re-
presentation for the radical has been found and one wishes to extend it to the full
Levi decomposition algebra by adding a representation of the semi-simple factor.

7. Representations of Indecomposable Lie Algebras of
Dimension Ten that Have Non-Trivial Levi Decomposition

and Whose Semi-Simple Part Is Not 5[(2,R)

7.1. NR Four-Dimensional Abelian
7.1.1. S =s0(3,1)

Ly, :[a.e ] =e]ena]=e]a.e] = e ene ] = —es.[en 6] = e,
[ene]=—¢.[e. 6] =e.[e.e,]=—¢[en ] =€, ]e6, ] = -6,
[e.6]=ele.e] =66, 6] =—e,.[e5.6, ] =[5, 6] = e,
[ese5]=—e.[er. 6] = er.[en e | = eps[esn 0] = €. 5.6 ] =€,

[eS’eS] =eIO’[eS’eIO]=e8’[e6’e9] =eIO’[e6’eIO]=e‘)

0 0 0 0 0

LIOAI’:[eUeZ] 262,[61,63] 263,[61,67]—87,[61,68] eg,[el,eg]—eg,

[elaelo]=_eloa[ezae3]=ela[ezaes] =e7,[e2,elo] =eg,[e3,e7]=e

[eS,eg] = elo,[e4,es] 2e5,[e4,eé] = 266,[64,67] = e7,[e4,e8] =,
[64569] 97[647610] = 6105[65786] = 947[95369] = 87,[65,610] =&,
[66767] [ewes] =€
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S5 =S, S, Sy S
Sg =S, =S, —Ss S
Sy S5 TS 85 Sp

7.1.2. S=s0(4)~s0(3)®s0(3)
Ly, :[el,ez]=e3,[e3,el]=ez,[el,es] =e6’[el’eﬁ] =—es,[e1,eg] =€,
[el,eg]=—€8,[ez,e3]=el,[ez,e4]=—eﬁ,[ez,eé]=e4,[ez,e7]=—eg,
[82,69] =e7,[e3,e4] =es,[e3,e5] =—e4,[e3,e7] =e8,[e3,88]=—e7,
[64965]:_63’[64’66] =e2,[64,e7]:ew,[e4,e10] :e7,[es,e6] =4,
[

es,eg] :eIO’[eS’eIO] 2683[66’69]261()’[66’610]:_e9

7.1.3. S =50(2,2)~sl(2,R)®sl(2,R)

L, :[el,ez]:eé,[e],eS]:es,[e,,eS] :eS,[el,eG]:ez,[e,,e7] =e,,
[61,69]=e7,[€2,e4]=€5,[€2,65]=€4,[€2,66]=—€1,[62,€7] =€p>
[ez,elo]=e7,[e3,e4]:e6,[e3,es]=—el,[e3,e6] :649[63968]269’
[63’89]288’[64565] :_62’[64’e6] :_63’[64788] 26105[64’810] =6,

[

65’67]:_68’[65568] :e7’[e6’e9] :_elo’[esvelo]:e9

7.2. S =s0(3), NRFive-Dimensional Heisenberg = A4,
R-Representation R, ® 3D,

1 1 1
Ly, :[81762] :esa[elae3]=_eza[elae4]2535’[31565]=_Ee4a[elaes] =Ee7’

1 1 1
[61,67] =—Ee(),[ez,%]:el,[ez,e4]=ze6,[e2,e5] =—Ee7,

1 1 1 1
[ezaeﬁ] :_5547[52’67] =565,[63,64]2567,[63,6512566,
1 1
[63366]:_5657[63’67]:_5647[64’66] =e8,[e4,e9] :_66=[e4’610] =&

[65967]:68’[65769]:_67’[65’610]:65’[66969]:e4’[667610]:eéﬂ

[e7,eg] =es,[e7,elo] =67,[68,6‘10]2268,[69,610] =aeg,(a =-1,0,1)
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1 1 1
—Si0 55 TR TS TS 0 Sy
2 2 2
1 1
Esl Si0 55 55275 0 Ss
1
—S, +5, S5 =810 _Esl 0 Sg
1 1
—5, ——S, + 5, =5 —Si0 0 S5
2 2 2
—Sg -, Sy S5 =28, asy + 28,
| 0 0 0 0 0 0 |

