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Abstract 
Given general quasi-differential expressions 1 2, , , nτ τ τ , each of order n with 

complex coefficients and their formal adjoint are 1 2, , , nτ τ τ+ + +
  on the interval 

[ ),a b  respectively, we give a characterization of all regularly solvable operators 
and their adjoints generated by a general ordinary quasi-differential expres-
sion jpτ  in the direct sum Hilbert spaces ( )2 , , 1, ,w p pL a b p N=  . The do-

mains of these operators are described in terms of boundary conditions involv-

ing ( )2 ,w p pL a b -solutions of the equations [ ]jp y wyτ =   and their adjoint 

[ ] ( )Cjp wzzτ + = ∈ /   on the intervals ),p pa b . This characterization is an ex-

tension of those obtained in the case of one interval with one and two singu-

lar end-points of the interval ( ),a b , and is a generalization of those proved in 
the case of self-adjoint and J-self-adjoint differential operators as a special case, 
where J denotes complex conjugation. 
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1. Introduction 

Jiangang, Zheng and Jiong Sun [1] considered the problem of Sturm-Liouville dif-
ferential equation: 

( ) ( )on , , ,py qy wy a b a bλ′′− + = −∞ ≤ < ≤ +∞           (1.1) 

where ,p q  are complex functions, ( ) 0p x ≠  and ( ) 0w x >  a.e. on ( ),a b ,  
1, ,p q w−  are all locally integrable functions on ( ),a b , λ  is the so-called spec-
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tral parameter. They studied the classification of Equation (1.1) according to the 
number of square-integrable solutions of Equation (1.1) in suitable weighted inte- 
grable spaces. This type of classification of differential equations plays an important 
role in the spectral theory of differential operators as it can tell us how to obtain 
the operator realizations associated with the differential equations. 

Amos [2] considered the problem that all solutions of the second-order ordinary 
differential equation [ ] ( )y wyτ λ λ= ∈  are in ( )2 ,wL a ∞  when τ is a second- 
order symmetric ordinary differential expression of the form  
[ ] ( )y py qyτ ′′= − +  on [ ),a ∞  under sufficient conditions on the coefficients 

p and q. The case that not all solutions are in ( )2 ,wL a ∞  was considered by At-
kinson and Evans in ([3], Theorem 1). Sobhy El-Sayed and others [4] extend their 
results for a second-order non-symmetric ordinary differential expression  
[ ] ( )( ) ( )y p y ry rp y ry qyτ ′′ ′= − − + − +  with complex coefficients. 
Everitt and Zettl [5] considered the problem of characterizing all self-adjoint 

differential operators which can be generated by a formally symmetric Sturm- 
Liouville differential expression pτ  defined on two intervals ( ), 1, 2pI p =  with 
boundary conditions at the endpoints. Their work was motivated by Sturm- 
Liouville problems which occur in the literature in which the coefficients have a 
singularity in the interior of the underlying interval. An interesting feature of their 
work is the possibility of generating self-adjoint operators in this way which are 
not expressible as the direct sum of self-adjoint operators defined in the separate 
intervals. 

Jiong Sun [6] gives a characterization of the self-adjoint extensions of the mini-
mal operator 0T  generated in ( )2 0,wL b  by a formally-symmetric differential 
expression τ of arbitrary order n . If the minimal operator 0T  has deficiency in-
dices ( ),  , the domain of any self-adjoint extension of 0T  is described in terms 
of   boundary conditions involving the square-integrable solutions of the dif-
ferential equation [ ]u uτ λ=  for C \λ ∈ /  . Thus Sun Jiong has completely 
solved a problem of central importance which has evaded the efforts of mathe-
maticians for the last two decades. 

J. Knowles [7] and Zai-Jiu-Shang (1988) (see [8]) gave a characterization of the 
boundary conditions which determine the domain of any J-self-adjoint extension 
of the minimal operator 0T  with maximal deficiency index in the case when the 
field of regularity, ( )0TΠ , of 0T  was non-empty. This is achieved by using Sun 
Jiong’s results (1986) (see [6]) with only one singular endpoint. 

Evans and Sobhy El-Sayed [9] gave a characterization of all regularly solvable 
operators and their adjoints generated by a general differential expression in Hil-
bert space ( )2 ,wL a b  in the case of one interval with one singular endpoint. Also, 
in [4] [10]-[20], Sobhy El-Sayed gives a characterization of all regularly solvable 
operators in the case of one interval with two singular endpoints a and b, and a 
characterization of Sturm-Liouville differential operators in direct sum spaces. The 
domains of these operators are described in terms of boundary conditions featur-
ing ( )2 ,wL a b -solutions of [ ]u wuτ λ=  and [ ]v wvτ λ+ =  at both singular end 
points a and b. Their results include those of Sun Jiong [6] concerning self-adjoint 
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realizations of symmetric expression τ when the minimal operator has equal de-
ficiency indices, and Zai-Jiu Shang in [8] concerning the J-self-adjoint operators as a 
special case. 

Our objective in this research is to generalize the results of Evans and Sobhy 
El-Sayed, Jiong Sun, Naimark, Zettl and Zai-Jiu-Shang’s results in [5]-[12] [21] [22] 
[23] for the general ordinary quasi-differential expressions 1 2, , , nτ τ τ  each of or-
der n with complex coefficients generated by general Shin-Zettl matrices (see [9] 
[24] [25]) in the direct sum spaces such that the operators defined on each of the 
separate intervals ( ), , 1, 2, ,p p pI a b p N= =  . The left-hand endpoint of pI  is 
assumed to be regular but the right-hand end-point may be regular or singular. 

2. Notation and Preliminaries 

We begin with a brief survey of adjoint pairs of operators and their associated reg-
ularly solvable operators; a full treatment may be found in [4] [9] [10]-[20] [23] 
[24] [25] ([26], Chapter III) and [27]. 

The domain and range of a linear operator T acting in a Hilbert space H will 
be denoted by ( )D T  and ( )R T  respectively and ( )N T  will denote its null spa- 
ce. The nullity of T, written ( )nul T , is the dimension of ( )N T  and the defi-
ciency of T, written ( )def T , is the co-dimension of ( )R T  in H; thus if T is den- 
sely defined and ( )R T  is closed, then ( ) ( )*def T nul T= . The Fredholm domain 
of T is (in the notation of [9] [24] [26]) the open subset ( )3 T∆  of C/  consisting 
of those values of Cλ ∈ /  which are such that ( )T Iλ−  is a Fredholm operator, 
where I is the identity operator in H. Thus ( )3 Tλ ∈∆  if and only if ( )T Iλ−  has 
closed range and finite nullity and deficiency. The index of ( )T Iλ−  is the num-
ber ( ) ( ) ( )ind T I nul T I def T Iλ λ λ− = − − − , this being defined for  

( )3 Tλ ∈∆ . 
Two closed densely defined operators A and B acting in H are said to form an 

adjoint pair if *A B⊂  and consequently, *B A⊂ ; equivalently,  
( ) ( ), ,Ax y x By=  for all ( )x D A∈  and ( )y D B∈ , where ( ).,.  denotes the in-
ner-product on H. 

The field of regularity ( )AΠ  of A is the set of all Cλ ∈ /  for which there ex-
ists a positive constant ( )K λ  such that: 

( ) ( )A I x K xλ λ− ≥  for all ( )x D A∈             (2.1) 

or, equivalently, on using the Closed Graph Theorem, and ( ) 0nul A Iλ− =  
and ( )R A Iλ−  is closed. 

