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Abstract 
Motivated by the count sketch maximal weighted residual Kaczmarz (CS- 
MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 
126486), we combine the count sketch tech with the maximal weighted re-
sidual Kaczmarz Method with Oblique Projection (MWRKO) constructed by 
Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving  
highly overdetermined linear systems. The convergence rate of the new me- 
thod is analyzed. Numerical results demonstrate that our method performs 
better in computing time compared with the CS-MWRK and MWRKO me- 
thods. 
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1. Introduction 

We consider the following consistent linear system: 

Ax b=                               (1.1) 

where m nA ×∈ , mb∈  and x is the n-dimensional unknown vector. One of 
the most popular solvers for consistent linear systems (1.1) is Kaczmarz method, 
which was first discovered by Stefen Kaczmarz. In 2009, Strohmer and Vershynin 
[1] proposed the randomized Kaczmarz method with the expected exponential 
rate of convergence, which has triggered many scholars to research on the Kaczmarz 
algorithm. See [2] [3] [4]. Due to its simplicity and performance, the Kaczmarz 
method has many applications ranging from image reconstruction [5], distrib-
uted computing [6] to signal process [7]. 
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Since the classical Kaczmarz method cycles through all rows of coefficient ma-
trix A, the convergence rate depends strongly on the row index selection strategy. 
Mccormick [8] proposed a Maximal Weighted Residual Kaczmarz (MWRK) meth-
od, which selects the component of residual with the largest module length at each 
iteration. Inspired by the proof of the Greedy Randomized Kaczmarz (GRK) meth-
od [9] with remarkable convergence, Du and Gao [10] gave a new theoretical es-
timate for the convergence rate of the MWRK method, dependent on quantities 
of the coefficient matrix. Another interesting direction of studying Kaczmarz is 
to combine it with random sketching matrices. In the past decades, many ran-
dom sketching matrices were found, such as Gaussian random projection [11], 
the Subsampled Randomized Hadmard Transform [12] and the count sketch [13] 
[14]. Zhang and Li [15] proposed a Count Sketch Maximal Weighted Residual 
Kaczmarz (CS-MWRK) method to solve highly overdetermined linear systems. 
The core of it is that the count sketch matrix can reduce the computation cost 
with keeping most of the information original problem [12] [16]. Experiments in 
[15] show that it can speed up the CPU time for solving highly overdetermined 
linear systems. For more sketch Kaczmarz-type methods, we refer the reader to 
[17] [18] [19] and the references therein.  

Recently, Li, Wang, Bao and Liu [20] proposed a new Kaczmarz method with 
a new descent direction based on the oblique projection introduced by Constantin 
Popa in [21] [22], for short as KO. Using the row index selection rule in the MWRK 
and GRK methods, Wang, Li, Bao and Liu [23] gave two accelerated variants of 
the KO method: Maximal Weighted Residual Kaczmarz Method with oblique pro-
jection (MWRKO) and greedy randomized Kaczmarz method with oblique pro-
jection (GRKO). Inspired by the work of Zhang and Li [15], we combine the count 
sketch tech with the MWRKO method to develop a Count Sketch Maximal Wei- 
ghted Residual Kaczmarz Method with oblique projection (CS-MWRKO) and ob-
tain the convergence rate of it. Numerical experiments demonstrate that the CS- 
MWRKO method requires less computing time for highly overdetermined linear 
systems, especially for near-linear correction structure systems, compared with the 
CS-MWRK and MWRKO methods. 

The organization of the paper is as follows. In Section 2, we propose the CS- 
MWRKO method and its convergence is analyzed. Section 3 contains experimental 
results demonstrating the efficiency of the presented method. We end this paper 
with some conclusions in Section 4. 

We end this section with some notation. In this paper, ,x y  stands for the 
scalar product. 2x  is the Euclid norm of nx∈ . For a given matrix  

( ) m n
ijG g ×= ∈ , T

ig , TG , †G , ( )G , ( )G , FG , ( )i Gσ  and ( )min Gσ  
are used to denote the ith row, the transpose, the Moore-Penrose pseudoinverse, the 
range space, the null space, the Frobenius norm, ith singular value and smallest 
nonzero singular value, respectively. We let k kr b Ax= −  to denote the kth resid-
ual vector and 

k

k
ir  represents ikth entry of kr . x  is any solution of the system 

(1.1).  
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2. The Count Sketch Maximal Weighted Residual Kaczmarz  
Method with Oblique Projection 

In this section, we combine the MWRKO method with the CS-MWRK method 
to construct a new method for (1.1), for short as CS-MWRKO, listed in Algo-
rithm 1.  
 
