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Abstract 
In this paper, a distributed algorithm is proposed to solve a kind of multi- 
objective optimization problem based on the alternating direction method of 
multipliers. Compared with the centralized algorithms, this algorithm does 
not need a central node. Therefore, it has the characteristics of low commu-
nication burden and high privacy. In addition, numerical experiments are pro-
vided to validate the effectiveness of the proposed algorithm. 
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1. Introduction 

In the network age, there exist a variety of network systems, such as commu-
nication network system, transportation network system, power network system 
and sensor network system. These network systems are usually called multi-agent 
systems. A multi-agent system is a large-scale network system associated with multi-
ple agents. In the multi-agent system, each individual with communication, com-
puting, perception, decision-making, learning and execution abilities is called an 
agent, also known as a node in the network topology. In a broad sense, agents 
can be a robot, an aircraft, a computer and other entities, which can interact with 
each other through network connections and cooperate to complete some complex 
tasks. 

Many optimization problems encountered in multi-agent systems, such as the 
cyber-physical social system [1], classification [2], task scheduling [3] and energy 
system [4], often involve multiple conflicting objectives. This kind of optimization 
problem is called Multi-Objective Optimization Problem (MOP). 
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There are many ways to solve multi-objective optimization problems, which can 
be divided into three types: scalarization methods, classical optimization algorithms 
and intelligent algorithms. Scalarization methods transform complex multi-ob- 
jective optimization problems into single-objective optimization problems, con-
taining the main objective method, linear weighting method, minimax method, 
ideal point method and so on [5]. Classical optimization algorithms extend the 
algorithms for solving single-objective optimization problems to multi-objective 
optimization problems, including steepest descent method [6], Newton method [7] 
[8], proximal point method [9] [10], projected gradient method [11] [12] and pen-
alty-type function method [13]. Intelligent algorithms include the genetic algorithm 
[14], evolutionary algorithm [15] [16] and so on. 

Among these methods, scalarization methods are widely used because their 
models are easy to understand and relatively easy to solve. Among them, the linear 
weighting method is one of the commonly used approaches to solve multi-objective 
optimization problems. It can also coordinate the preference settings of multiple 
targets, which increases the subjectivity factor to some extent. 

Most of the above optimization algorithms are centralized, and such methods 
need a central node to collect data and calculate the optimal decision. For exam-
ple, in the electric-gas integrated energy system, a joint control center should be 
introduced as the decision-making mechanism for unified control of the electric-gas 
coupling system. Therefore, the communication burden and computation cost 
of the central node are high, and its scalability, robustness and adaptability are 
poor [17]. In contrast, distributed optimization algorithms are a kind of decen-
tralized algorithms, which only require the network to be a general-connected 
graph, but do not need the central node. They decompose a large optimization 
problem into several sub-problems and compute each sub-problem, so as to op-
timize the original problem. Therefore, distributed optimization algorithms have 
high computational efficiency, small communication volume and strong reliabil-
ity [18]. 

There are many distributed algorithms, including discrete algorithms and con-
tinuous algorithms [19] [20] [21] [22]. Among them, the discrete distributed algo-
rithms can be divided into two kinds. The first one is the original algorithm [23] 
[24] [25], which weighted averages local estimates with neighboring states to make 
local states consistent. One of the great advantages of these methods is that they 
require less computation, but their convergence speed is slow and their accuracy 
is relatively low. The other is the dual algorithm that includes the augmented 
Lagrange method [26] and Alternating Direction Method of Multipliers (ADMM) 
[27]-[32]. Because each node needs to solve a sub-problem, the dual algorithm usu-
ally requires a relatively large amount of computation, but they can quickly con-
verge to the exact optimal solution. 

