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Qiu, W.H. (2021) Reducibility for a Class of
Two-Dimensional almost Periodic System  Lhis paper focuses on the reducibility of two-dimensional almost periodic

with Small Perturbation. Advances in Pure  system with small perturbation. We use the KAM iterative method to get the
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() ® The classical KAM theory which is developed in the last century by Kolmogorov,
Arnold and Moser is the landmark of the development of Hamiltonian systems.

The normal form theory is the earliest reducibility for linear ordinary differential
equations by Poincaré. From then on, many people use KAM iterative method to
study the reducibility of differential equations. In the last years, establishing the
reducibility of finite-dimensional systems by the KAM tools is an active field of
research, see [1] [2] [3] [4] [5] etc.

Junxiang Xu [6] considered the following quasi-periodic system:

{)’( =Qy+h (X y,t)+ f,(xy,t)

.3 (1)
y=x"+h, (X y,t)+ f,(xy.t)

With the Diophantine condition and most of the sufficiently small parameters
€, the system can be changed to a suitable norm form by a real analytic qua-
si-periodic transformation. Similar, regular splitting and the general restricted

linear equation are researched by the iterative method in [7] [8]. The existence
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of almost periodic solutions has also been widely attention, the small denomi-
nator condition is different from quasi-periodic system. However, relative to the
rich results of quasi-periodic systems, the results of almost periodic systems are
less, see [9] [10] etc.

In this paper, we consider the following almost periodic differential equation

X=Qy+h +f; 2)
y=M(xy)+h,+f,
where
M (X, y) = Mg X® + MyoX? + Mg X+ (M, X7 My X+ My, )y
3 2
=D M X Y m,x"y.
u=1 u=0

Our purpose is the reducibility of (2) with the almost periodic transformation.

If ||| f |||m,A,,_s

transformation @ :

<e with f=(f,f, )T, there exists a real analytic almost-periodic

X=X, +&(X,,¥,,1),
y = y+ +77(X+’y+’t)

The system (2) can be changed to

{)‘(zQerhf(x, y,t)
y=M"(x,y)+h; (xy.t).

where M~ (X, y) and h (X, y,t) have the same form as M and A.

2. Some Definitions and Main Result

We introduce some useful definitions.

Definition 2.1. The function f(t) is called a quasi-periodic function of t
with frequencies ®,,@,, -, , if there is a function F(0)=F(6,,6,,--.6,),
which is 2w -periodic in all its arguments 6, (i =1--, m) , such that
f(t)=F(ot)=F(at,ot, - o).

Write D(0,r)={(xy)eC*[|x|<r.|y|<r},

T,={0eC"/2nZ" ||Im6,|<s,j=1,2,-,m}|, and A, =D(0,r)xT,.

Let f(x,y,t) be real analytic in X,y and t on A, and f(X,y,t) be
quasi-periodic with respect to t with the frequency @ . Then f can be expanded
as a Fourier series as follows:

f(xyt)=Y fi(xy)e

kez™

We define the norm

1], = 2 [, e,
' kez™

where f,(x,y)=> f.X'y", and |fk|, = sup Z|f,mk||x|'|y|m.
Im (x,y)eD(0.r) I,m

Definition 2.2. N is the natural number set, t© is a set which is composed by
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the subset of N.
1) Ger,if A,A, e, then A{UA, e;
2) UA:N,[@]:O and [A1UA2]S[A1]+[A2] ([] will be defined by

Aer

next definition).

If t satisfies the conditions above, we say that (r,[]) is the finite spatial
structure on N.