Algorithm 1. The CS-MWRKO method 

1. Input ,m n mA b×∈ ∈  , parameter d, 0x . 
2. Output Approximate x solving Ax b= . 
3. Create a count sketch d m×∈S , with d m<  and ,A A b b= =S S , and 

( ) 2

2iM i a=  , [ ]i d∈ . 

4. Compute [ ]

0

1

2

,
arg max i i

i d
i

b a x
i

a∈

−
=

 


 and 

( )
1 1

1

0
1 0

1

,i i
i

b a x
x x a

M i
−

= +
 




. 

5. For 1,2,3,k = L  do until satisfy the stopping criteria. 

6. Compute [ ]1

2

,
arg max

k
i i

k i d
i

b a x
i

a+ ∈

−
=

 


. 

7. Compute 
1

,
k k ki i iD a a

+
=   , and 

1 1 1
,

k k k

k k
i i ir b a x
+ + +
= −  . 

8. Compute 
( )1

kk
k k

ii
i i

k

D
w a a

M i+
= −


  


, 

1 1

2 2

2
sin ,

k k k ki i i ih a a a
+ +

=     and 1k

k

k

k
ik

i
i

r
h

α +=


 . 

9. Set 1 k
k

ik k k
ix x wα+ = +   . 

10. End. 

 
Next, we introduce some lemmas used to analyze the convergence of our 

method. 
Lemma 2.1. ([16], Theorem 1) If d mS ×∈  is a count sketch transform with 

( ) ( )2 2d n n δε= + , where 0 , 1δ ε< < , then we have that: 

( ) ( )2 2 2

2 2 21 1Ax x SAx Ax xε ε− − ≤ ≤ + −   

for all nx∈ , and: 

( ) ( ) ( ) ( ) ( )1 1i i iA SA Aε σ σ ε σ− ≤ ≤ +  

for all 1 i n≤ ≤ , hold with probability 1 δ− .  
Lemma 2.2. ([24], Lemma 1) For any vector ( )Tu A∈ , it holds that: 

( )2 22
min2 2 .Au A uσ≥  

Lemma 2.3. Let S be given as in Lemma 2.1. Then ( )T TA S  is equal to 

( )TA  with probability 1 δ− .  
Proof. It can be found in the proof of ([15], Theorem 3), we omit it here.  
Lemma 2.4. The iteration sequence { }

0

k

k
x

∞

=
 generated by the CS-MWRKO 

method satisfies the following equation: 
2 2 21 1

2 2 2
,k k k kx x x x x x+ +− = − − −               (2.1) 

and the residual satisfies: 
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, 0, 0,
k k k

k k
i i ir b a x k= − = ∀ >                    (2.2) 

1 1 1
, 0, 1,

k k k

k k
i i ir b a x k
− − −
= − = ∀ >                   (2.3) 

where x  is an arbitrary solution of the system (1.1). Especially, if  

( ) ( ) ( ) ( )0
A AP x P x=    then ( )Tkx x A− ∈  .  

Proof. Since the CS-MWRKO method is equal to the MWRKO method for 
sketch system SAx Sb= , the Equation (2.1), the Equations (2.2) and (2.3) are easi- 
ly obtained by ([23], Lemma 2) and ([23], Lemma 1), respectively. 

For the convergence property of the CS-MWRKO method, we establish the fol-
lowing theorem.  

Theorem 2.5. Let 0 nx ∈  be an arbitrary approximation and x  is a solu-
tion of (1.1) such that ( ) ( ) ( ) ( )0

A AP x P x=  . Let S be given as in Lemma 2.1. 
Then the sequence { }

0

k

k
x

∞

=
, generated by Algorithm CS-MWRKO, with proba-

bility 1 δ− , obeys: 

( )
( )

( )2 2
2 2min1 0

2 22 2

1
1 ,

1 F

A
x x x x

A

ε σ

ε

 −
 − ≤ − −
 + 

   

and for 1,2,k = L : 

2 21 1

2 2
1

,
k

k
q

q
x x x xρ+

=

− ≤ −∏   

where ( ) ( )2
2 min

1
1

1 1
Aσ

ρ ε
γ

= − −
∆

 and ( ) ( )2
2 min

2

1 1k

Aσ
ρ ε

γ
= − −

∆
, ( )1k∀ > , with 

2max sin ,j k j ka a≠∆ =   , ( )
11 1 1,max m

i m i i i M iγ ≤ ≤ = ≠
= ∑   and  

( )
12 1 1, ,max

k k

m
i m i i i i M iγ

−≤ ≤ = ≠
= ∑  .  