7.3. S =s0(3), NRFive-Dimensional Abelian, R-Representation
R, ®3D,

1 1
Lyys :[el’ez] =e3,[el,e3] =—62,[€1,€4]=567,[€1,€5]=E€6,[€1,€6] =_Eesa

1 1 1
[61,67]:—5643[62393]2619[92,64]=§es,[€2,€5]:—5649

1 1 1 1
[62966]2567’[62767] :_5669[63’64]:5667[63765]:_5677
1 1
[epe()] :_534’[63587]:565’[64769]:_66’[647610]2647
[65’69] =—67,[65,610]=65,[€6,69]=€4,[e6,€lo]=€6,
[e7,eg]=es,[e7,elo]=e7,[es,eg] =ae8,[eg,elo]=beg,

e,,e,|=ce,(c=00rl,a>+b* +c* #0
9°>*10 8

1 1 1
“Sio 5% T8 T8 TS 0 Sy
2 2
1 1 1
552 Si0 _Esl =537 0 Ss
1
—8; + Sy S =810 —Esz 0 S
1
ESI —Es3 + 8, Esz =810 0 S5
0 0 0 0 —as, —bs,, bsg+cs,
0 0 0 0 0 0 |

7.4. S =s0(3), NR Five-Dimensional Abelian, R-Representation
ad(s0(3))®4D,

L6 :[e],ez]:e3,[e3,e]]:e2,[e],es] :eé,[e,,e(,]:—es,
[62,63] :el,[ez,e4]=—e6,[ez,e6] :e4,[e3,e4] =e;,
[e3,e5] :—e4,[e4,e9]:ae4,[e5,e9]:aes,[es,eg]:aem
[87,69

[eé,em

e7’[e4’e]0] =be4,[es,e]0] = bes,

beg,[e. €| = €. (ab #0)

1=
1=
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—asy —bs, 85 S, 0 0 s,
85 —as, —sbs,,, s, 0 0 s
Sy S —asy —bs,, 0 0 s
0 0 -5, 0 s
0 0 0 =50 5
i 0 0 0 0 0 0]

Ly, :[el,ez]:e3,[ez,e3]=el,[es,el] :ez,[el,eS] =e,
[ez,e4]:—e6,[ez,e4] :es,[el,eﬁ] :—es,[ez,e6]=e4,
[ez,es] :—e4,[e4,e9] :ae4,[es,e9]:aes,[eé,eg]zaeé,
[e,.e | =e.[e5.6 | = ¢.[e,. €] = bey.[es. €] = bes,
[eé,elo] :beé,[e7,em] :—eg,[eg,elo] :e7,(a2 +b* 2 O)

[—as, —bs,, —s, s, 0 0 s,
S5 —asybs,, -, 0 0 s
-8, s, —asy —bs,, 0 0 s
0 0 0 =Sy =8, S
0 0 0 S —So Sg
i 0 0 0 0 0 0]

Ls :[el,ez]:e3,[ez,e3]:el,[93,el] :ez,[el,es] =¢,
[ez,e4]:—e6,[e3,e4] :es,[el,e6] :—es,[ez,e6] =e,,
[e3,e5]:—e4,[e4,e9] = ae4,[e5,e9]:ae5,[e6,e9] = ae,,
[e7,e9]:e7,[e8,e9]:eg,[e4,em] :e4,[e5,e10]:e5,

[669610]266’[687610] =&

—asy — Sy -, S, 0 0 s,
S, asy — Sy, -, 0 0 s
-, s, asy—s, 0 0 s

Ly, :[el’ez] 2633[62’63] =el,[e3,el] :eza[eloes] =&
[es.e,]= e es e ] =es.[ee ] =—es.[ene ] = ey
[epes] =—e4,[e4,e9] 264’[65399]:es’[36=e9]:ee’

[677‘310] =e7,[eg,ew]=eg

DOI: 10.4236/apm.2022.124022

—Sy =83 S5, 0 0 0 s
5 =Sg —s; 0 0 0 s
=S, 5 =S 0 0 0 s
0 0 0 -5 0 0 =&
0 0 0 0 0 -5, s
0 0 0 0 0 0 s
| 0 0 0 0 0 0 0]
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7.5. §=50(3), NR= A, R-Representation 2ad(so(3))® D,

