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Abstract 
Three classical compactification procedures are presented with nonstandard 
flavour. This is to illustrate the applicability of Nonstandard analytic tool to 
beginners interested in Nonstandard analytic methods. The general proce-
dure is as follows: A suitable equivalence relation is defined on an enlarge-

ment X∗  of the space X which is a completely regular space or a locally 
compact Hausdorff space or a locally compact Abelian group. Accordingly, 
every f in ( ),C X R  (the space of bounded continuous real valued functions 

on X) or ( ),CC X R  (the space of continuous real valued functions on X 

with compact support) or the dual group Γ  of the locally compact Abelian 
group G is extended to the set X  of the above mentioned equivalence classes. 
A compact topology on X  is obtained as the weak topology generated by 
these extensions of f. Then X is naturally imbedded densely in X . 
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1. Introduction 

The foundation stone for Nonstandard analysis was laid by Abraham Robinson 
in 1966 with the publication of his book “Nonstandard analysis” [1]. Here R is 
extended to an ordered field extension R∗  of R, where “very small” (infinite-
simals [2] [3]) elements and “very large” (infinite) elements exist. Elements of 

R∗  are called hyper-real numbers. Sets, relations, functions in R get extended to 
R∗  in a natural way. Also statements in R get extended to R∗ , with suitable in-

terpretation, with the aid of a pivotal principle called the Transfer principle. On 
the other hand, certain statements in R∗  hold good in R by the Downward 
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Transfer principle. The whole idea is not so much to learn the extension as is to 
study more of the original frame R by getting on a higher platform R∗ . Moreo-
ver, the higher platform renders a natural way of looking at the concepts in R 
and hence provides a natural and shorter proof of even the already proved 
statements in R. Nonstandard analysis propounded by Robinson is not just a 
formalization of the infinitesimals in R. The type of extension from R to R∗  
applies to any mathematical structure based on a suitable nonstandard model. 
For instance, if X is a topological space or a linear space or a measure space, it 
gets extended to X∗  allowing extensions of sets, relations, functions etc., and 
providing Transfer and Downward Transfer theorems to carry out all algebra 
and analysis [4]. Again, as in R, the idea is to learn more about X and not so 
much about X∗ .  

The purpose of this article is to present nonstandard versions of three classical 
compactifications: Stone-Cech compactification of a completely regular space, 
Alexandroff’s one-point compactification of a locally compact Hausdorff space 
and Bohr compactification of a locally compact Abelian group. For the classical 
versions of Stone-Cech compactification and Alexandroff’s one-point compacti-
fication and for other preliminaries in topology, we refer to [5] [6] [7]. For Bohr 
compactification and the preliminaries on locally compact Abelian groups, we 
refer to [8]. The procedure for nonstandard Stone-Cech compactification is fol-
lowed for uniform spaces in [9]. This is in analogy with the nonstandard com-
pletion of a uniform space mimicking the nonstandard completion procedure of 
a metric space [4] [10]. Since the basic principle involved is the same in all these, 
it is contextual to present these in a single article. The general procedure is as in-
dicated in the abstract. These compactifications come under the general category 
of Q-compactifications [4] for suitable families of functions Q. However, details 
have to be worked out individually and this has been done systematically in this 
article.  

2. Main Results 

Definition 2.1.   
Let X be a topological space. A topological space X  is said to be a compacti-

fication of X if X can be embedded in X  as a dense subspace. That is, if there 
exists a homeomorphism : X Xφ →  such that range φ  is dense in X .  

First we take up the nonstandard version of the Stone-Cech compactifica-
tion of a completely regular space. We have the following.  

Theorem 2.2.    
Let X be a completely regular space. Then it has a compactification X .  
Proof.  
Let ( ),C X R  be the set of bounded continuous real valued functions on X.  
In X∗  define ~x y′ ′  if ( ) ( ) f x f y∗ ∗′ ′

  ( ),f C X R∀ ∈   
Clearly ~ is an equivalence relation on X∗ .  
We denote the equivalence class of x X∗′∈  by [ ]x′  and the set of equiva-
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lence classes by X .  
( ) ,f C X R∀ ∈  we define :f X R→  by [ ]( ) ( ) f x st f x∗′ ′= .  