Proof. Based on Lemma 2.3, we can drive the convergence rate of the CS- 
MWRKO method following from ([23], Theroem 2) and ([15], Theroem 3]. For 

0k = , by Equation (2.1) in Lemma 2.4, we have: 

( )

( ) ( )

( )

( )

1 1

1 1

2 2 21 0 1 0

2 2 2

20
20

2
1

2 20 0
20 2

22 01

1

20
20 2

22

2
2 2min0 0

22 2

,

( )

,

,

i i

i i

i id
i

F

F

x x x x x x

b a x
x x

M i

b a x b Ax
x x

M i b a x
M i

M i

A x x
x x

A

A
x x x x

A

σ

=

− = − − −

−
= − −

− −
= − −

−

−
≤ − −

≤ − − −

∑
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( )

( )
( )

( )

2
2min 0

2 2

2 2
2min 0

2 2 2

1

1
1 ,

1

F

F

SA
x x

SA

A
x x

A

σ

ε σ

ε

 
 = − −
 
 
 −
 ≤ − −
 + 





 

with probability 1 δ− . The second inequality comes from Lemma 2.2 and the 
last inequality with probability 1 δ−  follows from Lemma 2.1. For 1k = , it holds 
that: 

( )

( ) ( )

( )

2 2

2 1 2

2 2

1

1

2 2 22 1 2 1

2 2 2
21

21
22 2

2
2 21 1

21 2
22 12

1,

21
21 2
2

1,

,

sin ,

,

,

i i

i i i

i i

i id
i i i

d
i i i

x x x x x x

b a x
x x

a a a

b a x b Ax
x x

M i b a x
M i

M i

b Ax
x x

M i

= ≠

= ≠

− = − − −

−
= − −

− −
≤ − −

∆ −

−
≤ − −

∆

∑

∑

 

 


  

  


  




 




 

 

( )
( )

( )
( )

( ) ( )
( )

1

1

1

21
21 2
2

1,

2
2min 1

2
1,

2
22 min 1

2
1,

1

1 1 ,

d
i i i

d
i i i

d
i i i

A x x
x x

M i

SA
x x

M i

A
x x

M i

σ

σ
ε

= ≠

= ≠

= ≠

−
= − −

∆

 
 ≤ − −
 ∆ 
 
 ≤ − − −
 ∆ 

∑

∑

∑

 










                (2.4) 

with probability 1 δ− . Here, in the first inequality, we focus on the Equation 
(2.2) in Lemma 2.4. The third inequality follows from the Lemma 2.2 and the last 
inequality holds with probability 1 δ−  by Lemma 2.1. Along the similar lines as 
in (2.4), we obtain: 

( )

( ) ( )

( )

1 1

1 1

1 1

1

1

2 2 21 1

2 2 2
2

2

22 2

2
2 2

2 2
22

1

1, ,

2

2 2
2

1, ,

,

sin ,

,

,

k k

k k k

k k

k k

k k

k k k k
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i i i
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kk i id
i i i i
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k

d
i i i i
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a a a
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x x
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M i

M i
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( )
( )

( )

( ) ( )
( )

1

1

1

2
2 2min

2 2
1, ,

22 2min
2 2

1, ,

2
22 min

2
1, ,

( )

1 1 ,

k k

k k

k k

k k
d
i i i i

k k
d
i i i i

k
d
i i i i

A
x x x x

M i

SAx x x x
M i

A
x x

M i

σ

σ

σ
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−

−

= ≠

= ≠

= ≠
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∆

= − − −
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∑

∑

∑


 



 





 

with probability 1 δ− . Thus, we complete the proof.  

Remark 2.6. Set 
( )
( )

( )2 2
min

0 2 2

1
ˆ 1

1 F

A

A

ε σ
ρ

ε

−
= −

+
,  

( ) ( )
( )

2
2 min

1 1,

ˆ 1 1
max

k d
j d i i j

A

M i

σ
ρ ε

≤ ≤ = ≠

= − −
∑ 

 and the convergence of the CS-MWRK 

method in [15] is: 
2 21 1

12 2
ˆ .kk

qqx x x xρ+
=

− ≤ −∏   

Since 0 0ˆρ ρ= , 1 1ˆρ ρ≤  and ( )ˆ , 2k k kρ ρ< ∀ > , the CS-MWRKO method is 
faster than the CS-MWRK method. Based on the ([15], Remark 4), the conver-
gence rate of CS-MWRKO is indeed larger than that of the MWRKO method. 
This is why the iteration numbers of the former is worse than that of the latter in 
numerical examples.  