Loy :[ase]=enlena]=e[a.6] =€ [a.¢] = e [a.6] =,
[e.6]=—¢.[e. 6] =e.[e. e, ] =—¢.[er. 6| = €. [ €06, ] =65,
[0, =€).[e5.6,] = e.[e5.65] = —¢,.[ 5.6, | = ¢.[ €5, 6| = =€,
[e.e5]=e.[er. 6] = —€.[es.e0] =€ [e5.6 | = €;. €5, | = 5,

[es,em] = 367[577610] = 267’[683610] = 2683[69’310] =2e,

=5, 55 -5, 0 0 0 s, |
-8, =S, S 0 0 0 S
S T 0 0 0 Se
0 =55 s =25, -5 s,  2s,
Sg 0 -5, 5 28, -5 28
—S; S, 0 —S, S =28, 28,
| 0 0 0 0 0 0 0 |

7.6. S=s0(3), NR=A;, R-Representation R, ®3D,

1 1 1
Ly, :[elaez] 2635[61963] :_623[61’64]25679[61365] :Eesﬂ[elaeﬁ]:_zesa
1 1 1
[elae7] :_564:[92533]231’[32’64] :Eesa[ezaes] :_Eeu

1 1

1 1
[ez>e6] =Ee7,[ez,e7]=—Eeé,[e3,e4] =Ee6’[e3’ei]=_ae7’

1 1
[es.6]= —564,[63,67] =Ee5,[e4,e6] =e.[e.e]=¢
[es.e0] = ae, —bes,[es,e | = —ey,[es. e, ] = e, [ e, €, | = aes +be,,
[e(,,elo] = aeg +be7,[e7,elo] = ae, —be6,[es,e10] =2ae; + 2be,,

[e5.€,0 ] = 2ae, —2bey,a® +b* # 0

1 1 1
—asy, —Esz —bsy, ——s, _Esl 0 0 8y
1 1
Esz +bsy, —asy, -, Es3 0 0 S5
1 1 1
—5, —5 —asy, —552 +bsy 0 0 Sg
1 1 1
Esl _ES3 Esz —bsy, —asy, 0 0 s,
—S4 -8, Sy S5 —2as,, 2bs, s
-5, S -5 S, —2bs,, —2as,, s,
|0 0 0 0 0 0 0 |

7.7. S=s0(3), NR=A,, ®R, R-Representation R, ® 3D,

1 1 1
Ly, :[el’ez] =e3’[el’e3] =_62’[el’65]=5e8’[el9e6] =5€7,[€l,€7] =_Ees’

1 1 1
[el,eg]=—zes,[e2,e3] =en[ezﬂes] =Ee7a[ezae6] =_Eesa
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1 1 1 1
[62’87] :_5657[62768]2566’[83’65]:_566’[63’86125653

1

63367]:_568’[63568] :Eew[es’@] =e4,[eé,es] =€y,

[
[64’310]:264=[657310] :eS’[e()’eIO]:eé7[e7’eIO] :e7,[eg,elo]=eg,
[eg,em] =ae, +beg,(b¢0;b #2,a=0;b=2,a =O,1)

28, —$; —Sg S S, —as, asy+2s, |
1 1 1
0 =S =8 —Esz _Esl 0 S5
1 1 1
0 -=s S0 _Esl =5, 0 Se
1 1 1
0 5 S, 5 s =S, 5 S, 0 S5
1 1 1
0 Esl _ESZ ——S; =S 0 Sg
0 0 0 0 0 =bsy bs,
| 0 0 0 0 0 0 0 |

7.8. S=s0(3), NR=H ®R®, R-Representation ad(so(S)) ® 4D,

Lyy,s :[61762] =e3,[el,e3] :_eza[el’es]2697[31’39]:_687[62763] =é,
[82,67]=—eg,[ez,eg]=e7,[e3,e7] :esr[eyex]:_ew[euelo] =2e,,
[65,66] =e4,[es,e10]=65,[66,e10]=e6,[e7,e,0]=e7,[eg,e,0]=eg,

[99’610] =6

[-2s, 0 0 s, O 0 0 0
0 —s, 0 s 0 0 0 o0
0 0 -5, s, O 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 =8 =8 5 5
0 0 0 0 s =5, =5 5
0 0 0 0 -5, 5 =S5 5
0 0 0 0 0 0 0 0