Definition 2.3. A function A is called an approximation function, if it satis-
fies:

1) A:[0,+0)—>[L+x), A(0)=1,and A isanondecreasing function,

2) log A(t)/t Is a decreasing function in [O, +oo) R

3) j: IogA(t)/t2 <+,

Definition 2.4. Ler f(x,y,t)=> f, (X y,t) with the frequency

Aer
o= (a)l,a)z,---). We define the weight norm of f (X, y,t) in the finite spatial
structure (z’, []) as follows:
For m>0,5s>0,

(S

SR NG

Let
Az = {11011, <=}

Now we state the main result of this paper.
Theorem 2.5. We consider system (2), h =(h1,h2 )T and f =(f1, f, )T are
analytic almost-periodic in t with the frequency vector ®=(w;,,,-), h are

higher order terms with

h(xy.t)= > h, (t)xy",

v220r u+vz4

and f are lower order terms with

f(xyt)= > f,(t)x"y".

v<l, u+v<3

Suppose

a

A" (kf)a*([k])
where a >0 isaconstantand A is an approximation function.

Then there exists ¢ >0, such that if ||| f |||m . S&, there exists a real analytic

(k@) 2 , kez”\{0},

almost-periodic transformation @ :

{X:X++§(X+’y+’t)’
y=Y. +1(x,y,,t)

O(41)i(x,,y, ) e D[O,%] —(x,y) € D(0,r), so system (2) is changed to

{)‘(zQerhf(x, y,t) 3

y=M"(x,y)+h; (xy,t)
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. T P .
where M”(X,y) = MyX® + My +Tm10x+(m21x +mllx+m01)y,and

h™(x,y,t) = (hl* (X, y,t),h; (X, y,t)) has the same form as h.

3. Solving Homological Equations

We will use the modified KAM iteration to proof Theorem 2.5. In this section,
We will solve the homological equations, which is in any step.

Let

where

S(xyit)= 2 &0 (X4 (xyit) = 2 £ ()X

u<3 u<2
and 7,,7, have the same formas &;,¢&.

o(¢m)

Let D=——= be the Jacobian matrix. Define the almost-periodic trans-

o(x.y)

formation ®'(-,t):(x,,y,)—>(Xy) by
X=X, +&(X, Y. t),
{y=y++77(x+,y+,t),
Then the system is transformed into

{X+ :Qy+ +Gl(x+’y+’t)+ fl(x+ly+'t)+|§l(x+ly+'t) (4)
y+ = M (X+1y+7t)+GZ(X+7y+’t)+ fZ(X+7y+’t)+ISZ(X+1y+7t)’

and

G, Z(Qﬂo —5t§o)+(9771 _at§1)y+1

oM oM
G, = [Mﬁo +8TO§O _atUoJ"'(Ml’h +GT+O§1 +

n

)

oM
6X+1 §0 _atnlJ Yoo

where

P=(B.P,) =(1+D)*[-DL-Df ~DF, +DF, + F, +(f o®'~ f)+hod'],

L{M (%m]

Qn

and

F=|dM, . dMm, :
—&+——=&n+ M (X, ,t
™ ¢ m Sn+M,(x,,t)n
0
F, =[ tf},
on
£ [0
*F
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with
10°M, , 10°M,, oM, , oM, ,
FZE axfo(x+'t)§2+5 axfl(x“t)guyj(x“t) 7 x+l(x+'t)§1y2'

here X between xand X, . Fare the remainders of Taylor.

Our aim is that (Qy, +G, + f;,M +G, + f, )T will be a new normal form and
(F~’1, P, )T will be much smaller perturbation. So, the system will converge to a
suitable normal form by iterated infinitely. Note that below we use (X, y) in
place of (X,,Y,) to simplify the formulas.

Let f(xy.t)=fo(xt)+f (xt)y, where

fo ()= 3 f o ()"

p=

o

and
2

fo(xt)=> f . (t)x

From (4) and (5), we will solve the following homological equations, we hope
to find 50,51,770,771 and My, M,.

=05 =T,

0,5 =-H,

oM A
M1770+6_X050_at770=_f2,0+go+M0! (6)
M7 051 150 t771=_f2,1+gl+|\7|1

and

go(X, y’t): Z |:m;t’177y”0 ( +1)§JO (j'+1)0 ]Xﬂ’

WA =p 4 ) =23

0, (X, y,t) = Z [m|177|'1 +(n +1) Mni2)06n1

I+ =pn+n'=p,p'+p"=p, p=2
' u
+ (4 +1)M e, ﬂno}x :

Then g=0,(Xt)+0;(xt)y, and g,,0, are high-order terms of X,y .
They will be put into the new perturbation.