3. Numerical Examples and Results 

Since the MWRKO [23] method is more effective than the GRK [9], GRKO [23] 
and MWRK [10] methods, in this section, we give some examples to illustrate the 
effectiveness of the CS-MWRKO method compared with the MWRKO and CS- 
MWRK [15] methods in terms of the iteration numbers (denoted as “IT”) and com- 
puting time in seconds (denoted as “CPU time”) for (1.1). We also report the it-
eration numbers speedup of the CS-MWRKO method against the MWRKO and 
CS-MWRK methods defined by: 

IT of MWRKOIT speedup1 ,
IT of CS MWRKO
IT of CS MWRKIT speedup2

IT of CS MWRKO

=
−
−

=
−

 

and the CPU time speedup of the CS-MWRKO method against the MWRKO 
and CS-MWRK methods defined by: 

CPU of MWRKOCPU speedup1 ,
CPU of CS MWRKO
CPU of CS MWRKCPU speedup2 .

CPU of CS MWRKO

=
−
−

=
−

 

For the coefficient matrix A, we use the following two choices: the random ma-
trices generated by MATLAB function rand and the other selected from the Uni-
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versity of Florida sparse matrix collection [25]. In the following experiments, the 
right-hand vector b Ax∗=  such that the exact solution nx∗ ∈  is a vector gen-
erated by the MATLAB function rand. We repeat 50 experiments and all the ex-
periments start from an initial vector 0 0x = , and terminate once the Relative Solu-
tion Error (RES) defined by: 

2

2
2

2

RES ,
kx x

x

∗

∗

−
=  

satisfies RES < 0.5−10 or the number of the iteration steps exceeds 100,000. All 
experiments presented in this section are performed in MATLAB R2018b on a 
personal computer with 2.00 GHz central processing unit (Intel(R) Core(TM) i5 
CPU), 16.00 GB memory, and Windows operating system (Windows 10). 

Example One. In this example, we report iteration numbers and CPU time 
for the CS-MWRKO, MWRKO and CS-MWRK methods for the randomly gen-
erated matrices in [ ]0,1 , listed in Table 1. From this table, we show that the CS- 
MWRKO performs better than the MWRKO and CS-MWRK methods in CPU 
time. The CPU speedup1 is at least 7.42 and at most 20.68 and the CPU speedup2 
is at least 0.95 and at most 1.15 in our experiments. For the iteration numbers, the 
CS-MWRKO method needs more iterations than the MWRKO method but less 
than the CS-MWRKO method. 

 
Table 1. Numerical results for the CS-MWRKO, MWRKO, CS-MWRK methods with matrices generated by rand in [0, 1]. 

c d 

IT CPU time 

CS- 
MWRKO 

MWRKO 
CS- 

MWRK 
IT  

speedup1 
IT  

speedup2 
CS- 

MWRKO 
MWRKO 

CS- 
MWRK 

CPU 
speedup1 

CPU 
speedup2 

50000 × 50 

20n 110.0400 48.0000 135.2200 0.4362 1.2288 0.2328 2.1719 0.2231 9.3289 0.9583 

30n 100.4600 48.0000 121.7400 0.4778 1.2118 0.2366 2.1284 0.2381 8.9974 1.0063 

40n 94.4400 48.0000 115.0800 0.5083 1.2185 0.2459 2.1497 0.2519 8.7408 1.0244 

60n 87.4000 48.0000 105.0600 0.5492 1.2020 0.2369 2.1334 0.2506 9.0066 1.0578 

80n 82.8200 48.0000 100.0800 0.5796 1.2084 0.2737 2.0950 0.2859 7.6530 1.0445 

50000 × 100 

20n 221.6200 100.0000 276.2800 0.4512 1.2466 0.4734 6.7244 0.4769 14.2033 1.0073 

50n 180.2200 99.0000 221.4800 0.5493 1.2289 0.5825 6.7803 0.6059 11.6400 1.0401 

70n 169.0200 99.0000 207.5400 0.5857 1.2279 0.6194 6.6181 0.6512 10.6852 1.0513 

80n 164.7400 98.0000 201.2400 0.5949 1.2215 0.8274 6.6137 0.8781 8.0197 1.0612 

100n 158.9000 101.0000 194.5800 0.6356 1.2245 0.7987 6.8600 0.8250 8.5884 1.0329 

50000 × 150 

20n 333.3000 153.0000 419.7600 0.4590 1.2594 0.6778 14.0216 0.7312 20.6865 1.0787 

50n 269.4000 153.0000 334.4600 0.5679 1.2415 1.1459 14.0741 1.2566 12.2817 1.0966 

100n 237.5000 154.0000 294.6400 0.6489 1.2405 1.6759 14.1191 1.9325 8.4246 1.1531 

120n 230.4200 155.0000 285.3800 0.6727 1.2385 1.7878 13.9763 1.8713 7.8175 1.0467 

150n 223.0200 154.0000 275.5400 0.6905 1.2354 1.8638 13.8084 2.0325 7.4251 1.0905 

https://doi.org/10.4236/apm.2022.124020


P. Zhang et al. 
 

 