The joint field of regularity ( ),A BΠ  of A and B is the set of Cλ ∈ /  which 
are such that ( )Aλ ∈Π , ( )Bλ ∈Π  and both ( )def A Iλ−  and ( )def B Iλ−  
may be finite. An adjoint pair of A and B is said to be compatible if  
( ),A BΠ ≠ ∅ . 
Now, we define a second order quasi-differential equations and quasi-derivatives. 
Definition 2.1: Let the set ( )2Z I  denotes the collection of all square matri-

ces { }rsA a=  of order 2 × 2 and satisfy the conditions: 
1) ( ): C , 1,2rs ra sI =→ / , 
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2) ( ), 1, 2rs loc r sa L∈ = ,                                        (2.2) 
3) ( )12 0a x ≠  (almost all x I∈ ), 

where 1
12a−  denote, in view of condition 3) in (2.2), the reciprocal function  

( ) ( )( ) 11
12 12:a x a x

−− =  (almost all x I∈ ). 
Given ( )2A Z I∈ , we define the quasi-derivatives [ ]{ }: 0,1, 2r

Af r =  on I of a 
function : Cf I → /  by: 

[ ] [ ] ( )
[ ] ( )( ) ( )

0 1 1
12 11

2 1 1
12 11 22 12 11 21

:

:

, : ,A A

A

f f f a f a f

y a f a f a a f a f a f

−

− −

′= − 
′′ ′−

=

= − − − 

        (2.3) 

where the prime ' denotes classical differentiation on I. Also, we define the linear 
manifold ( ) ( )A loc locD AC I L I⊂ ⊂  by: 

[ ] ( ) ( ){ }1: C | 1: , 2 ,r
A A locD f I f AC I r−→ / ∈ ==           (2.4) 

where the notations ( )locAC I  and ( )locL I , denote the linear space of functions 
with values in the complex field C/ , which are absolutely continuous and Lebesgue 
integrable, respectively over all compact sub-intervals of the interval ( ),I a b=  of 
the real line  . 

The general linear ordinary quasi-differential equation of second-order given 
by: 

[ ]2 0:Ay =  on I.                     (2.5) 

The quasi-differential Equation (2.5) is said to be Lagrange symmetric when 
the matrix ( )2A Z I∈  satisfies the additional conditions: 

1) 12 21and :a a I →  ,  
2) 22 11a a= −  on I.                                            (2.6) 
As examples of the homogeneous quasi-differential Equation (2.5), i.e., [ ]2 0:Ay =  

on I, we have: 
1) Let: 

0 1
0 0

A  
=  
 

 on I.                     (2.7) 

Then ( ) [ ] [ ] ( )0 1 1
2 , ,A AA Z I y y y y∈ = =  and (2.5) takes the form: 

( )2 0y =  on I; 

here ( ) ( )1 2,y y  denote the classical derivatives ,y y′ ′′ . 
2) If 0 1 :, Ca a I → /  and are continuous on I, and if: 

0 1

0 1
A

a a
 

=  − − 
 on I.                   (2.8) 

Then ( )2A Z I∈  with [ ] [ ] ( )0 1 1,A Ay y y y= =  and the Equation (2.5) takes the 
form: 

[ ] ( ) ( )2 2 1
1 0 0Ay y a y a y= + + =  on I,               (2.9) 

which is the classical equation of the second-order with continuous coefficients. 
3) The most general Lagrange symmetric equation of the second-order, see (2.3) 

and (2.6) is given by: 
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1r p
A

q r

− 
=  
 

 on I,                   (2.10) 

where , : , 0p q I p→ ≠  almost everywhere on I, : Cr I → /  and  
( )1, , locp q r L I− ∈ . This yields the symmetric quasi-differential equation in the 

standard form: 

( )( ) ( ) 0p y ry rp y ry qy′′ ′− − − − =  on I,            (2.11) 

with: 
[ ] [ ] ( ) ( )0 1, .A A locy y y p y ry AC I′= = − ∈  

If 0r =  on I then this equation reduces to the generalized Sturm-Liouville 
equation: 

( ) 0p y qy′′ − =  on I,                   (2.12) 

for which [ ] [ ] ( )0 1,A A locy y y py AC I′= = ∈ . 
4) If :p I →  , 0p ≠  almost everywhere on I, , : Cq r I → /  and  

( )1 1, , locp q rp L I− − ∈ . Let, 

1

1

0 p
A

q rp

−

−

 
=  
 

 on I,                   (2.13) 

then the quasi-derivatives and the quasi-differential equation associated with A 
are defined as follows: 

[ ] [ ] ( )0 1, ,A A locy y y py AC I′= = ∈  

( ) 0py ry qy′′ ′− + + =  on I,                 (2.14) 

(Evans’s differential expression, see [9] and [26]). If 0r =  on I, Equation 
(2.14) reduces to (2.12). 

We now turn to the quasi-differential expressions defined in terms of a Shin- 
Zettl matrix A on an interval I. 

Definition 2.2: The set ( )nZ I  of Shin-Zettl matrices on I consists of n n×
-matrices { },1 ,rsA a r s n= ≤ ≤ , whose entries are complex-valued functions on 
I which satisfy the following conditions: 

( )
( )
( )

1

, 1 0 . . on 1 1

0 . . on 2 1

rs loc

r r

rs

a L I

a a e I r n

a a e I r s n
+

∈
≠ ≤ ≤ − 
= ≤ + < ≤ 

              (2.15) 

For ( )nA Z I∈ , the quasi-derivatives associated with A are defined by: 

[ ]

[ ] ( ) [ ]( ) [ ] ( )

[ ] [ ]( ) [ ]

0

1 1 1
, 1 1

1 1
1

: ,

, 1

:

1: rr r s
r r rss

nn n s
nss

y y

y a y a y r n

y y a y

− − −
+ =

− −
=

 ′=  


=

 

=


− ≤ ≤ − 

′ − 

∑

∑

      (2.16) 

The quasi-differential expression τ associated with the matrix A is given by: 
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[ ] [ ] ( ): , 2nny i y nτ = ≥                     (2.17) 

this being defined on the set: 

( ) [ ] ( ){ }1: : , 1, 2, , .r
locV y y AC I r nτ −= ∈ = 

           (2.18) 

The formal adjoint τ +  of τ  defined by the matrix ( )nA Z I+ ∈  is given by: 

[ ] [ ]: nnz i zτ +
+= , for all ( )z V τ +∈ ;              (2.19) 

this being defined on the set: 

( ) [ ] ( ){ }1: : , 1, 2, , ,r
locV z z AC I r nτ −+

+= ∈ = 
          (2.20) 

where [ ]1rz −
+ , the quasi-derivatives associated with the matrix ( )nA Z I+ ∈ , 

{ } ( ) 1
1, 11 r s

rs n s n rA a a+ ++ +
− + − += = −  for each ,r s , 1 ,r s n≤ ≤     (2.21) 

are therefore: 

[ ]

[ ] ( ) [ ]( ) ( ) [ ]

[ ] [ ]( ) ( ) [ ] ( )

0

1 11 1
, 1 1, 11

11 1
1,11

,

1

1 ,

:

:

: 1 1

r srr r s
n r n r n s n rs

n snn n s
n ss

z z

z a z a z

z z a z r n

+

− + +− −
+ − − + + − + − + +=

+ +− −
+ + − + +=





 − −  
 

′ − − ≤ ≤

=

′=

− =

∑

∑

   (2.22) 

Note that: ( )A A
++ =  and so ( )τ τ

++ = . We refer to [1] [4] [5] [7] [9]-[13] 
[20]-[27] for a full account of the above and subsequent results on quasi-diffe- 
rential expressions. 