As an important method of distributed optimization algorithm, the alternating 
direction multiplier method has the characteristics of protecting data privacy and 
fast convergence. It has been shown that even for non-smooth and non-convex 
cost functions, the alternating direction multiplier method can achieve satisfac-
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tory convergence speed [33]. In addition, it is robust to noise and error [34]. 
Based on the above reasons, this paper proposes a distributed alternating di-

rection method of multipliers to solve a class of multi-objective optimization prob-
lems in multi-agent systems. This algorithm does not need the central node, and 
thus it can effectively avoid the shortcomings of the centralized algorithms. As a 
result, the algorithm proposed in this paper has the characteristics of low commu-
nication cost, strong privacy, fast convergence and so on. 

The rest of this paper is organized as follows. In Section 2, a multi-objective 
optimization problem is introduced and it is transformed into a single-objective 
optimization problem. Based on this single-optimization objective problem, a dis-
tributed ADMM algorithm is proposed in Section 3. In Section 4, numerical ex-
periments are provided to verify the effectiveness of the proposed algorithm. Fi-
nally, the conclusions of this paper are presented in Section 5. 

2. Problem Model 

This paper studies the following multi-objective optimization problem: 

( )
1

min
n

iy i
F y

=
∑                            (1) 

where py∈  is the global optimization variable, n is the number of agents in 
the multi-agent system and : p q

iF →   is a convex local cost function. Each 

iF  is known only by agent i and the agents cooperatively solve the multi-ob- 
jective optimization problem. 

The network topology of the multi-agent system is assumed to be a general 
undirected connected graph, which is described as { },G V E= , where V denotes 
the set of agents, E denotes the set of the edges and V n= , E m= . These agents 
are arranged from 1 to n. Edges between i and j with i j<  are represented by 
( ),i j  or ije  and ( ),i j E∈  means that agents i and j can exchange data 
with each other. The neighbors of agent i are denoted by  

( ) ( ) ( ){ }: | , or ,N i j V i j E j i E= ∈ ∈ ∈  and ( )id N i= . 
The edge-node incidence matrix of the network G is denoted by m nA ×∈  . The 

row in A that corresponds to the edge ije  is denote by ije
A  
 , which is defined by:  

1, if ,
1, if ,

0, otherwise.

ije

k

k i
A k j

=
  = − = 



  

Here, the edges of the network are sorted by the order of their corresponding agents. 
For instance, the edge-node incidence matrix of the network G in Figure 1 is gi- 
ven by: 

1 1 0 0 0
1 0 0 0 1
0 1 0 0 1

.
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

A

− 
 − 
 −

=  
− 

 −
  − 

  
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Figure 1. An example of the network G. 

 
According to the edge-node incidence matrix, the extended edge-node incidence 
matrix A of the network G is given by: 

11 1

1

: ,
p n p

mp np
p

m p mn p

a I a I
A A I

a I a I

×

 
 

= ⊗ = ∈ 
 
 

 
    

 

 

where ⊗  denotes the Kronecker product. Obviously, A is a block matrix with 
m n×  blocks of p p×  matrix. 

By introducing separating decision variable ix  for each agent 1,2, ,i n=  , 
problem (1) has the following form:  

( ) ( )

( )
1

min :

s.t. , , ,

n

i ix i

i j

F x F x

x x i j E
=

=

= ∀ ∈

∑
                     (2) 

where 
TT T T 1

1 2, , , np
nx x x x × = ∈   . Clearly, the problem (2) is equivalent to pro- 

blem (1) if G is connected. 
With the help of the extended edge-node incidence matrix A, the problem (2) 

can be rewritten in the following compact form:  

( )min

s.t. 0.
x

F x

Ax =
                          (3) 

Denote the feasible region of problem (3) by { }1 | 0npR x Ax×= ∈ = , and thus 
the definition of effective solution (or weak effective solution) to problem (3) is 
given below.  