DOI: 10.4236/apm.2022.124020 267 Advances in Pure Mathematics 
 

Example Two. In this example, we construct a random coefficient matrix 
with correlated rows 50000 150A ×∈  in [ ],1c , c from 0.1 to 0.9, to test the validi-
ty of the CS-MWRKO method with different size of count-sketch matrix S. This 
set of matrices was also done in [26] and [27]. From Table 2, we note that the 
CPU speedup1 is at least 6.14 and at most 12.89 and the CPU speedup2 is at least 
1.08 and at most 1.61. This is, the CS-MWRKO method outperforms the MWRKO 
and CS-MWRK methods in term of computing time. For the iteration numbers,  
 

Table 2. Numerical results for the CS-MWRKO, MWRKO, CS-MWRK methods with matrices generated by rand in [c, 1]. 

c d 

IT CPU time 

CS- 
MWRKO 

MWRKO 
CS- 

MWRK 
IT  

speedup1 
IT  

speedup2 
CS- 

MWRKO 
MWRKO 

CS- 
MWRK 

CPU 
speedup1 

CPU 
speedup2 

0.1 

50n 332.6600 169.0000 439.3000 0.5080 1.3205 1.1731 14.7975 1.3019 12.6137 1.1097 

100n 285.0800 169.0000 359.1600 0.5928 1.2598 1.7353 14.7447 1.8909 8.4968 1.0896 

150n 260.9000 168.0000 327.1000 0.6439 1.2537 2.1209 14.6834 2.3059 6.9231 1.0872 

0.2 

50n 346.1800 172.0000 468.1800 0.4969 1.3524 1.1597 14.9500 1.3013 12.8914 1.1221 

100n 294.8600 170.0000 376.0600 0.5765 1.2753 1.7878 14.8953 1.9372 8.3316 1.0835 

150n 271.9400 171.0000 341.7000 0.6288 1.2565 2.1044 15.1097 2.3312 7.1801 1.1077 

0.3 

50n 365.6000 172.0000 507.0400 0.4705 1.3868 1.1922 15.0309 1.3672 12.6079 1.1467 

100n 306.8400 174.0000 399.4800 0.5671 1.3019 1.7497 15.1384 1.9566 8.6521 1.1182 

150n 282.2400 176.0000 356.3400 0.6236 1.2625 2.1437 15.3372 2.3906 7.1544 1.1151 

0.4 

50n 392.3400 175.0000 570.5600 0.4460 1.4542 1.2206 15.2522 1.4419 12.4954 1.1813 

100n 327.0200 175.0000 426.3800 0.5351 1.3038 1.8166 15.2134 2.0219 8.3748 1.1130 

150n 300.4200 174.0000 381.7800 0.5792 1.2708 2.2400 15.1013 2.5013 6.7416 1.1166 

0.5 

50n 422.9800 175.0000 652.4200 0.4137 1.5424 1.2644 15.2212 1.5391 12.0386 1.2172 

100n 350.2200 176.0000 461.9000 0.5025 1.3188 1.8631 15.2788 2.1069 8.2006 1.1308 

150n 318.8200 175.0000 408.0800 0.5489 1.2799 2.3078 15.2134 2.5713 6.5921 1.1141 

0.6 

50n 481.8400 173.0000 771.8800 0.3590 1.6019 1.3106 15.0697 1.6791 11.4981 1.2811 

100n 391.4200 173.0000 522.9200 0.4420 1.3359 1.9484 15.0569 2.2350 7.7277 1.1470 

150n 339.1000 173.0000 433.1400 0.5102 1.2773 2.3700 15.0628 2.6631 6.3556 1.1236 

0.7 

50n 589.8400 175.0000 999.9000 0.2967 1.6952 1.4544 15.1356 1.9506 10.4070 1.3411 

100n 433.6200 179.0000 596.5800 0.4128 1.3758 2.0372 15.5494 2.3959 7.6328 1.1760 

150n 356.3000 176.0000 444.1000 0.4940 1.2464 2.4341 15.2647 2.6706 6.2713 1.0971 

0.8 

50n 846.9000 178.0000 1483.6000 0.2102 1.7518 1.7737 15.4012 2.5597 8.6829 1.4431 

100n 474.4000 173.0000 629.3000 0.3647 1.3265 2.1837 15.0256 2.4906 6.8807 1.1405 

150n 357.9400 173.0000 445.5800 0.4833 1.2448 2.4341 15.0328 2.6959 6.1760 1.1075 

0.9 

50n 1431.3000 178.0000 2350.4000 0.1244 1.6421 2.5125 15.4453 3.5575 6.1474 1.4159 

100n 475.5000 179.0000 626.7800 0.3764 1.3181 2.2019 15.5350 2.4700 7.0554 1.1217 

150n 360.5400 176.0000 447.9800 0.4882 1.2425 2.4097 15.2575 2.6966 6.3317 1.1190 
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Table 3. Numerical results for the CS-MWRKO, MWRKO, CS-MWRK methods with sparse matrices. 