We consider X  with the weak topology ω  generated by the fs .  
We wish to show that : X Xϕ →  defined by ( ) [ ]x xφ =  is an embedding of 

X as a dense subspace of X .  
(i) First we see that ϕ  is one-one.  
Let [ ] [ ]x y=  for ,x y X∈   
Then ~x y   
Therefore ( ) ( )f x f y∗ ∗

  ( ) ,f C X R∀ ∈   
That is, ( ) ( )f x f y=  ( ) ,f C X R∀ ∈   
Therefore x y= , by complete regularity of X  
Therefore ϕ  is one-one.  
(ii) To prove: ϕ  is continuous  
Let [ ]y X∈   
A basic neighbourhood of [ ]y  is given by  

[ ] [ ]( ) [ ]{ }1
:n

i ii
G z X f z f y ε

=
= ∈ − <


 

( ) ( ) [ ]( ){ }1
1

:n
i ii

G x X f x f yϕ ε−
=

= ∈ − <


 is open in X, by the continuity of 
each if .  

Hence ϕ  is continuous.  
(iii) To prove : ϕ  is an open map  
Let V be a basic neighbourhood of x X∈ , where V ∈Ψ   
By complete regularity of X, fix ( ),f C X R∈  such that [ ]: 0,1f X → , 
( ) 0f x =  and ( ) { }1cf V =   

Now ( ) ( )* * * *1 ,  
2

c
z X f z z V z V∈ < ⇒ ∉ ⇒ ∈                       (1) 

Let [ ]z X∈  with z X∈ , [ ]( ) 1
2

f z <   

Then ( ) 1
2

f z <   

Therefore z V∈ , by (1).  

Therefore [ ] ( )z Vϕ∈                                            (2) 

Also [ ] [ ]( ) [ ]( ) 1: , 
2

z X z X f z f x ∈ ∈ − < 
 

 is a neighbourhood of  

[ ] ( )x xϕ=  in ( )Xϕ   

This neighbourhood [ ] [ ]( ) 1: , 
2

z X z X f z = ∈ ∈ < 
 

,  

since ( ) 0f x = .  
Also this neighbourhood ( )Vϕ⊆ , by (2)  
Therefore ( )Vϕ  is open in ( )Xϕ   
Hence ϕ  is an open map.  
Thus : X Xϕ →  is a homeomorphism of X onto ( )Xϕ   
(iv) To prove: ( )Xϕ  is dense in X .  
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Let [ ] ( )y X Xϕ∈ −   
We take a basic neighbourhood of [ ]y  given by  

[ ] [ ]( ) [ ]{ }1
:n

i ii
G z X f z f y ε

=
= ∈ − <


 

Now ( ) [ ]( ){ }* *
1

 :n
i ii

x X f x f y ε φ
=

∈ − < ≠


, since it contains y.  

Therefore ( ) [ ]( ){ }1
:n

i ii
x X f x f y ε φ

=
∈ − < ≠



, by Downward Transfer.  

That is, [ ]( ) [ ]( ){ }1
:n

i ii
x X f x f y ε φ

=
∈ − < ≠



  

Therefore [ ] x G∃ ∈  for some x X∈   
Therefore ( )Xϕ  is dense in X   
(v) To prove: X  is compact.  
For each [ ]y X∈ , we associate a map [ ]( )T y  from ( ),C X R  to R defined 

by  

[ ]( ) [ ]( ) ( ) T y f f y st f y∗= =  

Let A be the range of T.  
Claim: T is a one-one mapping of X  onto A.  
[ ] [ ] ( )1 2 1 y y f y∗≠ ⇒  and ( )2f y∗  are not infinitely close to each other for 

some ( ),f C X R∈   

( ) ( )1 2  st f y st f y∗ ∗⇒ ≠   

[ ]( ) [ ]( )1 2f y f y⇒ ≠  

[ ]( )( ) [ ]( )( )1 2T y f T y f⇒ ≠  

Therefore [ ]( ) [ ]( )1 2T y T y≠   
Therefore T is one-one, establishing the claim.  
Define a topology on A by declaring U open in A if  

( )1T U−  is open in X .  
By definition, T is a homeomorphism of X  onto A.  
To show X  is compact, all we need to show is that A is compact.  
A basic neighbourhood of Aα ∈  is of the form  