7.9. S =s0(3), NR Six-Dimensional Abelian, R-Representation
R, ®2D,

1
ez,e4] =Eeﬁ,[e2,es]=Ee7,[e2,e6]=—2e4,[62,e7]=—2e5 —e,

63537]:_667[647610]:645[659610] :esa[esaelo] =€

[
[
[
0.6 ] =3¢, [ese,] = 2, [ey. 5] = ~2e,.[es.0.] = e,
[
[e).e0] = €[] = €[ €10 ] = a6y (@ % 0)
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-8, —28, 25, 25, O 0 s
28y =8, 28, 25, O 0 s

1 1
ESZ _ESI =S S 38 0 s
1 1
-8 =S5, 8, S, 38, 0 s
2

0 0 -5, =8, —Sp 0 s

0 0 0 0 0 —as, s,
0 0 0 0 0 0 0

7.10. S =so(3), NR Six-Dimensional Abelian, R-Representation
R, ®3D,

1 1
Ly :[61762] =e3,[e1,e3] =—e2,[e1,e4]=ze7,[e1,e5] =Eesa[elaeﬁ] =_Eesa

1 1 1
[91’37]:_5647[62763]2819[62984]25657[92765] :_5947

1 1 1 1
[62’66] 2567,[62,67] = _Eeo’[e3’e4] :Eesa[eres] = _5377

1 1
[63,66]2—564,[63,67] 2565,[64,610] =ae, —be,,
[es. € | = aes —be, e, e, | = be, +aeg,[e;. e, | = bes +ae,,

[e5. €10 ] = ces.[ ey, ] = ce, +e(a=10rb=1)

1
—as,, -, —ES3 —bsy, _Esl 0 0 s,
1 1 1
Esz —as;, _ESI ES3 -bs, O 0 s
1 1 1
5s3 +bsy, Esl —asy, —Esz 0 0 s
%sl ——s; +bs), S, —as,, 0 0 s
0 0 0 0 =Sy —Sio Sy
0 0 0 0 0 —cs0 S
|0 0 0 0 0 0 0]
) 1 1 1
Loy fene]= 63,[61,63] =-e,.[e.¢,] 2567’[61’65] :Eew[enes] = _Ees’
[ene)=—epfene] = eulene] = refee] = —2e,.
2 2 2

1 1 1

1
[ez,e6] :537,[82,67]:—Ees,[e3,e4]zae6,[e3,e5] 2—567,

1 1
[63,86]2—564,[63,67] 2585,[64,610] =ae, —beg,
[es. € | = aes —be, e, e, | = be, +aeg,[e;. ¢, | = bes +ae,,

[es.€10 ] = ces.[ ey, €] = de,, (a=1orb=1,cd #0)
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—as,, —ls2 —Es3 —bs,, —ls1 0 0 s
1 1 1
Esz —asy, _ESI ESS —bs, O 0 s
1 1 1
Es3 +bsy, Esl —asy, —Esz 0 0 s
%sl —%s3 +bsy, %Sz —asy, 0 0 s
0 0 0 0 —csy 0 s
0 0 0 0 0 —ds, s
| 0 0 0 0 0 0 0 ]
1 1
Lyg,s :[el’ez] =e3,[el,e3] = _625[61364] =567,[€1,65]=5€6,[€|,€6] = _Ees’

1 1 1 1
[e],e7]:—5e4,[e2,e3]:el,[e2,e4] :585’[62’65]:_5647[62366] 2567,

1 1 1 1 1
[e,.¢;] :—Ee6,[e3,e4]25e6,[e3,e5] :—Ee7,[e3,eé] :—Ee4,[e3,e7]:5e5,
[es. €0 | = ae, —beg e, e, | = aes —be, [ e, 0| = be, +aeg,[e;, ¢, | = bes +ae,,

[e5,€10 ] = ces +dey,[ e, | = —deg +ce,, (a=1orb=1,d #0)

- . -
—as,, —Esz _ES3 —bs,, —Esl 0 0 s
1 1 1
-, —asy, _Esl ESS —bs, O 0 s
1 1 1
ES3 +bsy, Esl —asy, —Esz 0 0 s
1 1 1
Esl —5s3 +bsy, Esz —asy, 0 0 s
0 0 0 0 —cs,,  ds,,  Sg
0 0 0 0 —ds,, —CS;p So
| 0 0 0 0 0 0 0]