Definition 2.3: For ( ) ( ),u V v Vτ τ +∈ ∈  and , Iα β ∈ , we have the Green’s 
formula: 

[ ] [ ]{ } [ ]( ) [ ]( )d , , ,u u v x u v u vv
β

α
τ τ β α+− = −∫           (2.23) 

where, 

[ ]( ) ( ) [ ] ( ) [ ] ( )( )

( ) ( )
[ ]

( )

11 1
0

1]

1

, 1

, , ;

n rn r n rn
r

n n
n n

n

u v x i u x x

i

v

v
u u J x

v

+ +− − −
+=

−
×

−
+

= −

= −

 
 
 
 
 

∑



         (2.24) 

see [4] [9]-[20] ([23], Corollary 1) and [24] [26]. 
Let the interval I have end-points ,a b ( a b−∞ ≤ < ≤ ∞ ) and let :w I →   

be a non-negative weight function with ( )1
locw L I∈  and ( ) 0w x >  (for almost 

all x I∈ ). Then ( )2
wH L I=  denotes the Hilbert function space of equivalence 

classes of Lebesgue measurable functions such that 2w f < ∞∫ ; the in-
ner-product is defined by: 

( ) ( ) ( ) ( ) ( )( )2, : d , .wf g w x f x g x x f g L I= ∈∫           (2.25) 

The equation, 
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[ ] ( )0 Cy wyτ λ λ− = ∈ /  on I,                (2.26) 

is said to be regular at the left end-point a R∈ , if for all ( ),X a b∈ , 

( ) ( )1; , , , , 1, 2, , .rsa w a L a X r s n∈ ∈ =              (2.27) 

Otherwise (2.26) is said to be singular at a. If (2.26) is regular at both end-points, 
then it is said to be regular; in this case we have, 

( ) ( )1, ; , , , , 1, 2, , .rsa b w a L a b r s n∈ ∈ =              (2.28) 

We shall be concerned with the case when a is a regular end-point of (2.26), 
the end-point b being allowed to be either regular or singular. Note that, in view 
of (2.22) an end-point of I is regular (see [4] [9]-[20] [22] [23]) for the Equation 
(2.26), if and only if it is regular for the equation, 

[ ] ( )0 Cz wzτ λ λ+ − = ∈ /  on I.                 (2.29) 

Note that, at a regular end-point a, say, [ ] ( ) [ ] ( )( )1 1 , 1, ,r ry a z a r n− −
+ = 

 is de-
fined for all ( ) ( )( )y V z Vτ τ +∈ ∈ . Set, 

( ) ( ) [ ] ( ){ }
( ) ( ) [ ] ( ){ }

1 2

1 2

: : , and ,

: : , and ,

w

w

D y y V y w y L a b

D z z V z w z L a b

τ τ τ

τ τ τ

−

+ + − +

= ∈ ∈ 


= ∈ ∈ 

       (2.30) 

The subspaces ( )D τ  and ( )D τ +  of ( )2 ,wL a b  are the domains of the so- 
called maximal operators ( )T τ  and ( )T τ +  respectively, defined by: 

( ) [ ] ( )( )1:T y w y y Dτ τ τ−= ∈  and ( ) [ ] ( )( )1:T z w z z Dτ τ τ+ − += ∈ . 

For the regular problem the minimal operators ( )0T τ  and ( )0T τ + , are the 
restrictions of [ ]1w yτ−  and [ ]1w zτ−  to subspaces: 

( ) ( ) [ ] ( ) [ ] ( ){ }
( ) ( ) [ ] ( ) [ ] ( ){ }

1 1
0

1 1
0

: : , 0, 1, ,

: : , 0, 1, ,

r r

r r

D y y D y a y b r n

D z z D z a z b r n

τ τ

τ τ

− −

− −+ +
+ +

= ∈ = = = 


= ∈ = = = 





    (2.31) 

respectively. The subspaces ( )0D τ  and ( )0D τ +  are dense in ( )2 ,wL a b , ( )0T τ  
and ( )0T τ +  are closed operators (see [1] [4] [9]-[20] [22] ([23], Section 3) and 
[24] [26] [27] [28]). 

In the singular problem we first introduce the operators ( )0T τ′  and ( )0T τ +′ ; 
( )0T τ′  being the restriction of [ ]1 .w τ−  to the subspace: 

( ) ( ) ( ){ }0 : : , ,D y y D supp y a bτ τ′ = ∈ ⊂               (2.32) 

and with ( )0T τ +′  defined similarly. These operators are densely-defined and closa-
ble in ( )2 ,wL a b ; and we defined the minimal operators ( )0T τ′  and ( )0T τ +′  to be 
their respective closures (see [1] [5] [9] [23] [24] [26] [28] [29]). We denote the do-
mains of ( )0T τ  and ( )0T τ +  by ( )0D τ  and ( )0D τ +  respectively. It can be 
shown that: 

( ) [ ] ( ) ( )
( ) [ ] ( ) ( )

1
0

1
0

0, 1, ,

0, 1, ,

r

r

y D y a r n

z D z a r n

τ

τ

−

−+
+

∈ ⇒ = = 


∈ ⇒ = = 




             (2.33) 

because we are assuming that a is a regular end-point. Moreover, in both regular 
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and singular problems, we have 

( ) ( )0T Tτ τ∗ +=  and ( ) ( )*
0T Tτ τ+ = ,             (2.34) 

see ([14] Section 5) in the case when τ τ +=  and compare with treatment in [4] 
[9]-[20] [22] and ([26], Section III.10.3) in general case. Note that ( )0T τ  and 
( )T τ  are closed and densely-defined operators on H. 

3. The Operators in Direct Sum Spaces 

The operators here are no longer symmetric but direct sums: 

( ) ( )0 1 0
N
p pT Tτ τ== ⊕  and ( ) ( )0 1 0

N
p pT Tτ τ+ +
== ⊕ ,           (3.1) 

on any finite number of intervals ( ), , 1, 2, ,p p pI a b p N= =  , where ( )0 pT τ  is 
the minimal operator generated by pτ  in pI  and pτ

+  denotes the formal adjoint 
of pτ , which form an adjoint pair of closed operators in ( )2

1 p

N
p w pL I=⊕ . Let H be 

the direct sum, 

( )2
1 1 p

N N
p p p w pH H L I= == ⊕ = ⊕ .                   (3.2) 

The elements of H will be denoted by { }1, , Nff f=   with 1 1f H∈ ,  ,  

N Nf H∈ . When , ; , 1, ,i jI I i j i j N= ∅ ≠ =  , the direct sum space  

( )2
1 p

N
p w pL I=⊕  can be naturally identified with the space ( )2

1pw p
N

p
L I

=
 where 

pw w=  on , 1, ,pI p N=  . This is of particular significance when 
1 pp

N I
=

 may 

be taken as a single interval; see [13] [19] [20] [22] [28]. 
We now establish by [5] [10] [12] some further notation. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 0 1

0 1 0 1

,

,

N N
p p p p

N N
p p p p

D D D D

D D D D

τ τ τ τ

τ τ τ τ

= =

+ + + +
= =

= ⊕ = ⊕ 


= ⊕ = ⊕ 
            (3.3) 

( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ){ } ( ) ( )
0 0 1 1 0 1 0 1 0

0 0 1 1 0 1 0 1 0

, , , , ,

, , , , ,

N N N N

N N N N

T f T f T f f D f D

T g T g T g g D g D

τ τ τ τ τ

τ τ τ τ τ+ + + + +

= ∈ ∈ 


= ∈ ∈ 



 


 

 (3.4) 

Also, 

( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ){ } ( ) ( )
1 1 1 1

1 1 1 1

, , , , ,

, , , , ,

N N N N

N N N N

T f T f T f f D f D

T g T g T g g D g D

τ τ τ τ τ

τ τ τ τ τ+ + + + +

= ∈ ∈ 


= ∈ ∈ 



 


 

  (3.5) 

( ) ( ){ } ( ) ( )1, , , , ,N
p p p p p ppf g f g b f g a f D g Dτ τ +

=
  = − ∈ ∈       ∑ 

    (3.6) 

( ) ( )1, ,N
p pp p

f g f g
=

= ∑

 ,                     (3.7) 

where { } { }1 1, , , , ,N Nf f f g g g= =


   and ( ).,. p

 the inner-product defined 
in (2.13). Note that ( )0T τ  is a closed densely-defined operator in H. 

We summarize a few additional properties of ( )0T τ  in the form of a Lemma. 
Lemma 3.1: We have: 

1) ( ) ( ) ( )**
0 1 0 1

N N
p p p pT T Tτ τ τ +
= =
 = ⊕ = ⊕     , 
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( ) ( ) ( )* *

0 1 0 1
N N
p p p pT T Tτ τ τ+ +
= =

   = ⊕ = ⊕    . 

In particular, 

( ) ( ) ( )*
0 1

N
p pD T D T D Tτ τ τ+ +
=

   = = ⊕       ,  

( ) ( ) ( )*

0 1
N
p pD T D T D Tτ τ τ+
=

   = = ⊕      ,  

2) ( ) ( )0 01
N

ppnul T I nul T Iτ λ τ λ
=

 − = −    ∑ , 

( ) ( )0 01
N

ppnul T I nul T Iτ λ τ λ+ +
=

   − = −   ∑ .  