Name d 
IT CPU time 

CS- 
MWRKO 

MWRKO 
CS- 

MWRK 
IT  

speedup1 
IT  

speedup2 
CS- 

MWRKO 
MWRKO 

CS- 
MWRK 

CPU 
speedup1 

CPU 
speedup2 

shar_te2-b1 
5n 1267.8000 651.0000 1798.3000 0.5135 1.4184 0.2487 3.3500 0.3075 13.4874 1.2364 

8n 879.5800 644.0000 1192.9000 0.7322 1.3562 0.3481 3.2887 0.3875 9.4470 1.1131 

ch6-6-b1 
5n 127.2400 87.0000 175.7200 0.6837 1.3810 0.0025 0.0059 0.0028 2.3750 1.1200 

8n 104.9200 87.0000 130.5000 0.8292 1.2438 0.0037 0.0075 0.0041 2.0000 1.1081 

 
we find that iteration numbers of the count sketch MWRK-type methods (CS- 
MWRK, CS-MWRKO) increase with c growing 0.1 to 0.9 and decrease with the 
increase of d.  

Example Three. In this example, we test CS-MWRKO, MWRKO and CS- 
MWRK with coefficient matrices from real world data [25]. The two matrices 
are shar_te2-b1 with 34,320 nonzero elements and ch6-6-b1 with 900 nonzero 
elements. From Table 3, we see again that the CS-MWRKO method outperforms 
the CS-MWRK and MWRKO method in CPU time. The minimum of the CPU 
speedup1 is 2.00 and the maximum can reach 13.48. The minimum of the CPU 
speedup2 is 1.11 and the maximum is 1.24. For the iteration numbers, we get the 
same conclusion reported in Example One.  

4. Conclusion 

In this paper, we construct the count sketch maximal weighted residual Kaczmarz 
method with oblique projection for highly overdetermined linear systems. Numeri-
cal examples validate that our method needs less computing time compared with 
the MWRKO and CS-MWRK methods, especially for the system (1.1) with a line-
ar correction structure. As we all know, there are many works about block versions 
of Kaczmarz-type methods [28] [29] [30] [31] [32]. We will consider the organic 
combination of block tech and oblique tech in future work. This topic is practi-
cally valuable and theoretically meaningful.  

Acknowledgements 

The authors are grateful to the anonymous referees and the Editor for their de-
tailed and helpful comments that led to a substantial improvement to the paper. 
And also would like to thank Prof. Hanyu Li and Dr. Yanjun Zhang for provid-
ing Matlab codes of [15].  

Funding 

Longyan Li is supported by the Research and Training Program for College Stu-
dents (No. A2020-171). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper.   

https://doi.org/10.4236/apm.2022.124020


P. Zhang et al. 
 

 

DOI: 10.4236/apm.2022.124020 269 Advances in Pure Mathematics 
 

References 
[1] Strohmer, T. and Vershynin, R. (2009) A Randomized Kaczmarz Algorithm with Ex-

ponential Convergence. Journal of Fourier Analysis and Applications, 15, Article No. 
262. https://doi.org/10.1007/s00041-008-9030-4  

[2] Niu, Y.Q. and Zheng, B. (2020) A Greedy Block Kaczmarz Algorithm for Solving 
Large-Scale Linear Systems. Applied Mathematics Letters, 104, Article ID: 106294.  
https://doi.org/10.1016/j.aml.2020.106294  

[3] Nutini, J., Sepehry, B., Laradji, I., Schmidt, M., Koepke, H. and Virani, A. (2016) Con-
vergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz 
Rules Using the Orthogonality Graph. arXiv:1612.07838. 