Definition 2.1. [5] If there does not exist x R∈ , such as ( ) ( )*F x F x  (or 
( ) ( )*F x F x ), where *x R∈ , then *x  is the effective solution (or weak effec-

tive solution) of problem (3). Here,   and   are taken element-wise.  
In order to solve the multi-objective optimization problem by alternating di-

rection multiplier method, it needs to be transformed into a single-objective op-
timization problem. By the linear weighting method, the single-objective optimi-
zation problem of problem (3) is constructed as follows:  
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( )Tmin

s.t. 0.
x

F x

Ax

θ

=
                            (4) 

Here, ( )T
1 2, , , qθ θ θ θ += ∈Λ  or ++Λ , where: 

( )

( )

T
1 2

1

T
1 2

1

, , , | 0, 1 ,

, , , | 0, 1 .

q

q i j
j

q

q i j
j

θ θ θ θ θ

θ θ θ θ θ

+

=

++

=

 
Λ = ≥ = 

 
 

Λ = > = 
 

∑

∑





 

Remark 2.1. [5] For each given θ ++∈Λ  (or +Λ ), the optimal solution of pro- 
blem (4) must be a efficient (or weakly efficient) solution to problem (3).  

Denote ( ) ( )T:f x F xθ θ= , ( ) ( )T:i i i if x F xθ θ= , then problem (4) can be re-
written as:  

 ( ) ( )
1

min :

s.t. 0.

n

i ix i
f x f x

Ax

θ θ

=

=

=

∑                        (5) 

Remark 2.2. According to the convexity of iF , each component j
iF  of iF  

is a convex function, and thus if
θ  is also convex.  

3. Algorithm Design 

The augmented Lagrangian function of problem (5) is defined by: 

 ( ) ( ) 2T
, , ,

2
x f x Ax Axθ

θ ρ
ρλ λ= − +                   (6) 

where ρ  is the penalty parameter of the constraint 0Ax =  and 0ρ > . The 
Jacobi-Proximal ADMM algorithm for problem (5) is designed as follows:  

( ) 21
,

1: arg min , ,
2

k k k
Px

x x x xθ ρ λ+ = + −                  (7) 

1 1: ,k k kAxλ λ ρ+ += −                        (8) 

where the proximal matrix P is a block diagonal matrix and 2 T
Px x Px= . Com-

bining the linear and quadratic terms of the augmented Lagrangian function, (7) 
can be rewritten as:  

( )
2

21 1 1: arg min .
2 2

k k k
Px

x f x Ax x xθ ρ λ
ρ

+ = + − + −            (9) 

Denoting the block corresponding to the agent i by p p
iP ×∈ , one can rewrite 

(9) in the following form:  

( )
2

21

1

1 1: arg min .
2 2 i

n
k k k

i i Px i
x f x Ax x xθ ρ λ

ρ
+

=

= + − + −∑         (10) 

It is worth noting that each row of the constraint 0Ax =  corresponds to one 
edge pqe  in the set E. Hence, one has 0p qx x− =  for any ( ),p q E∈ , where  
p q< . Denote the multiplier corresponding to the edge pqe  by 

pqeλ . Then, the 
iteration of x can be refined as:  
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 ( )
( )

2
21

1 , 1

1 1: arg min .
2 2pq i

n n
k k k

i i p q e i i Px i p q E i
x f x x x x xθ ρ λ

ρ
+

= ∈ =

= + − − + −∑ ∑ ∑  (11) 

Thus, the iteration of x have the following distributed version:  

( )
( )

( )

2
1

2
2

1: arg min
2

1 1 .
2 2

ji
i

ij i

k k k
i i i j i e

x j P i

k k k
i j e i i Pj S i

x f x x x

x x x x

θ ρ λ
ρ

ρ λ
ρ

+

∈

∈

= + − −

+ − − + −

∑

∑
            (12) 

Similarly, by the characteristic of matrix A, (8) can be rewritten as:  

( )1 1 1: , .
pq pq

k k k k
e e p q pqx x e Eλ λ ρ+ + += − − ∈                  (13) 

Therefore, the iterations of the multipliers are also distributed to the agents. 
The distributed Jacobi-Proximal ADMM algorithm for problem (5) is described 

as Algorithm 1. 
 