3) The deficiency indices of ( )0T τ  are given by 

( ) ( )0 01
N

ppdef T I def T Iτ λ τ λ
=

 − = −    ∑  for all ( )0Tλ τ∈Π    , 

( ) ( )0 01
N

ppdef T I def T Iτ λ τ λ+ +
=

   − = −   ∑  for all ( )0Tλ τ + ∈Π    

Proof: Part 1) follows immediately from the definition of ( )0T τ  and from 
the general definition of an adjoint operator. The other parts are either direct 
consequences of part 1) or follows immediately from the definitions. 

Lemma 3.3: If , 1, ,pS p N=   are regularly solvable with respect to ( )0 pT τ  
and ( )0 pT τ + , then 1

N
p pS S== ⊕  is regularly solvable with respect to: 

( ) ( )0 1 0
N
p pT Tτ τ== ⊕  and ( ) ( )0 1 0

N
p pT Tτ τ+ +
== ⊕ . 

Proof: The proof follows from Lemmas 3.1 and 3.2. 
Lemma 3.4: For ( ) ( )0 0,T Tλ τ τ + ∈Π   ,  

( ) ( )0 0def T I def T Iτ λ τ λ+ − + −      is constant and: 

( ) ( )0 00 2def T I def T I nNτ λ τ λ+ ≤ − + − ≤     . 

In the case with one singular end-point: 

( ) ( )0 0 2nN def T I def T I nNτ λ τ λ+ ≤ − + − ≤     . 

In the regular problem: 

( ) ( )0 0 2def T I def T I nNτ λ τ λ+ − + − =     , for all ( ) ( )0 0,T Tλ τ τ + ∈Π   . 

Proof: The proof is similar to that in ([3], lemma 3.1), [10] [11] [12] and there-
fore omitted. 

For ( ) ( )0 0,T Tλ τ τ + ∈Π   , we define ,r s  and m as follows: 

( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )

0 01

1 1

0 01

1 1

1 1 1 1

: ?

:

:

N
p

N N
p pp p

N
pp

N N
p pp p

N N N N
p p p p pp p p p

r r def T I def T I

nul T I r

s s def T I def T I

nul T I s

m r s r s r s m

λ τ λ τ λ

τ λ

λ τ λ τ λ

τ λ

=

+
= =

+ +
=

= =

= = = =

= = = −       
 = − =  
   = = − = −    


  = − =  
= + = + = + = 

∑
∑ ∑

∑
∑ ∑

∑ ∑ ∑ ∑

      (3.8) 

Then 0 ,r s nN≤ ≤  and by Lemma 3.4, m is constant on ( ) ( )0 0,T Tτ τ + Π   , 
and: 
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2 .nN m nN≤ ≤                         (3.9) 

For ( ) ( )0 0,T Tτ τ + Π ≠ ∅  , the operators which are regularly solvable with 
respect to ( )0T τ  and ( )0T τ +  are characterized by the following theorem: 

Theorem 3.5: For ( ) ( )0 0,T Tλ τ τ + ∈Π   , let r and m be defined by (3.8), and 

let ( ) ( )1,2, , , 1, ,j kj r k r mΨ = Φ = + 

   be arbitrary functions satisfying: 

1) ( ){ } ( )1, 2, ,j j r D τΨ = ⊂

  is linearly independent modulo ( )0D τ  and  

( ){ } ( )1, ,k k r m D τ +Φ = + ⊂

  is linearly independent modulo ( )0D τ + ; 

2) ( ) ( )( )1, , , 0N
j k jp kp p jp kp pp b a

=
       Ψ Φ = Ψ Φ − Ψ Φ =  ∑  ,  

( )1, , ; 1, ,j r k r m= = +  . 

Then the set: 

( ) ( ) ( )( ) ( ){ }1: , , , , 0, 1, ,N
k p kp p p kp ppu u D u u b u a k r mτ

=
   ∈ Φ = Φ − Φ = =  +   ∑

  
 (3.10) 

is the domain of an operator 1
N
p pS S== ⊕  which is regularly solvable with respect 

to ( )0T τ  and ( )0T τ +  and: 

( ) ( ) ( )( ) ( ){ }1: , , , , 0, 1, 2, ,N
j jp p p jp p ppv v D v v b v a j rτ +

=
     ∈ Ψ = Ψ − Ψ = =     ∑

  
  (3.11) 

is the domain of an operator 
**

1
N
p pS S= = ⊕  , moreover ( )4 Sλ ∈∆ . 

Conversely, if S is regularly solvable with respect to ( )0T τ  and ( )0T τ +  and 

( ) ( ) ( )0 0 4,T T Sλ τ τ + ∈Π ∆  , then with r and m defined by (3.8) there exist 

functions ( )1,2, ,j j rΨ =

  and ( )1, ,k k r mΦ = +

  which satisfied 1) and 2) 

and are such that (3.10) and (3.11) are the domains of the operators S and *S  
respectively. 

S is self-adjoint (J-self-adjoint) if, and only if, τ τ+ = , r s=  and  

( )1, ,k k r k r m−Φ = Ψ = +

 ; S is J-self-adjoint if τ τ+ = , (J complex conjugate), 

r s=  and k k r−Φ = Ψ  ( )1, ,k r m= +  . 

Proof: The proof is similar to that in [6] [8] [9] [10] [11] ([26], Theorem III.3.6) 
and [30]. 

For ( ) ( )0 0,T Tλ τ τ + ∈Π   , define ,p pr s  and pm  be defined by (3.8). Let 

( ){ }1,2, ,jp pj sΨ =  , ( ){ }1, ,kp p pk s mΦ = +   be bases for ( )0 –pN T Iτ λ    

and ( )0 –pN T Iτ λ+ 
   respectively; thus ( )2, ,jp kp w p pL a bΨ Φ ∈   

( )1,2, , ; 1, , 1, 2, ,;p p pj s k s m p N= = + =    and 

) ( ), on , , 1, 2, , .p jp jp p kp kp p pw w a b P Nτ λ τ λ+    Ψ = Ψ Φ = Φ =       (3.12) 

Since ( )0 –pT Iτ λ+ 
   has closed range, so does its adjoint ( ) –T Iτ λ    and 

moreover: 

( ) ( ) { }0– – 0 , 1, 2, , .p pR T I N T I p Nτ λ τ λ
⊥ +   = = =      

Hence: 
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( ) ( )2
0 – ,p w p pR T I L a bτ λ  =   and ( ) ( )2

0 – ,p w p pR T I L a bτ λ+  =  . 

We can therefore define the following: 

( )
( ) ( )
:

:

1, 2, ,

– 1, ,

jp jp p

p jp kp p p

x j s

T I x j s mτ λ

Ψ = 


  Φ = +   = 

= 



           (3.13) 

( ) ( )
( )

– 1, ,

1,

:

,:

p jp jp p

jp jp p p

T I y j s

y j s m

τ λ+   Ψ =  


Ψ = + = 

= 



            (3.14) 

Next, we state the following results, the proofs are similar to those in [4] [10] 
[11] [12] [13] [19]-[23] and ([26], Section 4). 

Lemma 3.6: ([23], Lemma 3.3). The sets { }: 1, 2, ,jp px j m=   and  

{ }: 1, 2, ,jp py j m=   are bases of ( ) ( )( )– –p pN T I T Iτ λ τ λ+       and  

( ) ( )( )– –p pN T I T Iτ λ τ λ+       respectively, 1,2, ,p N=  . 