( ) ( ){ }1
:n

i ii
G A f fβ α β ε

=
= ∈ − <


,  

where 0ε >  and ( )1 2, , , ,nf f f C X R∈
  

Since X is dense in X ,  x X∃ ∈  such that [ ]T x G∈   
That is, ( ) [ ]( )i if T x fα ε− <  for 1,2, ,i n=    
That is, ( ) ( )i if f xα ε− <  for 1,2, ,i n=    
That is, ( )1 ,  , , , ,  0nA f f C X Rα ε∀ ∈ ∀ ∈ ∀ >

 in R,  
 x X∃ ∈  such that ( ) ( )i if f xα ε− <  for 1,2, ,i n=    

By concurrence,   x X∗∃ ∈  such that ( ) ,  , ,  0A f C X Rα ε∗∀ ∈ ∀ ∈ ∀ >  in 
R∗ ,  

( ) ( ) f f xα ε∗ ∗− <  

Taking 0ε >  as a positive infinitesimal, we get the following:  
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 x X∗∃ ∈  such that ( ) , ,A f C X Rα ∗∀ ∈ ∀ ∈ ,  

( ) ( ) f f xα ∗ ∗
                          (3) 

Now let  Aγ ∗∈   
To show A is compact, we need to show that γ  is near some Aδ ∈   
By (3),  x X∗∃ ∈  such that ( ) ,f C X R∀ ∈ , ( ) ( ) f f xγ ∗ ∗

   
Take [ ]( )T xδ =   
Then ( ) ,f C X R∀ ∈ , ( ) [ ]( ) ( ) ( ) ( )  f T x f st f x f x fδ γ∗ ∗ ∗= =     
Therefore Aγ δ ∈   
Therefore A is compact.  
This completes the proof. 

□ 
Next in line is Alexandroff’s one-point compactification of a locally com-

pact Hausdorff space.  
Let ( ),cC X R  be the set of continuous real valued functions on X with com-

pact support.  
Theorem 2.3.   
Let X be a non-compact locally compact Hausdorff space. By replacing 
( ),C X R  by ( ),cC X R  in the proof of last theorem, we get X  with the weak 

topology generated by the fs , ( ),cf C X R∈ . Then X X−  is a singleton set 
and X  turns out to be the Alexandroff one-point compactification of X.  

Proof.  
In X∗  define ~x y′ ′  if ( ) ( ) f x f y∗ ∗′ ′

  ( ),cf C X R∀ ∈   
Clearly ~ is an equivalence relation on X∗ .  
We denote the equivalence class of x X∗′∈  by [ ]x′  and the set of equiva-

lence classes by X . X is imbedded in X  by the mapping [ ]x x→  for 
x X∈ .  

( ),cf C X R∀ ∈  we define :f X R→  by [ ]( ) ( ) f x st f x∗′ ′= .  
We consider X  with the weak topology ω  generated by the fs .  
(i) First we show that X X φ− ≠   

1 2 , , , nx x x X∀ ∈ , take y X∈  such that iy x≠  for 1,2, ,i n=    
By local compactness, ( ) ,cf C X R∃ ∈  such that ( ) 0f y ≠  and ( ) 0if x =  

for 1,2, ,i n=    
Thus  y X∃ ∈  such that y is not related to ix  under ~ for 1,2, ,i n=    
By Concurrence,   y X∗′∃ ∈  such that y′  is not related to x under ~ 
 x X∀ ∈   
Therefore [ ]y X X′ ∈ −  and hence X X φ− ≠   
(ii) Next we show that X X−  is singleton  
Let [ ]y X X′ ∈ −  and ( ),cf C X R∈  with  supp f K= , a compact set in X.  
Then  y K∗′∉ ; otherwise y y′

  for some y K∈  and [ ] [ ]y y′ = , contra-
dicting [ ]y X X′ ∈ −   

Therefore ( ) 0f y∗ ′ =   
Thus if [ ] [ ],y z X X′ ′ ∈ − , then ( ) ( )0  f y f z∗ ∗′ ′= =  ( ) ,cf C X R∀ ∈   
Hence ~y z′ ′   
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Therefore [ ] [ ]y z′ ′=   
Therefore X X−  is a singleton set, say [ ]x′   
Thus [ ]{ }X X x′=  , where X is with the identification [ ]x x→   
From classical analysis, we have X  is compact with the one-point compacti-

fication. Let this topology be denoted by ℑ .  
Now we wish to show ωℑ =   
(iii) First we show that every set open in the locally compact Hausdorff space 

X is open in X  with the ω -topology.  
For this it is enough to show X is open in X   
Take any x X∈   
∃  an open neighbourhood U of x such that U  is compact, by local com-

pactness of X.  
Again we can find an open neighbourhood V of x such that V U⊆ .  