 

4. Numerical Experiment 

Consider the following multi-objective optimization problem: 

 ( ) ( ) ( )
T

1 2

1 1 1
min ,

n n n

i i iy i i i
F y F y F y

= = =

 =   
∑ ∑ ∑               (14) 

where ( ) ( )21 1
2i iF y y α= − , ( ) ( )22 1

2i iF y y β= − , 1,2, ,i n=   and y∈ . Ob- 

viously, the solutions to these two objective functions are *
1

1 n
iiy

n
α α

=
= = ∑  

and *
1

1 n
iiy

n
β β

=
= = ∑ , respectively. By the convexity of these functions, the weak  

efficient solution of problem (14) is ,α β    and its efficient solution is ( ),α β  
if α β< . 

Assume the connected network { },G V E=  with n agents and m edges. Each 
edge is generated randomly. The connectivity ratio of the network G is denoted  
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by 
( )
2

1
md

n n
=

−
. The multi-objective optimization problem (14) can be reformu-

lated into a distributed version:  

( ) ( ) ( )

( )

T
2 2

1 1

1 1min : ,
2 2

s.t. , , ,

n n

i i i ix i i

i j

F x x x

x x i j E

α β
= =

 = − −  
= ∀ ∈

∑ ∑             (15) 

where [ ]T1 2, , , n
nx x x x= ∈  . 

By linearly weighting the objective functions, problem (15) can be transformed 
into the following single-objective optimization problem: 

( ) ( ) ( )( )2 2

1

1min : 1
2

s.t. 0.

n

i i i ix i
f x x x

Ax

θ θ α θ β
=

 = − + − − 

=

∑           (16) 

where A is the extended edge-node incidence matrix of the network G, θ ∈  
and ( )f xθ  is convex. Therefore, Algorithm 1 can be used to solve problem 
(16). 

The proximal matrix of Algorithm 1 is set by i iP d Iρ= . In this case, the it-
eration of x has a closed-form solution, which is shown as follows: 

( ) ( ) ( ) ( )
1

1
,

1 2

k k k k
i i j ij ji i ij N i j S i j P ik

i
i

d x x
x

d

ρ ρ λ λ θα θ β

ρ
∈ ∈ ∈+

+ + − + + −
=

+

∑ ∑ ∑
 

where id  is the number of neighbors of the agent i. 
To verify the effectiveness of Algorithm 1, we generate a network with 12n =  

nodes and 0.8d = . The network generated is shown as Figure 2. The value of 
the parameters are set as: 1,3, , 23iα =   and 2,4, , 24iβ =  . The graph of the 
two objective functions is shown as Figure 3. Obviously, the weak efficient solu-
tion is [ ]12,13  and the efficient solution is ( )12,13 . 

 

 
Figure 2. The network of problem (14). 
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Figure 3. The graph of the two objective functions. 

 
Table 1. Different weights and solutions to the corresponding problems. 

θ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Solution 13 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12 

 

 
Figure 4. The graph of the objective function and the solutions of problem (16). 

 
Different weights are selected, and then Algorithm 1 is used to solve the cor-

responding single-objective problem (16). The results obtained are shown in Ta-
ble 1. Besides, the graph of the objective function and the solutions of problem 
(16) is shown as Figure 4. 

F
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5. Conclusions 

In this paper, a distributed ADMM algorithm is put forward to solve a kind of 
multi-objective optimization problem. This algorithm does not need the central no- 
de, and thus its communication cost is low and privacy is high. In addition, the 
effectiveness of the algorithm is verified by some numerical experiments. 

There are a few distributed algorithms for multi-objective optimization prob-
lems. The method adopted in this paper is to transform the multi-objective op-
timization problem into a single-objective optimization problem through the line-
ar weighting method, and then solve this single objective optimization problem, 
instead of solving the multi-objective optimization problem directly. Therefore, 
it is a challenge to design a distributed algorithm for directly solving multi-objective 
optimization problems and to verify its convergence, which is also worth explor-
ing. 
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