On applying ([26], Theorem III.3.1), [10] [11] [12] [13] [19] [20] we obtain: 
Corollary 3.7: Any ( )p pz D τ∈  and ( )p pz D τ+ +∈  have the unique repre-

sentations 

( )( )0 0 01 , C, 1,2, , ,pm
p p jp jp p jpjz z a x z D a p Nτ

=
∈= + ∈ / =∑        (3.15) 

( )( )0 0 01 C, 1, 2, ,, .pm
p p jp jp p p jpjz z b y z D b p Nτ+ + + +

=
+ ∈ =∈= /∑       (3.16) 

A central role in the argument is played by the matrices. 
Lemma 3.8: Let, 

( )( )
1 ,

: ,
p p

p
m m jp kp p j k m

E x y b× ≤ ≤
=    ,               (3.17) 

and: 

( )( )1,2

1 , 1
:

p p
p p p

s r jp kp p j s s k m
E x y b× ≤ ≤ + ≤ ≤

 =   ,             (3.18) 

Then, 
1,2Rank rank , 1,2, , .

p p p ps r m m pE E m n p N× ×= = − = 
        (3.19) 

In view of Lemma 3.6 and since ,p p pr s m n≥ − , 1,2, ,p N=  , we may sup-
pose, without loss of generality, that the matrices, 

( ) ( ) ( )( )1,2

1 , 1
: ,

p p p p
jp kp pm n m n j m n n k m

E x y b
− × − ≤ ≤ − + ≤ ≤

 =   ,           (3.20) 

satisfy: 

( ) ( )
1,2Rank , 1, 2, , .

p p pm n m n
E m n p N

− × −
= − = 

            (3.21) 

If we partition 
p pm mE ×  as: 

( ) ( ) ( )

( )

1,1 1,2

2,1 2,2

p p p

p p

p

m n n m n m n

m m

n n n m n

E E

E
E E

− × − × −

×

× × −

 
 
 =
 
 
 



  



            (3.22) 
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and let: 

( ) ( ) ( ) ( )

( )

1 1,1 1,2

2 2,1 2,2

p p p p

p p

m n n m n n m n m n

n m n n n m n

E E E

E E E

− × − × − × −

× × × −

 = ⊕
 
 

= ⊕  

               (3.23) 

( )

( ) ( ) ( ) ( )

1 1,1 2,1

2 1,2 2,2

p p

p p p p p

m n n nm n n

m m n m n m n n m n

F E E

F E E

× ×− ×

× − − × − × −

 = ⊕
 
 

= ⊕  




              (3.24) 

Then (3.21) yields the result: 

( ) ( )
1 2Rank rank , 1,2, , .

p p p p pm n m m m n
E F m n p N

− × × −
= − == 

      (3.25) 

Lemma 3.9: Let ( )1 pD τ  be the linear span { }: 1, 2, ,ipz i n=  , where  

( )ip pz D τ∈  satisfy the following conditions for 1,2, ,k n=   and some  

( ), , 1, 2, ,p p pc a b p N=∈  ; 

[ ] ( ) [ ] ( ) ( )1 1, 0, 0 for ,k k
ip p ik ip p ip pz a z c z t t cδ− −= = = ≥         (3.26) 

and let ( )2 pD τ  be the linear span of { }: 1, 2, ,ip px i m n= −  with (3.21) satis-
fied. Then, 

( ) ( ) ( ) ( )0 1 2 1, 2, , .,p p p pD D D D p Nτ τ τ τ+ += = 

          (3.27) 

If ( )1 pD τ +  and ( )2 pD τ +  be the linear spans of { }: 1, 2, ,ipz i n+ =   and  

{ }: 1, ,ip py i n m= +   
respectively, then: 

( ) ( ) ( ) ( )20 1 1, 2, ,,p p p pD D D D p Nτ τ τ τ+ + + + =+ +=  

             (3.28) 

4. The Boundary Conditions Featuring wL2 -Solutions 

We shall now characterize all the operators which are regularly solvable with re-
spect to ( ) ( )0 1 0

N
p pT Tτ τ== ⊕  and ( ) ( )0 1 0

N
p pT Tτ τ+ +
== ⊕  in terms of boundary 

conditions featuring ( ) ( )2 2
w 1 p

N
p w pL I L I== ⊕ -solutions of the equations  

[ ] 0I yτ λ− =  and ( )0, CI zτ λ λ+ − = ∈ /   on any finite number of the inter-
vals with one regular end-point and the other may be regular or singular. The 
results in this section are extension of those in [1] [4] [5] [7] [9]-[22] [27] [28] 
[29]. 

Theorem 4.1: Let ( ) ( )0 0,T Tλ τ τ + ∈Π   , let ,r s  and m be defined by (3.8), 
and let ( ) ( )1,2, , , 1, 2, ,i p j px i m y j m= =   be defined in (3.13) and (3.14) 
respectively, and arranged to satisfy (3.21). Let ( ), ,

p pp p

p p p
r n s nr m n

K L M× ×× −
 and  

( )p p

p
s m n

N
× −

, 1,2, ,p N=   be numerical matrices which satisfy the following 
conditions: 

1) ( ){ }1 1Rank
p p p

N Np p
r n pp pr m n

K L r r×= =× −
 ⊕ = = 
 ∑ ∑  and  

( ){ }1 1Rank
p p p

N Np p
s n pp ps m n

M N s s×= =× −
 ⊕ = = 
 ∑ ∑ . 
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2) 
( ) ( ) ( ) ( )

( ) ( )

1,2
( )1

1 10 0

p pp p p p
p p

p p p p
p p

N p p
s m np r m n m n m n

r s

n N Np p
r n n n s n r s r sp p

r s

L E N

i K J M

× −= × − − × −
×

× × × × ×= =
×

 
 
 

 + − = = 
 

∑

∑ ∑




 

( ) , 11 r
n n r n sJ δ× + −= − , 1 ,r s n≤ ≤ , δ  being the Kronecker delta. 

The set of all ( )u D T τ∈     such that, 

( )

[ ]
( )

( ) ( )

( ) ( )

1 ,

11
1

,

,

0

( ) ,
p p p

p

pn pp
N p p

s n sp s m n
n

p pm p

u y bu a

M N

u a u y b

+

× ×= × −
−

 
   
   

     
− = 

     

   
       

 

∑   ,     (4.1) 

is the domain of an operator 1
N
p pS S== ⊕  which is regularly solvable with respect 

to ( )0T τ  and ( )0T τ +  and ( )*D S  is the set of all ( )v D T τ + ∈    which are su- 
ch that: 

( )

[ ] ( )
( )

( )

( ) ( )

1

11
1

,

0

,
p p p

p

p p p
N p p

r n rp r m n
n

p pm n p

v a x v b

K L

v a x v b

× ×= × −
−

+
−

 
   
   
   
      

 
    

− = 
      

 
 

∑   .    (4.2) 

Proof: Let, 

( ) ( ) ( )1
1 1

1 1
,p p p pp p p

p p

p n p p p
r i m r i ms n n n jk jks m n
n k m n k m

M J i Nα β−
+ ≤ ≤ + ≤ ≤× × × −
+ ≤ ≤ + ≤ ≤

= − =       (4.3) 

and set, 

( )1: , 1, , 1, 2, ,; .pm p
jp jk kp p pk ng y j r m p Nβ

= +
= = + =∑          (4.4) 

Then ( )jp pg D T τ + ∈   , by [5] [10] and [12] we may choose  

( ) ( )1, ,jp p p pj r m D T τ + Φ = + ∈    such that for 1,2, ,k n=   and some  

( ),p p pc a b∈  

( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )
) ( )

1 1 1
,

on , , 1, , 1, 2, ,;

k k k
jp p jk jp p jp p

jp jp p p p p

a c g c

g c b j r m p N

α
− − −

+ + +
 Φ = Φ = 
 

 Φ = = + =  

      (4.5) 

This gives: 

( )

[ ] ( )

( )[ ] ( )
( )

[ ] ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1

1

1 1
1 1

1 1 2
, , , , , , ,

p

p p

p p p

p
N p

s np
n

p

p
kNn

jp p n np r i m
k n n

p

N
pp r p r p m p

u a

M

u a

u a

i a J

u a

u a u a u a

×=
−

−

×= + ≤ ≤+
≤ ≤ −

= + +

 
 
 
 
 
 

 


 
 
 
 
 
 

 
 
  = − Φ   
 
 

       = Φ Φ Φ         


 
 
 
 

    