( ) [ ] , , : 0,1cf C X R f X∃ ∈ →  such that ( ) { } ( ) { }1 , 0cf V f U= = .  
In particular, ( ) ( ) { }1, 0cf x f U= = .  
Since ( ) , ,csupp f U f C X R⊆ ∈   

Then ( ) 1 1 ,1
2

f
−   
    

 is a ω -open neighbourhood of [ ]x  contained in X.  

Therefore X is open in X  and hence any U open in X is open in X  as well.  
(iv) Take any set K compact in X.  
We show X K−  is open in X   
Take any [ ]y X K′ ∈ −   
We need to show that [ ]y′  is an interior point of X K−   
Case (a): [ ] [ ]y x′ ′=   
By local compactness, there exists an open set U in X such that K U⊆  and 

U  is compact.  
( ) ,f C X R∃ ∈  such that [ ] ( ) { } ( ) { }: 0,1 , 1 , 0cf X f K f U→ = =   

Since ( ) , ,csupp f U f C X R⊆ ∈   

Then ( ) 1 10,
2

f
−   
   

 is a ω -open neighbourhood of [ ]x′  contained in  

X K− .  
Case (b): [ ]y X′ ∈   
Then [ ] [ ]y y′ =  for some y X K∈ −   
Using local compactness as before, ( ) ,cf C X R∃ ∈  such that  

[ ] ( ) ( ) { }: 0,1 , 0, 1f X f y f K→ = =   

Then ( ) 1 10,
2

f
−   
   

 is a ω -open neighbourhood of [ ] [ ]y y′ =  contained  

in X K−   
Therefore in any case X K−  is open in X   
From (iii) and (iv) we get ωℑ⊆   
(v) For the other way implication, take any basic open set ( ) ( )

1
f G

−
, where G 

is open in R and ( ),cf C X R∈   
Case (a): Suppose 0 G∉   
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Then ( ) ( )
1

f G
−

 is ( )1f G−  with the identification [ ]x x→  and so is open 
X and hence in X  with the ℑ -topology.  

Case (b): Suppose 0 G∈   
Then ( ) ( ) ( ) ( )1 1f G f G X K

− −= − , where K is the compact set  
( ){ }: 0x X f x∈ ≠   

Hence ( ) ( )
1

f G
−

 is open in X  with the ℑ -topology.  
Therefore ω ⊆ ℑ  and hence ωℑ =   
Thus the weak topology generated by the fs , where ( ),cf C X R∈ , is the 

Alexandroff one-point compactification of X.                           □ 
Finally we take up Bohr Compactification of a locally compact abelian group.  
Let G be a non-compact locally compact abelian group with dual group Γ . 

On G∗  define a relation ~ by ~x y′ ′  if ( ) ( ) x yγ γ∗ ∗′ ′
   γ∀ ∈Γ . ~ is an 

equivalence relation on G∗ . Denote the equivalence class of x′  by [ ]x′  and 
the set of equivalence classes by G . Define addition in G  by 
[ ] [ ] [ ]x y x y′ ′ ′ ′+ = + . Define γ  on G  by [ ]( ) ( )x st xγ γ∗′ ′= . Then γ  is 
well-defined on G . Topologize G  by the weak topology generated by the 

, sγ γ′ ∈Γ . 
Theorem 2.4. 
The above mentioned G  is a compact abelian group and is a compactifica-

tion of the locally compact abelian group G.  
Proof.  
For most part, the proof mimicks that of Theorem 2.2. Since each ( )xγ∗ ′  is 

finite (in fact ( ) 1xγ∗ ′ = ), ( ) st xγ∗ ′  is defined.  
If ~x x′ ′′ , then ( ) ( ) x xγ γ∗ ∗′ ′′

  and hence ( ) ( )  st x st xγ γ∗ ∗′ ′′=  so that 
γ  is well-defined.  

Clearly G  is an abelian group.  
Next we wish to show that + and − are continuous on G G× .  
Let [ ] [ ]x xα′ ′→  and [ ] [ ]y yα′ ′→ .  

[ ] [ ]( ) [ ]( )
( )
( ) ( )
( ) ( )

[ ]( ) [ ]( )
[ ] [ ]( )

*

 

  

  

x y x y

st x y

st x st y

st x st y

x y

x y

α α α α

α α

α α

γ γ

γ

γ γ

γ γ

γ γ

γ

∗

∗

∗ ∗

′ ′ ′ ′+ = +

′ ′= +

′ ′= +

′ ′→ +

′ ′= +

′ ′= +

 

Therefore [ ] [ ] [ ] [ ]x y x yα α′ ′+ → +   
Therefore + is continuous on G G×   
Similarly − is continuous.  
Claim 1: The map [ ]x x→  is one to one.  