[4] Eldar, Y. and Needell, D. (2011) Acceleration of Randomized Kaczmarz Method via the 
Johnson-Lindenstrauss Lemma. Numerical Algorithms, 58, 163-177.  
https://doi.org/10.1007/s11075-011-9451-z  

[5] Eggermont, P.P.B., Herman, G.T. and Lent, A. (1981) Iterative Algorithms for Large 
Partitioned Linear Systems, with Applications to Image Reconstruction. Linear Alge-
bra and Its Applications, 40, 37-67. https://doi.org/10.1016/0024-3795(81)90139-7  

[6] Elble, J.M., Sahinidis, N.V. and Vouzis, P. (2010) GPU Computing with Kaczmarz’s 
and Other Iterative Algorithms for Linear Systems. Parallel Computing, 36, 215-231.  
https://doi.org/10.1016/j.parco.2009.12.003  

[7] Lorenz, D.A., Wenger, S., Schopfer, F. and Magnör, M. (2014) A Sparse Kaczmarz 
Solver and a Linearized Bregman Method for Online Compressed Sensing. 2014 IEEE 
International Conference on Image Processing, Paris, 27-30 October 2014, 1347-1351.  
https://doi.org/10.1109/ICIP.2014.7025269  

[8] McCormick, S.F. (1977) The Methods of Kaczmarz and Row Orthogonalization for 
Solving Linear Equations and Least Squares Problems in Hilbert Space. Indiana Uni-
versity Mathematics Journal, 26, 1137-1150.  
https://doi.org/10.1512/iumj.1977.26.26090  

[9] Bai, B.Z. and Wu, W.T. (2018) On Greedy Randomized Kaczmarz Method for Solving 
Large Sparse Linear Systems. SIAM Journal on Scientific Computing, 40, A592-A605.  
https://doi.org/10.1137/17M1137747  

[10] Du, K. and Gao, H. (2019) A New Theoretical Estimate for the Convergence Rate of 
the Maximal Weighted Residual Kaczmarz Algorithm. Numerical Mathematics: The-
ory, Methods and Applications, 12, 627-639.  
https://doi.org/10.4208/nmtma.OA-2018-0039  

[11] Boutsidis, C., Drineas, P. and Magdon-Ismail, M. (2014) Near-Optimal Column-Based 
Matrix Reconstruction. SIAM Journal on Computing, 43, 687-717.  
https://doi.org/10.1137/12086755X 

[12] Woodruff, D.P. (2014) Sketching as a Tool for Numerical Linear Algebra. Founda-
tions and Trends in Theoretical Computer Science, 10, 1-157.  

[13] Charikar, M., Chen, K. and Farach-Colton, M. (2002) Finding Frequent Items in Data 
Streams. International Colloquium on Automata, Languages, and Programming 2002, 
Málaga, 8-13 July 2002, 693-703. https://doi.org/10.1007/3-540-45465-9_59  

[14] Thorup, M. and Zhang, Y. (2012) Tabulation-Based 5-Independent Hashing with 
Applications to Linear Probing and Second Moment Estimation. SIAM Journal on 
Computing, 41, 293-331. https://doi.org/10.1137/100800774  

[15] Zhang, Y.J. and Li, H.Y. (2021) A Count Sketch Maximal Weighted Residual Kaczmarz 
Method for Solving Highly Overdetermined Liner Systems. Applied Mathematics 
and Computation, 410, Article ID: 126486.  
https://doi.org/10.1016/j.amc.2021.126486  

https://doi.org/10.4236/apm.2022.124020
https://doi.org/10.1007/s00041-008-9030-4
https://doi.org/10.1016/j.aml.2020.106294
https://doi.org/10.1007/s11075-011-9451-z
https://doi.org/10.1016/0024-3795(81)90139-7
https://doi.org/10.1016/j.parco.2009.12.003
https://doi.org/10.1109/ICIP.2014.7025269
https://doi.org/10.1512/iumj.1977.26.26090
https://doi.org/10.1137/17M1137747
https://doi.org/10.4208/nmtma.OA-2018-0039
https://doi.org/10.1137/12086755X
https://doi.org/10.1007/3-540-45465-9_59
https://doi.org/10.1137/100800774
https://doi.org/10.1016/j.amc.2021.126486


P. Zhang et al. 
 

 

DOI: 10.4236/apm.2022.124020 270 Advances in Pure Mathematics 
 

[16] Clarkson, K.L. and Woodruff, D.P. (2017) Low-Rank Approximation and Regression 
in Input Sparsity Time. Journal of the ACM, 63, Article No. 54.  
https://doi.org/10.1145/3019134  

[17] Wu, N.C. and Xiang, H. (2021) Semiconvergence Analysis of the Randomzied Row 
Iterative Method and Its Extended Variants. Numerical Linear Algebra with Appli-
cations, 28, Article No. e2334. https://doi.org/10.1002/nla.2334  

[18] Gower, R.M., Molitor, D., Moorman, J. and Needell, D. (2021) On Adaptive Sketch- 
and-Projection for Solving Linear Systems. SIAM Journal on Matrix Analysis and Ap-
plications, 42, 954-989. https://doi.org/10.1137/19M1285846  

[19] Gower, R.M. and Richtárik, P. (2015) Randomized Iterative Methods for Linear Sys-
tems. SIAM Journal on Matrix Analysis and Applications, 36, 1660-1690.  
https://doi.org/10.1137/15M1025487  

[20] Li, W.G., Wang, Q.F., Bao, W.B. and Liu, L. (2021) On Kaczmarz Methods with Oblique 
Projection for Solving Large Overdetermined Lienar Systems. arXiv: 2106.13368. 