∑

∑

∑ 
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by (2.11). Also, since jp jpgΦ =  on ),p pc b , ( )1, ,p pj r m= +  . Then, 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1, ,1 1 1

1 2

,

,

, , , ,

, , , , , ,

p p

p

p p

p p

p p p

n p
N p
p s m n

m p

N m mp p
r k kp p m k kp pp k n k n

p p pr p r p m p

u y b

N

u y b

u y b u y b

u b u b u b

β β

+

= × −

+= = + = +

+ +

     
 
      
  

 
 
 
 
 


   =        

      = Φ Φ Φ           










∑

∑ ∑ ∑











1 .N
p=

 
 
 

∑

  

The boundary condition (4.1) therefore coincides with that in (3.10). Similarly 
(4.2) coincides with (3.11) on making the following choices: 

( ) ( ) ( ) ( )1
11
11

, ,ppp p p
p

np p p p
j rj rr n n n jk jkr m n
k m nk n

K J i Lτ ε−
≤ ≤≤ ≤× × × −
≤ ≤ −≤ ≤

= − =         (4.6) 

( )1: , 1, , ; 1, 2, ,pm n p
jp jk kp pkh x j r p Nε−

=
= = =∑             (4.7) 

and by [5] [10] and [12] we may choose ( ) ( )1, ,jp p pj r D T τ Ψ = ∈    such 
that for 1,2, ,k n=   and some ),p p pc a b∈  , 

[ ] ( ) [ ] ( ) [ ] ( )
) ( )

1 1 1, ,

on , , 1, , , 1, 2, ,

k k kp
jp p jk jp p jp p

jp jp p p p p

a c h c

h c b j r m p N

τ− − − Ψ = Ψ = 
 

Ψ = = + =   

      (4.8) 

It remains to show that the above functions  

{ } ( ): 1, ,kp p p pk r m D T τ + Φ = + ⊂    and ( ){ } ( )1, ,jp p pj r D T τ Ψ = ⊂    are 

linearly independent modulo ( )0 pD T τ + 
   and ( )0 pD T τ    respectively and sati- 

sfy conditions 1) and 2) in Theorem 3.5. First, suppose that  

{ } { }: 1, ,j jp pj rΨ = Ψ =

  is not linearly modulo ( )0 pD τ  that is, there exist 

constants 1, ,
prc c  not all zero, such that ( )01

pr
j jp pju c D r

=
= Ψ ∈∑ . Then, from 

(2.24), (4.6) and (4.8), 

( )

[ ] ( )
( ) ( )

1 1

11
1

1

0 .
p

p

p p

p

p n p
k nn jk n n r n
j r

n
r rp

u a c c
i J K

c cu a

τ ≤ ≤× × ×
≤ ≤

−

     
     
 = = =   
           

  


 

On noting that: 

( ) ( )11 1 n
n n n n n nJ J J+−
× × ×= − =  . 

But n nJ ×  has rank n and so we infer that: 

( )1 1, , 0
p p

p
r r n nc c K × ×= .                    (4.9) 

Since { } ( )0p pu u D r= ∈ , we have that [ ]( ), 0pu v b =  for all  

{ } ( )0p pv v D τ += ∈ .  

Hence, 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 11

11 1 1 1 1

1
11

0 , , , ,

, , , ,

, ,

p

p p p p

p

p p p p p

N
m p p pp m p

N r m n r m np p
j jk kp p p j jk kp pp j k j k m p

N p
rp r m n m n m

u y b u y b

c x y b c x y b

c c L E

ε ε

× =

− −

= = = = =

= × − − ×

    =         
   =       

=

∑

∑ ∑ ∑ ∑ ∑

∑







 

on using the notation in (3.23). In view of (3.25), we conclude that: 

( ) ( )( ) ( ) ( )1 11 1 1
, , 0 0 .

p p p p

N Np
r m np pr m n m n

c c L × −= =× − × −
= =∑ ∑          (4.10) 

We obtain from (4.9) and (4.10) that: 

( ) ( )( ) ( )1 1 11 1, , 0 0 ,
p p pp p

N Np p
r r n m mp pr m n

c c K L× × ×= =× −
 ⊕ = = 
 ∑ ∑   

which contradicts the assumption that ( )( )1 p p p

N p p
r np r m n

K L×= × −
⊕∑  has rank r. 

It follows similarly that, { } { } ( ): 1, ,k kp p p pk r m D T τ + Φ = Φ = + ⊂    is line-

arly independent modulo ( )0 pD τ + . 

Finally, we prove 2) in Theorem 3.5, 

( )( )

( ) [ ] ( ) ( )[ ] ( )

( ) ( ) ( )

1 ,
1

11
11 1
1 1

111
11

,

p
p p

p pp
p

j k j r
r k m

jn N k
jp p n n kp pj rp j n

k n r k m

n N p p
r j mj rjk n n jkp
n k mk n

a

i a J a

i Jτ α

≤ ≤
+ ≤ ≤

−−
×≤ ≤= ≤ ≤+

≤ ≤ + ≤ ≤

+ ≤ ≤≤ ≤ ×=
+ ≤ ≤≤ ≤

 Ψ Φ 

 
   = − Ψ Φ     

 
 

= −   
 

∑

∑

 

By (4.5) and (4.8), 

( ) ( ){ }1 p p
p p

n N p p
r n n n s np

r s
i K J M× × ×=

×

 
= − −   

 
∑


.            (4.11) 

Next, we see that: 

( )( ) ( )( )1 1 1 1
1

, , ,p p

p
p p

N m n mp p
i j il lp jk ki pp l i n i r

r j m

b x y bε β−

= = = + ≤ ≤
+ ≤ ≤

 
   Ψ Φ =    

 
∑ ∑ ∑  

Hence, 

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
1 111 1
1 11 1

1,2
1

, ,p p pp
p pp

p p p p p p

N p p
j r r k ml m nj k jl lp ip p kii r p
l m n n i mr k m n i m

N p p
p r m n m n m n s m n

b x y b

L E N

ε β≤ ≤ + ≤ ≤≤ ≤ −≤ ≤ =
≤ ≤ − + ≤ ≤+ ≤ ≤ + ≤ ≤

= × − − × − × −

 
   Ψ Φ =      

 
 

=  
 

∑

∑




(4.12) 

From 2), (4.11) and (4.12) it follows that condition 2) in Theorem 3.5 is satis-
fied. The proof is therefore complete. 

The converse of Theorem 4.1 is 
Theorem 4.2: Let 1

N
p pS S== ⊕  be regularly solvable with respect to ( )0T τ  
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and ( )0T τ + , let ( ) ( ) ( )0 0 4,T T Sλ τ τ + ∈Π   ∆ , let ,r s  and m be defined by 
(3.8), and suppose that (3.21) is satisfied. Then there exist numerical matrices 

p

p
r nK × , ( )p p

p
r m n

L
× −

, 
p

p
s nM ×  and ( )p p

p
s m n

N
× −

 such that conditions 1) and 2) in 
Theorem 4.1 are satisfied and ( )D S  is the set of ( )u D T r∈     satisfying (4.1) 
while ( )*D S  is the set of ( )v D T τ + ∈    satisfying (4.2). 

Proof: Let ( ){ } ( )1, ,jp p pj r D T τ Ψ = ⊂    and  

{ } ( ): 1, ,kp p p pk r m D T τ + Φ = + ⊂    satisfy the second part of Theorem 3.5. 