( ) ( )x y x yγ γ≠ ⇒ ≠  for some γ ∈Γ , since Γ  separates points of G.  

[ ]( ) [ ]( )x yγ γ⇒ ≠   

Therefore we have claim 1.  
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Claim 2: The map [ ]x x→  is continuous.  

( ) ( )   x x x xα αγ γ γ→ ⇒ → ∀ ∈Γ   

[ ]( ) [ ]( )   x xαγ γ γ⇒ → ∀ ∈Γ  

Therefore [ ] [ ]x xα →  in G   
Hence the map [ ]x x→  is continuous.  
Claim 3: The map [ ]x x→  imbeds G as a dense subgroup of G   
Let [ ]y G∈   
We take a basic neighbourhood of [ ]y  given by  

[ ] [ ]( ) [ ]( ){ }1
:n

i ii
V z G z yγ γ ε

=
= ∈ − <


  

Now ( ) [ ]( ){ }* *
1

 :n
i ii

x G x yγ γ ε φ
=

∈ − < ≠


, since it contains y.  

Therefore ( ) [ ]( ){ }1
:n

i ii
x G x yγ γ ε φ

=
∈ − < ≠



, by Downward Transfer.  

That is, [ ]( ) [ ]( ){ }1
:n

i ii
x G x yγ γ ε φ

=
∈ − < ≠



  

Therefore there exists [ ]x V∈  for some x G∈   
This establishes claim 3.  
Claim 4: G  is compact.  
For each [ ]y G∈ , associate a map [ ]( )T y  from Γ  to C defined by 
[ ]( ) [ ]( ) ( )T y y st yγ γ γ∗= =   
Let A be the range of T.  
First we see that T is a one-one mapping of G  onto A.  
[ ] [ ] ( )1 2 1y y yγ∗≠ ⇒  is not infinitely close to ( )2yγ∗  for some γ ∈Γ   

( ) ( )1 2  st y st yγ γ∗ ∗⇒ ≠   

[ ]( ) [ ]( )1 2y yγ γ⇒ ≠  

[ ]( ) [ ]( )1 2T y T yγ γ⇒ ≠  

T is one-one.  
Now we define a topology on A by declaring U open in A if ( )1T U−  is open 

in G .  
By definition, T is a homeomorphism of G  onto A.  
To show X  is compact, it is enough to show that A is compact.  
A basic neighbourhood of Aα ∈  is of the form  

( ) ( ){ }1
:n

i ii
V Aβ α γ β γ ε

=
= ∈ − <


 where 0ε >  and 1 2, , , nγ γ γ ∈Γ   
Since G is dense in G ,  x G∃ ∈  such that [ ]T x V∈   
That is, ( ) [ ]( )i iT xα γ γ ε− <  for 1,2, ,i n=    
That is, ( ) ( )i i xα γ γ ε− <  for 1,2, ,i n=    
That is,  Aα∀ ∈ , 1 2 , , , nγ γ γ∀ ∈Γ ,  0ε∀ >  in R,  x G∃ ∈  such that 
( ) ( )i i xα γ γ ε− <  for 1,2, ,i n=    
By concurrence,   x G∗∃ ∈  such that   ,  ,  0Aα γ ε∗∀ ∈ ∀ ∈Γ ∀ >  in R∗ , 

( ) ( )xα γ γ ε∗ ∗− <   
Taking 0ε >  as a positive infinitesimal we get the following:  

  x G∗∃ ∈  such that ( ) ( )  ,  , A xα γ α γ γ∗ ∗ ∗∀ ∈ ∀ ∈Γ  -------(*)  
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Now let  Aβ ∗∈ .  
To show A is compact, what we need to show is that β  is near some Aδ ∈   
By (*),   x G∗∃ ∈  such that  γ∀ ∈Γ , ( ) ( ) xβ γ γ∗ ∗

   
Take [ ]( )T xδ =   
Then  γ∀ ∈Γ , ( ) [ ]( ) ( ) ( ) ( )  T x st x xδ γ γ γ γ β γ∗ ∗ ∗= =     
Therefore Aβ δ ∈   
Therefore A is compact.  
This completes the proof.                                         □ 
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