Now, we can compare the coefficients of X” in the equations, and we get
Q’ho a 5;/0 l 101
Q’Lﬁ 0 §y1 1 ul?

Z M 17,0 + Z ( ) P om(,, +1)0 _atﬂyo == fZ,yO +Myo,

uu'=p pru"=p (7)
z 7,1 My + Z (,u" +1) fu'lm(uul)o

Hp=p M=

+ Z (,u" +1) vz Om(/l L atnﬂl = fzv/ll + mﬂl'
W=

Note that my, =0, we take the first and third equations of (7) with x=0, so
we get
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{Qﬂoo =08 =— fl,oo- )
My 700 + SooMip = Opfloo = — f2,00 + Mg,
Let
ik, -
fi,oo = Z fi,OOA' fi,OOA = Z fi,OOAke< t>: =12,
Aet suppkcA
and
ik, ot
Soo = Z Soonr Soon = Z §OOAke< l>’
Aer suppkcA
_ _ i(k, ot)
Moo = 27700/\: Moo = Z Tooak® :
Aer suppkcA
Then we have
Qng0px + A00ak =~ Frooak )
Morooak + SooakMio + Aoorx = — fZ,OOAk + rﬁoo
with A= —i<k,a)>.
If k=0, we get
{7700/\0 == fl,OOAO/Q’ (10)
Moo = Mox7a0r0 + SoonoMio + fZ,OOAO'

Then the solution can be got.
If k#0,wehave Hz=d with

T

Z= (§00Ak 1Mook )T d= _( fLoonk: fZ,OOAk) :

So
e e
H = .
My My +4
And
det(H ) =A% +muA-mQ = i(k,a)>m01 _(|<k,a)>|2 N mloQ)-
So we have

___a
A% ([kf)a® ([k])
with my, >0,Q>0. Thus the Equations (9) are solved with z=H"d, and z

has the same finite spatial structure with £
So

|det(H)| > [(k, a)>|2 +mQ >

A (|k|) A% ([k )
1, < Z (| |()22 ([ ])|fiVOOAk|e(mzp)\k\

suppkc A

A®(|k|)e 27K
= Z MAg([k]ﬂfi,OOAdeg‘k‘
suppkcA (24

Swnfi on.

[660n 153, < uon

DOI: 10.4236/apm.2021.1112061 955 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2021.1112061

F. H. Meng, W. H. Qiu

where T'(p)=sup,, (A" (t)e™").
It follows that

|||§°°|"m73m,573p < Ié"‘fOOA "6—2,0 g(m-2miA]

% (p)A%([A])e 2"
< (p) ([2 ])e ||fi,00A||§em[A]

m,o

We can also get

———<¢
|||’70°|||m73m,573p 2

Now we replace p with g +1 in the first, third equations of (7) and then
obtain

Qn(yu)o _alg(/ﬁrl)o =d,
Q’hl _6t§/,11 =d,

Mor(yeag0 + S(uragoMo = Ofluano = B+ Mz, o
M,aMo + &My —0,17,4 =d, + myl.
where 1=0,1,2, and
& =T (aor
dy=—f .,
A5 =T (o ~ M0 ~Marllu-o ="~ Myuranloo
= 2&,0Myg =38, 1yoMap =+ = (4 +2) &M 500 (12)
o == Ton = ap Mo = o 2pMar == oaM
—28 Moy —3E, My == (1 +1).§01 (et
- Z (4" +1) & oMy
wp=p