7.11. S =so(3), NR Six-Dimensional Abelian, R-Representation

ad(so(3))®4D,
Ly [el’ez] ,[62,63] :el’[637el] :ez,[el,es]zeé,[ez,e4]=—eé,
[es.e, | =es.[e. 6] = —es.[er. 6| = €. [e5.65 ] = —e,. [e.00 ] = &4

[eS’eIO] =es,[eﬁ,elo]=eé,[e7,elo] =ae7,[eg,elo] =e; taeg,
[e,,€,0 ] = bey, (b#0)

=S =Sy 8 0 0 0 s,
S, =S, S 0 0 0 s
=S, 8 =S 0 0 0 s
0 0 0  —as, —S, 0 s
0 0 0 0 —as, 0 s
0 0 0 0 0  =bs, s,

| 0 0 0 0 0 0 0 |
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Ly :[el’ez] =€3,[62,63] :el’[637el] :ez,[el,es]zeﬁ,[ez,e4]=—eé,
[e3,e4] =es,[e,,eé] =—e5,[ez,es]=e4,[e3,e5] =—e4,[€4,€10] =€y,

[es.e0] = esu[es. 0| = €. er.€0 ] = aes [ ey, | = ¢, (a#0)

—Si0 Sy S, 0 0 0 s,
R T 0 0 0 s
-8, 8 =S8 0 0 0 s
0 0 0 =-as, 0 0 s
0 0 0 0 0 =5 5
0 0 0 0 0 0 s

| 0 0 0 0 0 0 0]

Ly :[el’ez] =e3,[ez,e3] :els[e3oel] :ez,[el,es]=e(,,[6‘2,e4]=—eé,
[e3,e4] :es,[e,,eﬁ] :—es,[ez,es]=e4,[e3,85] =—e4,[€4,€10] =€y,
[esaelo] 265,[66,610]266,[67,610] =ae7,[68,elo] =e; tae,

[69,610] =& + ae,

=S =S, S, 0 0 0 s,
S, =8, =S 0 0 0 s
=S, 8 =S 0 0 0 s
0 0 —as, —S, 0 s

0

0 0 0 0 —as, =S, S
0 0 0 0 0 —as, s
0 0 0 0 0 0 0

Loz :[e,,ez] =e3,[ez,e3] =e],[e3,el] ZeZ,[el,eS] :eb,[ez,q] =%
[es.ei]=es.[e.e ] =—es.[er.ec] = e [e;.65] = e,

[e;.e0] = ae,.[e. e, ] = es.[ e, €, | = ey, (abe £ 0)

—Si0 S35, 0 0 0 s
S, =S, =S 0 0 0 s
-8, 8 =S 0 0 0 s
0 0 0 —asy 0 0 s
0 0 0 0 -bs, 0 s
0 0 0 0 0 —cs S

| 0 0 0 0 0 0 0]

Liy,s :[61762] =e3,[ez,e3] :ela[epel]:eza[el’es] =eﬁ,[ez,e4]=—e6,
[63964] =es,[e],eé] =—es,[ez,es]=e4,[e3,es] =_e4’[e4’elo] =&
[eS’eIO] :eS’[e6’eIO]:e6’[e7’eIO] =ae7,[eg,elo] = be; —cey,

[e5,€10 | = beg +ce,, (ac #0)

=S S, S, 0 0 0 s,
S, =8, =S 0 0 0 s
-8, 8 =S 0 0 0 s
0 0 0 -as, O 0 s
0 0 0 0 —bs, -—cs0 8
0 0 0 0 ¢Sy —bs,, Sy

| 0 0 0 0 0 0 0]
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7.12. S =so0(3), NR Six-Dimensional Abelian, R-Representation
2ad(s0(3))® D,

Lo :[el’ez] =e3,[ez,e3] :el’[637el] :eZ’[el’eS]:e6’[eZ’e4] =€,
[63’94] 2657[61’66] =—es,[ez,eé]=e4,[e3,es] =—e4,[el,eg]=e9,
[e.e;]=—e.[es.e; | =ei.[er.e ] = e [0 ] = €. [e5.6 ] = —¢;.
[64,610]264,[65,610] 265,[66,610]266,[67,610]zae7,

[es. €10 ] = aeg.[ ey, 00| = aey, (a#0)