[21] Popa, C., Preclik, T., Köstler, H. and Rüde, U. (2012) On Kaczmarz’s Projection Itera-
tion as a Direct Solver for Linear Least Squares Problems. Linear Algebra and its Ap-
plications, 436, 389-404. https://doi.org/10.1016/j.laa.2011.02.017  

[22] Popa, C. (2012) Projection algorithms Classical Results and Developments. Lap Lam-
bert Academic Publishing, Saarbrücken. 

[23] Wang, F., Li, W.G., Bao, W.B. and Liu, L. (2021) Greedy Randomzied and Maximal 
Weighted Residual Kaczmarz Methods with Oblique Projection, arXiv: 2106.13606. 

[24] Zhang, J.H. and Guo, J.H. (2020) On Relaxed Greedy Randomized Coordinate De-
scent Methods for Solving Large Linear Least-Squares Problems. Applied Numerical 
Mathematics, 157, 372-384. https://doi.org/10.1016/j.apnum.2020.06.014  

[25] Davis, T.A. and Hu, Y. (2011) The University of Florida Sparse Matrix Collection. ACM 
Transactions on Mathematical Software, 38, Article No. 1.  
https://doi.org/10.1007/s11075-021-01104-x  

[26] Wu, W.T. (2021) On Two-Subspace Randomized Extended Kaczmarz Method for Sol- 
ving Large Linear Least-Squares Problems. Numerical Algorithms, 89, 1-31.  
https://doi.org/10.1007/s11075-021-01104-x  

[27] Needell, D. and Ward, R. (2013) Two-Subspace Projection Method for Coherent Over- 
determined Systems. Journal of Fourier Analysis and Applications, 19, 256-269.  
https://doi.org/10.1007/s00041-012-9248-z  

[28] Chen, J.Q. and Huang, Z.D. (2022) On a Fast Deterministic Block Kaczmarz Meth-
od for Solving Large-Scale Linear Systems. Numerical Algorithms, 89, 1007-1029.  
https://doi.org/10.1007/s11075-021-01143-4  

[29] Necoara, I. (2019) Faster Randomzied Block Kaczmarz Algorithms. SIAM Journal on 
Matrix Analysis and Applications, 40, 1425-1452.  
https://doi.org/10.1137/19M1251643  

[30] Du, K., Si, W.T. and Sun, X.H. (2020) Randomized Extended Average Block Kaczmarz 
for Solving Least Squares. SIAM Journal on Matrix Analysis and Applications, 42, 
A3541-A3559. https://doi.org/10.1137/20M1312629  

[31] Li, W., Yin, F., Liao, Y.M. and Huang, G.X. (2021) A Geometric Gaussian Kaczmarz 
Method for Large Scaled Consistent Linear Equations. Journal of Applied Mathemati- 
cs and Physics, 9, 2954-2665. https://doi.org/10.4236/jamp.2021.911189  

[32] Liao, Y., Yin, F. and Huang, G.X. (2021) A Relaxed Greedy Block Kaczmarz Method 
for Solving Large Consistent Linear Systems. Journal of Applied Mathematics and 
Physics, 9, 3032-3044. https://doi.org/10.4236/jamp.2021.912196 

https://doi.org/10.4236/apm.2022.124020
https://doi.org/10.1145/3019134
https://doi.org/10.1002/nla.2334
https://doi.org/10.1137/19M1285846
https://doi.org/10.1137/15M1025487
https://doi.org/10.1016/j.laa.2011.02.017
https://doi.org/10.1016/j.apnum.2020.06.014
https://doi.org/10.1007/s11075-021-01104-x
https://doi.org/10.1007/s11075-021-01104-x
https://doi.org/10.1007/s00041-012-9248-z
https://doi.org/10.1007/s11075-021-01143-4
https://doi.org/10.1137/19M1251643
https://doi.org/10.1137/20M1312629
https://doi.org/10.4236/jamp.2021.911189
https://doi.org/10.4236/jamp.2021.912196

	A Count Sketch Maximal Weighted Residual Kaczmarz Method with Oblique Projection for Highly Overdetermined Linear Systems
	Abstract
	Keywords
	1. Introduction
	2. The Count Sketch Maximal Weighted Residual Kaczmarz Method with Oblique Projection
	3. Numerical Examples and Results
	4. Conclusion
	Acknowledgements
	Funding
	Conflicts of Interest
	References