Let d=(d,.d, d,.d,)",

T
Z= <§(ﬂ+1)ovfulvﬂ(,ﬁl)o*nyl) .
Let
d; =dea diy = Z diAkei<kywt>’ i=1,234,

Aer suppkcA

and

i(k,wt
p+l Z éuu OA* (:(y+1)0A = Z §(y+1)0Ake< >'

suppkc A
k wt
;ul - z fylA’ uIA T Z gylAke
Aer suppkcA
=2 = 2 et
y+1 77 (u+1)0A? Tl(;ul 77 (u+1) 0Ak .
suppkc A
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k, o
MNu = Z’hlz\v Man = Z 77;41Ake< Y,

Aer suppkc A

Then the coefficient matrix

A 0 Q 0
0o 4 0 Q
H =
m, 0 my+4 0
0 my 0 My, + 4

with A= —i(k,a)).
det(H) = 2* +(mg; —2Qm,, ) 2* + Q*my, 2my, 2° — 20m, .

The second part is the imaginary part of det(H), so

3

(|2, o+ 20mm ) r
with my 20, m, =0.

Thus,
A (k) A™ ([k])

- 3
530 suppkcA a

§(y+1)o/\ |diAk | i

A% ([K]) dy 6™

suppkc A

P ()2 ([A)

It follows that

m 3m)[A]
5— 3p

= 2[4

Aer

. z ( )Auo(l[A])e_sm[A]

Aer

5( u+1)0

m-3m,5-3p (u+1)0A

s ], €™
(m r3
UG

(M (p)

&
3 H
a

For k=0, £=0,1,2, welet
58(,”10/\0 0, Sgyle—O

and

Miusnjono =~ f1,(/1+1)0A0/Qv77u1A0 == fin0 /Q

rﬁ(;m)o = Mo177 41000 ~ Ao
rﬁﬂlzmmnﬂm—d“o. (13)
So (11) are solved with

r*(mré(p
lell, oo, s L0)

£.
3
(24
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When we have solved (7) which the order of xand yis no more than g, the
system can be solved inductively for z+1. So we can solve system (7) and ob-

tain S My with

(M) (p) °(mr°(p)
Né‘” m-3,6-3p =¢C ol & H|77”V m-3M,5-3p =¢ b &

Noting that #+v <3, we have

(M (p) r*(mr(p)
|||§|||m—3rﬁ,A(r,5—3p) <¢ a® & |||77|||m—3rﬁ,A(r,§—3p) =¢ o & (14)
Furthermore, by (14) it follows that

r*(mri(p
TR L as)

Now we consider M(X y) M (x)+l\7|1(x)y with

Ny (X) = 3 o, N (x) = 3 0

1<pu<3 u<2

Let

M (%, Y) =M (% ¥)+M (X y)= Mg (x)+ M, (x) ¥,

Mo (X) =M, (X)+ Mg (x)= > mox*+ 3 i, ox*,

1<pu<3 1<pu<3
M, (x) =M, (x )+M (x)= Zmlx”+2m1x”
u<2

Now we want to change M (X, y) to normal form with zero as an equili-
brium point. Actually, this problem is the stability of Mg (X) under small per-
turbations. From Theorem 2.2 in [8], we know that M 0 (X) has a real root Xo)»

such that <ce . In the KAM iterations, My(x) and |\7|0 (X) correspond

X

()
to f; and f in Theorem 2.2 [8].

Let ®":X=X, +Xop Y=Y, thenwehave
M*(x, y) Mod"(x,y)= (x+x() y):Mg+M1*y

with M, = z m,,X* . Moreover we have
1<pu<3

|||\/|*—|v|||r <ce. (16)

Let
O(x,y,t) =D d"(x,y,t),

X=X, +Xq +¢f(x + X0y Yo )

(17)
y= y +7](X + X y+, )
Then system (2) can be transformed into
X=Qy+P"(x,vV,t),
' yJr 1 ( y +) (18)
y=M"(x,y)+PR, (xy.t),
DOI: 10.4236/apm.2021.1112061 958 Advances in Pure Mathematics
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where P" =Po®"+go®" . By the express of P, we get
P*=(1+DB) [-BLo®"~DBf o &~ DF, o®"+ BF, 0 ®" + F, 0 ®"
F(fo®od = fod")+hod o d"]+god,
with D=Do®".
Let

g, =———"2er =r—4f,m,=m-3mM, 5, =5-3p.