[—s,, -85, s, 0 0 0 ]
T 0 0 0 s
—s, 8 =Sy 0 0 0 s
0 0 0 -as, -s, s, 8
0 0 0 s, —as, =S S
0 0 0 =S, s, —asy, S

| 0 0 0 0 0 0 0 ]

Lyoos [61962] [ez,e3] = el’[e3’el] = ez,[el,es] = eﬁ,[ez,e4] = %>
[63, ] [el’eé] = _es’[ewes] = 64’[63’35] = _649[61368] =&

[62,67]— eg,[e3,e7]—es,[e],eg]— es,[ez,eQ]—e7,[e3,eg]— —e,,
[64,610]—e4,[es,em]—es,[e6,elo]—e6,[e7,e,0]—e4+e7,
[eg,em]=es+e8,[e9,e]0]=eé+e9

=Sy =Sy 8 =8, 0 0 s
S5 TS T8 0 -5 0 55
=5, 8 =5 0 0 =50 5
0 0 0 S0 —S; S, 8,
0 0 0 S5 S0 S, Sg
0 0 0 =5, 5 =S S

| 0 0 0 0 0 0 0]

Lo [e.e]=e]e.e]=e.[e.q]=e.[e.e]=¢.[e.e, ] = ¢,
[e.e,]=es.[e.6 ] =—es.[e. 6| = e.[e5. 6] =—e,. [, 6 | = &,
[e.e,] = —e.[e5.6, ] = . [e.6 | = —¢.[e,.6 | = €. ] 5.6 ] = e,
[es.e0] = ae, —e;.[es, e, | = aes —e;,[ e, ¢, | = ae; —e,,

[e.e0] =€, +ae, e, e, ] = e +aeg.[e, ¢, = ¢ +ae,

[—as,, —s, S, S0 0 0 ]
s, —as, =S 0 =S40 0 s
-, s, —asy 0 0 =S Se
1o 0 0 —as, -5 S, 8,
0 1o 0 s, —as, =S S
0 0 S0 -8, s, —as,, S

| 0 0 0 0 0 0 0 |
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7.13. §=s0(3), NR = Seven-Dimensional Heisenberg = 17,
R-Representation R, ® 3D,

1 1 1
Ly 5[61"’2] =e3,[e1,e3] =—ez,[el,e4] :Eess[ewes] :_Eew[elses]:_zew
1 1 1
[61767]:Eesa[ezaez]:ela[ezae4]:_5979[62’65]:5669

1 1 1 1
[ez’eé]:_5355[62’97]:564:[63’84]:_5663[63’65]2_5375

1 1
[63’96] 2564,[63,67]2565,[64,85] :elO’[eé’€7]:eIO’[eS’e9]:eIO

0 —s S, -8, Se -5y Sy 28, |
1 1
0 0 —ESI 5S3 Eszss 0 0 s,
1 1
0 ES] 0 ——s 5s3 0 0 s
1 1 1
0 _5S3 ESZ 0 ESI 0 0 s
1 1 1
0 —Esz —Es3 _Esl 0 0 0 s
0 0 0 Sg
0 0 0 Sy
L 0 0 0 0 |

7.14. S =s0(3), NR = Seven-Dimensional Heisenberg = 17,
R-Representation 2ad(so(3))® D,

Ly lese 2635[62’93] :el’[eis’el]:eZ’[el’eS] :e6’[elie6] = ¢,
69:[61’69]:_68’[62734] =—eG,[ez,eé]=e4,[ez,e7]=—e9,

[ae]

[eres] =

[62,69]267,[63,64]:es,[e3,€5] :_64,[63,67]268,[63,68]:_67,
[es.e,]=

m

8

€56 elos[esses] = 610’[66’69] = o
0 s, 855 85 Sy
0 0 S3 =S, S7
0 —S; 0 8 Sg
0 S, -8 So
0 0 0 0

7.15. S =s0(3), NR Seven-Dimensional Anti-Heisenberg = 374,
R-Representation 2ad(so(3))® D,

Lo :[el’ez] =e3,[62,63] :el’[637el] :eZ’[el’eS]:eé’[el’eﬁ]:_QS’
[elﬂes] :e9v[elae9] :_esa[ezae4] =—e6,[ez,eé]=e4,[ez,e7]=—e9,
[ez,e9]=e7,[e3,e4] =es,[e3,e5]=—e4,[e3,e7]=e8,[e3,eg] =€,