From (3.27) and (3.28), we have: 

( )0 1 1 ;, 1, , 1, 2, , ,pn mp p
jp j jk kp jk kp p pk k ny z y j r m p Nη β+

= = +
Φ = + + = + =∑ ∑    (4.13) 

for some ( )0 0j py D T τ + ∈    and complex constants p
jkη  and p

jkβ . Let: 

( )[ ] ( )1

1
1

p p p

kp n
s n jp p n nr j m

k n

M i a J
−

× ×+ ≤ ≤+
≤ ≤

 = − Φ  
,            (4.14) 

( ) ( ) 1
1

, 1, 2, ,
p pp p

p

p p
jk r j ms m n

n k m

N p Nβ + ≤ ≤× −
+ ≤ ≤

= =               (4.15) 

Then, 

( ) ( )

( ) ( )

( ) ( ) [ ] ( ) ( )[ ] ( )

( )

[ ] ( )

1 ,

,

11

1
1

1

,

,

, ,

.

p

p

p p

p

pr p

pm p

jn n
p p n n kp p j n

r k m

p

p
s n

n
p

u a

u a

i u a u a J a

u a

M

u a

+

−−
× ≤ ≤+

+ ≤ ≤

×

−

 Φ  

 Φ  

 
  

 
 
 
 
 
 

= − Φ

 

 
 
 =
 

      

 
 









 

Moreover, for all { } ( )p pu u D T r = ∈   , 

( ) ( )0, , 0j p k pu y b u z b+   = =    , ( )1, , ; 1, 2, , ; 1, 2, ,p pj r m k n p N= + = =   , 
and hence, from (4.13), 

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

1 , 1,1

,1,

1

, ,

,,

,

.

,

p p

p

p
p

p p

p

m
pr p r k kp pk n

m
m k kp pk npm p

pn p

p
s m n

pm p

u b u y b

u y bu b

u y b

N

u y b

β

β

+ += +

= +

+

× −

   Φ    
=

   Φ    

                   
  
 


 
 
 
 


=

 
   

 

∑

∑
 



  

Therefore, we have shown that the boundary conditions (4.1) coincide with 
those in (3.10). Similarly (4.2) and the conditions in (3.11) can be shown to co-
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incide if we choose, 

( ) [ [ ( )1
1
1

: Ψ
p p

n kp
r n jp p n nj r

k n

K i a J−
× ×≤ ≤

≤ ≤

 = −   ,             (4.16) 

and: 

( ) ( )1
1

: pp p
p

p p
j rjkr m n
k m n

L ε ≤ ≤× −
≤ ≤ −

= ,                 (4.17) 

where the p
jkε  are the constants uniquely determined by the decomposition: 

( )0 1 1 , 1, , 1; , 2, , ,pn m np p
jp j jk kp jk kp pk kx z x j r p Nξ ε−

= =
Ψ = + + = =∑ ∑  

 
(4.18) 

derived from Lemma 3.9. Next, we prove that 1) and 2) in Theorem 4.7 are con-
sequences of the fact that ( ){ } ( )1, ,jp p pj r D T r Ψ = ⊂    and  

{ } ( ): 1, ,kp p p pk r m D T τ + Φ = + ⊂    are linearly independent modulo  

( )0 pD T r    and ( )0 pD T τ + 
   respectively. Suppose that: 

( )( )1Rank .
p p p

N p p
r np r m n

K L r×= × −
 ⊕ < 
 ∑  

Then there exist constants 1 2 ,, ,
prc c c  not all zero, such that: 

( ) ( )( )1 2 11 , , 0 .,
p p p p

N p p
r r n mp r m n

c c c K L× ×= × −
 ⊕ = 
 ∑             (4.19) 

This implies that, 

( )( )( )
( ) ( ) [ [ ( )

1 1 21

1
1 21

1

,0

,

, ,

, ,

p p

p p

N p
n r r np

n N k
r jp p n nr j rp

k n

c c c K

i c c c a J

× ×=

−
×≤ ≤=

≤ ≤

=

 
 = − Ψ   

 

∑

∑





  

and as n nJ ×  non-singular, it follows that { } 1
pr

p j jpju u c
=

= = Ψ∑ , satisfies 

( ) [ ] ( )( )1
1, , 0n

p p nu a u a−
×=

.                (4.20) 

We also, infer from (4.19) that: 

( ) ( ) ( )( )
( )( )

1 21 1

11 1 1

0 ,

, ,

, ,

.

p p p

p p

p

N p
rm n p r m n

N r rp p
j j jp j j j m n

c c c L

c cε ε

× − = × −

= = = −

 =  
 

=

∑

∑ ∑ ∑



  

Consequently, on substituting (4.18), we obtain: 

01 1 1 .p pr r p
j j j jk kpj j k

nu c x c zξ
= = =

= + ∑∑ ∑                  (4.21) 

For arbitrary ( )v D τ +∈  it follows that [ ]( ), 0u v b = . This fact and (4.20) 

together imply that ( )0u D τ∈  and hence that { }: 1, ,jp pj rΨ =   is linearly 

independent modulo ( )0 pD τ  contrary to assumption. We have therefore proved 

that ( ){ }1 p p p

N p p
r np r m n

K L×= × −
 ⊕ 
 ∑  has Rank r. The proof of 

( ){ }1Rank
p p p

N p p
s np s m n

M N s×= × −
 ⊕ = 
 ∑  is similar. From (4.14) and (4.16), 

https://doi.org/10.4236/apm.2022.123017


S. El-Sayed Ibrahim 
 

 

DOI: 10.4236/apm.2022.123017 223 Advances in Pure Mathematics 
 

( )( )

( ) [ ] ( ) ( )[ ] ( )

( ) ( ) ( )( )

( ) ( ){ }

1 ,
1

11
11 1
1 1

1 1
1

1

,

.

p
p p

p p

p p
p p

j k j r
r k m

jn N k
j p n n k pj rp j n

k n r k m

n nN n p p
r n n n n n s n n np

n N p p
r n n n s np

r s

a

i a J a

i i K J J i M J

i K J M

≤ ≤
+ ≤ ≤

−−
×≤ ≤= ≤ ≤+

≤ ≤ + ≤ ≤

− −
× × × × ×=

× × ×=
×

 Ψ Φ 

 
  = − Ψ Φ   

 
 = − − − 
 
 

= − −   
 

 
 ∑

∑

∑

 





 

On using (4.13), (4.18) and the fact that 0jp jpz z+= =  on ),p pc b ,  
( )1, , ; 1, 2, ,j n p N= =   and [ ]( ), 0u v b =  if either ( )u D τ∈  and  

( )0v D τ +∈  or ( )0u D τ∈  and ( )v D τ +∈ , we obtain: 

( )( ) ( )( )

( ) ( ) ( ) ( )( )
11 1 1 1

1 1

1,2
1

, ,

.

p p

p
p p

p p p p p p

N m n mp p
i j il l jk p p i ri r p l k n

r j m r j m

N p p
p r m n m n m n s m n

b x y b

L E N

ε β−
≤ ≤≤ ≤ = = = +

+ ≤ ≤ + ≤ ≤

= × − − × − × −

 
   Ψ Φ =    

 
 

=  
 

∑ ∑ ∑

∑

 


 

The proof is therefore complete. 
Remark 4.3: Assume that 1

N
p pτ τ== ⊕  is formally J-symmetric, that is  

J Jτ τ+ = , where J is the complex conjugation. Then the operator ( )0T τ  is the 
J-symmetric and ( )0T τ  and ( ) ( )0 0T J T Jτ τ+ =     form an adjoint pair with: 

( ) ( ) ( )0 0 0, .T T Tτ τ τ+ Π = Π                     (4.22) 

Since [ ]u wuτ λ=  if and only if [ ] uwuτ λ+ =  ( Cλ ∈ / ), it follows from 

Lemma 3.1 that for all ( )0Tλ τ∈Π    , ( ) ( )0 0def T I def T Iτ λ τ λ+ − = −      is 

constant  , say, so in (3.8) and (3.9), r s= =   with 
2
n n≤ ≤ . 