h* =P, are higher order terms of P™,

ho= > h (t)x“y" + > h (t)x“y".

v<land pu+v=4 v>2

f* =P’ arelower order terms of P*,

fr(xyt)= > fr (t)x“y".

v<l,u+v<3

From above estimation of the transformation and the similar method in [8],

h*—h

we can have

fr <g,. (19)

m . A(r. 6 )

<¢

=&, .

Now the system of differential equations becomes

Xx=Qy+h' (xy.t)+ " (xy,t),
y=M"(xy)+h (xy.t)+ (X y.1).

(20)

m,,A(r,,6,)

(21)

4., Proof of Theorem 2.5

Now we consider system (2):
X=Qy+h +f
y=M(xy)+h, +f,
We will transform this system to (3) by iterative infinitely. First of all, we
choose the following parameters as initial values:
,=r, f=r/16, 8, =6, p, =6/10,
and
m, =8/4, M, =35/16, ¢, = &.
The j-th step as follows:
=1 =4, =1,/2,6,=6,,-3p;4, p;=p;./2,
r3(mj)r3(pj)g

3 N

m. :mH—BmH,mj :mj71/2,5j+1: "

J

From Section 3, we can get a sequence of almost-periodic transformations
(Dj (" .’t) With ton T§j ’ j =11 21'” 5 SllCh that
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D (1) D(O,rj)—> D(o, rH—fH)c D(o, rH).
Xjig =X X §(x Xy Yo )
Vi y,+n,(x XYyt

Let @' =, o ---®@; . Then transformations @’ are defined on D(O, r ) By

the transformation ®’, system (2) becomes
X; =Qy; +h/ (Xj'yi’t)+ A (Xi’yj’t)’
V=M (o yy )+ (% ypt)+ £ (% y,01),

where M (X Y; ) is a normal term, h! = (hl’ , hzj )T is higher order term, and
fi= ( fl, f ’) is a small perturbation term. Moreover, by (16), (19) and (20)

we can get
R R (22)

[Ini= ~n| sl <5 (23)

171, sy =25 (24)

Let M/=M'+M’=M’+M{(x;)+M/(x)y;. We apply Theorem 2.2 [8]

with f;=M(X,,Y,) and { } where f —|\/|0J and have {(j)} and {fj}
with ‘ ‘<C82 Then we have M”( M,yjﬂ):l\ﬁ'<xj+x(].),yj),
Moﬁl( j+1)_ fj+1(xj+1)'

The domain D(O,rj) converges to the domain D(O,%] with 5j —>§,

m, . .
m; — —>. Our work is to verify that all the concerned sequence can be conver-

gent under the norm ||| |||

Mo r &+
222
: j-1
i
| mj,A(rj,s,.)S|||D®°”|m,~, H|Dc1>J 1|m o) il}(1+c,9i)sc
Jor -], sww To-tl g 505
m;.A(r.55) m;.A(r}. 65 )

Thus, ®' is convergent under the norm ||| || mo ro.Let @ 5D, joo.
22

Then we can get

“|cp* ~id

@A[LiJ SCEO.
2" \22

Using (22), it follows that M’ convergesto M* with

||M*—M||s<:g.
From (24), we can get that
Nf ! my o 0.
2'2'2
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By (23), {hj} is convergent on D(O,%) with j— o, and

h, > h’

under the norm  |-|[m

Mo 1 & -
2'2'2

Then, by the transformation ®@° (-,-,t), system (2) changes to the following

system
Xx=Qy+h (xy.t)
y=M"(x,y)+h(xy,t)

M™(X,y),h"(X,y,t) hasthe same formas M,h.
Thus, Theorem 2.5 is proved.
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