[643610] =e7,[es,em] =€8,[€6,€]0] =6
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0 -5 s =5, 0 0 s
s 0 = 0 -5, O s
s, 5 0 0 0 Sio S
0 0 0 0 -5 5 s
0 0 0 s 0 -5 s
0 0 0 S, S 0 s
0 0 O 0 0 0 0]

7.16. S=s0(3), NR=37D1,R-Representation R4®ad(5o(3))

1 1
Ly :[el,ez]=e3,[ez,e3]=el,[e3,el] 262,[61,64]2—565,[61,65] :534’

1 1
[61966] 2367,[61,67] = _Eess[el’%] :eIO’[el’eIO] =€,

1 1 | 1
[62,64] =—566,[62,65]2—567,[62,66]2564,[62,67] =Ees,
1

1
[ez,eg]z—elo,[ez,em] =68,[63,64]=—Ee7,[€3,€5]=566,

1 1
[63,66] :—Ees,[ez,e7]:Ee4,[ez,es] :eg,[eS,e9] :—eg,[e4,es]:es,

[64366]289’[84367] :e]O’[eS’eG]:_610’[65’67]2695[66’67]:_68

0 -, S, 0 0 0 0 0 0 0
S5 0 -5, 0 0 0 0 0o 0 0
-, s, 0 0 0 0 0 0o 0 0
1 1 1 1 1 1
—ESS —ES6 —ES7 0 ESI ESz 5S3 0 0 0
1 1 1 1 1 1
5S4 —5S7 5‘96 —ESI 0 —5S3 ESZ 0 0 0
1 1 1 1 1 1
5s7 5s4 —Ess _ESZ 85 0 ——=s5 0 0 0
1 1 1 1 1 1
_Esﬁ 2s5 §s4 —5s3 252 Esl 0 0 0 0
0 =80 Sy —Ss Sy S5 —Sg 0 -5
Sio 0 —Sg =S -8, s, S sy 0 =g
| =S, Sg 0 -, ¢ —8 s =8, s 0]

7.17. S=s0(3), NR=37D1,R-Representation R, ® 3D,

1 1
Ly :[el’eQ] =e3,[ez,e3] :el’[e39el] :ez,[el,e4]2—585,[61,65]2364,
1 1 1
[61’66]2_567’[61767] :566’[62’64] :_5667[62765] :Eew

1

1 1 1
[ez,e6] 2584,[82,67] = —Ees,[e3,e4] :5e7,[e3,e5] :Eeé,

1 1
[e3,eﬁ]=—565,[e3,e7] =—Ee4,[e4,e5] =eg,[e4,e6] =e,,

[64,67]=elo,[es,es]=—elo,[es,e7]=eg,[e6,e7]:—eg
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0 s, S5 Sg 85 25y 28y 28y,
1 1 1

0 0 —Esl _ESZ —Es3 Ss Sy 8,
1 1 1

0 5 S 0 - 5 S5 3 S, Sy 8, Sg

0 %sz %s3 0 1L S, —S; =S, Ss
1 1 1

0 5 s, = Y S, Y 5 0 R

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 |

7.18. S=s0(3), NR=37D1,R-Representation 2ad(so(3))® D,

L3, [el,ez]—e3,[el,e3]— ez,[el,es]—eﬁ,[el,%]— 655[61768]_697[61769]_ —6,
[62363]—ela[629e4]— es,[ez,e6]—e4,[ez,e7]— eg,[e2,eg]—e7,[e3,e4]—65,
[63,6]——64,[63,67]—68,[63,68]——67,[67,68]—86,[67,69]——65,

[‘37’610] e4’[e8=e9]:e4’[e8’elo]:eS’[eQ’eIO]:eé

0 -5 5 285, -5 sg 28,
s 0 =8 sy 28, —S, 28
-5, 5 0 —s s, =28, 28
0 0 0 0 -8, 5y S5
0 0 o0 S, 0 -S, S
0 0 0 - S 0 Sy
10 0 O 0 0 0 0 |

Ly :[el,ez]=e3,[e,,e3]=—ez,[e,,65] =e6,[el,eé]=—es,[el,eg] =6,
[61’69] =—eg,[ez,e3] =el,[ez,e4]=e6,[ez,e6]=—e4,[ez,e7] =&,
[ez,eg] =—e7,[e3,e4]=—es,[e3,es]=e4,[e3,e7] =—es,[e3,eg]=e7,