5. Discussion 

In [5] Everitt and Zettl discussed the possibility of generating self-adjoint oper-
ators which are not expressible as the direct sums of self-adjoint operators de-
fined in the separate intervals. In this section we extend this case to the case of 
general ordinary differential operators, i.e., we discuss the possibility of the reg-
ularly solvable operators which are not expressible as the direct sums of regularly 
solvable operators defined in the separate intervals ( ), , 1, 2,3, 4p p pI a b p= = . 
We will refer to these operators as “New regularly solvable operators” if pa  is 
a regular end point and pb  is singular, then by ([26], Theorem III.10.13) the 
sum: 

( ) ( )0 0 4def T I def T I nτ λ τ λ+ − + − =      for all ( ) ( )0 0,T Tλ τ τ + ∈Π   , 

If and only if the term in (3.11) at the end point pb  is zero, 1,2,3,4p = . By 
Lemma 3.4, for:  

( ) ( )0 0,T Tλ τ τ + ∈Π   , we get in all cases: 
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( ) ( )0 00 8def T I def T I nτ λ τ λ+ ≤ − + − ≤     .            (5.1) 

When each interval has at most one singular end-point, 

( ) ( )0 04 8n def T I def T I nτ λ τ λ+ ≤ − + − ≤     .             (5.2) 

In the case when all end-points are regular, 

( ) ( )0 0 8def T I def T I nτ λ τ λ+ − + − =     , for all ( ) ( )0 0,T Tλ τ τ + ∈Π   .(5.3) 

Let, 

( ) ( )0 0def T I def T I dτ λ τ λ+ − + − =      

And: 

( ) ( )0 0 , 1, 2,3, 4p p pdef T I def T I d pτ λ τ λ+  − + − = =    . 

Then by part 3) in Lemma 3.1, we have that 4
1 ppd d
=

= ∑  . 
We now consider some of the possibilities: 
Example 1. 0d = . This is the minimal case in (5.1) and can only occur when 

all four end-points are singular. In this case ( )0T τ  is itself regularly solvable and 
has no proper regularly solvable extensions, see Edmunds and Evans ([26], Chap-
ter III) [10] [13] [19] [20]. 

Example 2. d n=  with one of 1 2 3, ,d d d  and 4d  is equal to n and all the oth-
ers are equal to zero. We assume that 1d n=  and 2 3 4 0d d d= = = . The other 
possibilities are entirely similar. In this case we must have seven singular end-points 
and one regular. There are no new regularly solvable extensions and we have that, 

( )4
1 2 0p pS S T τ== ⊕ , where 1S  is regularly solvable extension of ( )0 1T τ , i.e., all 

regularly solvable extensions of ( )0T τ  can be obtained by forming sums of regu-
larly solvable extensions of ( )0 pT τ , 1,2,3,4p = . These are obtained as in the “one 
interval” case. 

Example 3. Six singular end-points and 2d n= . We consider two cases: 
1) One interval has two regular end-points, say, 1I , and each one of the oth-

ers has two singular end-points. Then, ( )4
1 2 0p pS S T τ== ⊕ , where 1S  is regu-

larly solvable extension of ( )0 1T τ , generates all regularly solvable extensions of 
( )0T τ . 
2) There are two intervals, say, 1I  rand 2I  each one has one regular and 

one singular end-point and each one of the others has two singular end-points. 
In this case ( )4

1 2 3 0p pS S S T τ== ⊕ ⊕ , and 1 2S S⊕  generates all regularly solva-
ble extensions of ( )0T τ . The other possibilities in the cases 1) and 2) are entire-
ly similar. 

Example 4: Five singular end-points and 3d n= . We consider two cases: 
1) There are two intervals, say, 1I  and 2I , such that 1I  has two regular end- 

points and 2I  has one regular and one singular end-points, and each one of the 
others has two singular end-points. In this case 1 2d n=  and 2d n= , then,  

( )4
1 2 3 0p pS S S T τ== ⊕ ⊕ , which is similar to 2) in Example 3. 

2) There are three intervals, say, 1 2,I I  and 3I  each one has one regular and 
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one singular end-point, and the fourth has two singular end-points. In this case 

1 2 3d d d n= ==  and 4 0d = , then ( )1 2 3 0 4S S S S T τ= ⊕ ⊕ ⊕ , and hence  
3

1p pS=⊕  generates all regularly solvable extensions of ( )0T τ . The possibilities 
are entirely similar. 

Example 5: Four singular end-points and 4d n= . We consider three cases: 
1) There are two intervals, say, 1I  and 2I , such that each one has two regu-

lar end-points and each one of the others has two singular end-points. In this 
case 1 2 2d d n= =  and 3 4 0d d= = , then, ( )4

1 2 3 0p pS S S T τ== ⊕ ⊕ . 
2) There are two intervals, say, 1I  and 2I , such that each has one regular 

and one singular end-point, and the others 3I  and 4I  has two regular and two 
singular end-points respectively. In this case 1 2d nd= = , 3 2d n=  and 4 0d = , 
then ( )1 2 3 0 4S S S S T τ= ⊕ ⊕ ⊕  as in Example 4 2). 

3) Each interval has one regular and one singular end-points. In this case  
, 1, 2,3, 4pd n p= = . Then “mixing” can occur and we get new regularly solvable 

extensions of ( )0T τ . For the sake of definiteness assume that the end-points  

1 2 3,,a b a  and 4b  are singular end-points and 1 2 3,,b a b  and 4a  are regular 
end-points. The other possibilities are entirely similar. 

For ( ) ( )4
1p pu D T D Tτ τ=

 ∈ = ⊕      and ( ) ( )4
1j p pD T D Tτ τ+ +
=

   Φ ∈ = ⊕     
with { }1 2 3 4, , ,u u u u u= , { }1 2 2 4, , ,k k k k kΦ = Φ Φ Φ Φ , condition (3.11)) reads: 

( ) ( ){ }4
10 , , , , 1, , .j p jp p p jp pp p p

u u b u a j n
=

   = Φ = Φ − Φ =      ∑     (4.22) 

Also, for ( ) ( )4
1p pv D T D Tτ τ+ +
=

   ∈ = ⊕     and  

( ) ( )4
1j p pD T D Tτ τ=

 Ψ ∈ = ⊕      with { }1 2 3 4, , ,v v v v v= ,  

{ }1 2 3 4, , ,j j j j jΨ = Ψ Ψ Ψ Ψ , condition (3.12)) reads: 

( ) ( ){ }4
10 , , , , 1, , ,j jp p p jp p pp p p

v v b v a j n
=

     = Ψ = Ψ − Ψ =     ∑   (4.23) 

and condition 2) in Theorem 3.5 reads: 

( ) ( ){ }4
10 , , , , , 1, , .j k jp kp p jp kp pp p p

b a j k n
=

      = Ψ Φ = Ψ Φ − Ψ Φ =   ∑ 
 (4.24) 

By ([3], Theorem III.10.13), the terms involving the singular end-points  

1 2 3,,a b a  and 4b  are zero so that (4.22), (4.23) and (4.24) reduces to: 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )1 1 1 2 2 2 3 3 3 4 4 41 2 3 4
, , , , 0,k k k ku b u a u b u aΦ − Φ + Φ − Φ =  

( ) ( ) ( ) ( )1 1 1 2 2 2 3 3 3 4 4 41 2 3 4
, , , , 0,j j j jv b v a v b v a       Ψ − Ψ + Ψ − Ψ =         

and: 

( ) ( ) ( ) ( )1 1 1 2 2 2 3 3 3 4 4 41 2 3 4
, , , , 0,j k j k j k j kb a b a       Ψ Φ − Ψ Φ + Ψ Φ − Ψ Φ =         

, 1, ,j k n=  . Thus, the boundary conditions are not separated for the four in-
tervals and hence, the regularly solvable operators cannot be expressed as a di-
rect sum of regularly solvable operators defined in the separate intervals  

, 1, 2,3, 4pI p = . We refer to Everitt and Zettl’s papers [5] [10] [12] [13] [19] [20] 
for more examples and more details. 
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Conclusion: We have characterized that all regularly solvable operators and 
their adjoints are generated by a general ordinary quasi-differential expression jpτ  
in the direct sum Hilbert spaces ( )2 , , 1, ,w p pL a b p N=  . The domains of these 
operators are described in terms of boundary conditions involving ( )2 ,w p pL a b
-solutions of the equations [ ]jp y wyτ =   and its adjoint  

[ ] ( )Cjp wzzτ + = ∈ /   on the intervals ),p pa b . This characterization is an ex-
tension of those obtained in the case of one interval with one and two singular end-
points of the interval (a, b), and is a generalization of those proved in the case of 
self-adjoint and J-self-adjoint differential operators as a special case, where J de-
notes complex conjugation. 
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