[ewes] =eé,[e7,eg] =—65,[67,610]=84,[68,69]=€4,[€8,€10]=€5,

[69 , elO] =6

[0 s, -5, 25, -5 sg 25, |
-5, 0 =5 sy =28, -s; 28
s, § 0 —s¢ S, =28, 28,
0 0 0 0 S5 =S, 8
0 0 0 —s 0 -8, S
0 0 0 S, s, 0 S,

10 0 0 0 0 0 (N

Ly, :[e],ez] =e3,[e],e3]=—ez,[el,es]=—eé,[e1,e6] :es,[el,eg]:—eg,[el,e9]:eg,
[62,631261,[82,64]:—66,[82,66] =64,[62,67]:—69,[82,69]267,[63,64]:—85,
[eses]=ep[ene ] =~ [ene]= ¢ e 6] = ele 6] =~ 660 ] = €

[esaeg] = 54,[689610] = 65,[69,610] =&
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0 55 5 —25, S, S 28,
-s; 0 5 5 =25, s, 285
=S, =8 —Sg S5 28, 284

S O o O
S O o O

]

[elae9] :esa[ezaes] =el,[ez,e4]:eé,[ez,eé]z—e4,[ez,e7] =&,
]
]

[ez,eg = _977[‘33’64] = es,[e3,es] = _64:[63’67] = eg,[e3,eg] =€,
[er.e]=es[er.e0 ] =—es.[er.e0] =€y [en. 0] = e [4. 60 ] =6,
[69’610] =&
[0 —s; —s, 25, —S, sg 25, |
R Sy =28, —S; 28
s, =8 0 —s s, =28, 28
0 0 0 0 -5, =8, 8
0 o0 0 S5 0 S Sg
0 0 0 S, -, 0 So
|0 0 0 0 0 0 0 |

7.19. §= 50(3) , NR Seven-Dimensional Abelian,
R-Representation R,

1 1
Lo :[el’ez] 2635[61’63] :—62,[6‘1,64]2567,[61,65]:—566,

5
[el,eé]ze9 +3es,[el,e7] =—e —3e4,[e1,e8] =3¢, +Ee7,
5 1
[el,eg] :—Eeb,[e],em] 2—268,[82,63] :e],[ez,e4]:Eeé,
1 5
[ez,e5]=5e7,[e2,eﬁ]=e8 —364,[62,67]=€9 —365,[ez,eg]=—ze6,

5
[ez,eg] =3¢, —567,[62,6‘10] = —269,[63,64] =3es,[e3,es]= -3e,,

[63,66]:267,[63,67]=—2eﬁ,[e3,eg]=eg,[e3,eg] =—e

0 3s; =35, -3 0 0 0 s,
3s, 0 3s,  —3s, 0 0 0 s
1 1 5 5
Esz _ES] 0 -2s _ESZ _Esl 0 s

1 5
Esl ESZ 28, 0 ES] —552 0 s

0 0 S, -8, 0 —s; =28, Sg

0 0 S S, S, 0 25, s

0 0 0 0 3s, 3s, 0 s

| 0 0 0 0 0 0 0 0
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7.20. §= 50(3) , NR Seven-Dimensional Abelian,
R-Representation R, ®ad(so(3))

1 1 1
L10A37 :[61362]263,[61963]:_62’[61764] 2567,[61,65]25653[61786]:_5355

| 1
[61,67]:_Ee%[ela%]:elo’[el’elo] =e[ene]=q.[e.q] T2

1 1 1
[ez’es] :_564’[62’66] :5373[323‘37]:_536,[62,93]:_9103

1 1 1
[ez,em] zes,[e3,e4] :586’[63’65]:_587’[83366]:_564’

1
[63’67] =Ee5,[e3,e8] =e9’[e3’e9] = 4%

1 1 1
0 —-—=s, —Es3 _ES] 0 0 0 s,
1 1 1
5 S, 0 > s, 5 85 0 0 0 s
1 1 1
5 S, 5 S, 0 =3 s, 0 0 0 s
1 1 1
3 s - 5 8, 5 S, 0 0 0 0 =
0 0 0 0 0 -5 5 s
0 0 0 0 s; 0 =5 s
0 0 0 0 =5, s 0 s
| 0 0 0 0 0 0 0 0]
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