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Abstract 
We consider the relation between the simultaneous approximation of two 
functions and the uniform approximation to one of these functions. In par-
ticular, 1F  and 2F  are continuous functions on a closed interval [ ],a b , S 

is an n-dimensional Chebyshev subspace of [ ],C a b  and *
1s  & *

2s  are the 

best uniform approximations to 1F  and 2F  from S respectively. The cha-
racterization of the best approximation solution is used to show that, under 
some restrictions on the point set of alternations of *

1 1F s−  and *
2 2F s− , *

1s  

or *
2s  is also a best A(1) simultaneous approximation to 1F  and 2F  from 

S with 1 2F F≥  and 2n = . 
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1. Introduction 

The interest in the simultaneous approximation started long ago [1] [2] [3] [4]. 
This paper concerned with the relation between the simultaneous approximation 
and the uniform approximation. The setting is as follows. Let [ ],C a b  be the set 
of all real-valued continuous functions defined on the closed interval [ ],a b  
with the uniform norm . . 

For [ ],f C a b∈ , 

( ) [ ]{ }max , ,f f x x a b= ∈ . 

The norms ( )A pF , 1 p≤ ≤ ∞ , on [ ] [ ], ,E C a b C a b= ×  are defined as fol-
lows: 
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For ( )1 2,F F F E= ∈  

( ) { }1 2max ,AF F F
∞
=  

( )

1

1 2 1, .p p p
A pF F F p = + ≤ < ∞   

Now if S is an n-dimensional subspace of [ ],C a b , then ( ){ }, :U s s s S= ∈  is 
an n-dimensional subspace of E and there exist ( )* * *,u s s=  and ( )* * *,v t t=  
where * *,s t S∈  such that: 

( ) ( )

{ }

*

1 2

*

inf

inf max ,

, 1 or 2.

AA u U

s S

k

F u F u

F s F s

F s k

∞∞ ∈

∈

− = −

= − −

= − =

 

Such *s  is called a best ( )A ∞  simultaneous approximation to ( )1 2,F F F=  
from S. The set of all best ( )A ∞  simultaneous approximations to F from S will 
be denoted by ( ),SP F ∞ .  

For 1 p≤ < ∞ , 

( ) ( )
*

1

1 2

1
* *

1 2

inf

inf

.

A pA p u U

p p p

s S

p p p

F v F u

F s F s

F t F t

∈

∈

− = −

   = − + − 

 
  

  

= − + −

 

*t  is called a best ( )A p  simultaneous approximation to ( )1 2,F F F=  from 
S. The set ( ),SP F p  denotes the set of all best ( )A p  simultaneous approxi-
mation to F from S. And ( )S kP F  is the set of all best uniform approximation to 

kF  from S, { }1,2k ∈ . 
We are interested in the relation between the simultaneous approximation 

and the uniform approximation; in section two, we will show under certain con-
ditions, that if ( )*

k S ks P F∈  then ( )* ,1k Ss P F∈ , { }1,2k ∈ .  
Definition 1 A point [ ],t a b∈  is called a straddle point for two functions f 

and g in [ ],C a b  if there exists 1σ = ±  such that 

( ) ( ), .f f t g g tσ σ= = −  

Definition 2 The functions f and [ ],g C a b∈  are said to have d alternations 
on [ ],a b  if there exists 1d +  distinct points 1 1dx x +< <  in [ ],a b  such 
that for some 1σ = ± , 

( ) , if is oddif x f iσ=  

( ) , if is evenig x g iσ= −  

or 

( ) , if is oddig x g iσ=  

( ) , if is evenif x f iσ= −  
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We follow [5] [6] [7] [8] for the notations and the terminology of this section 
which will be used throughout this paper. The uniform approximation theory 
can be found in [9] [10]. Theorems 1 and 2 of this section and the remark the-
reafter which are needed for our analysis are direct consequences of theorems 1 
and 3 of [6]. 

Theorem 1 Let S be an n-dimensional subspace of [ ],C a b  which contains a 
nonzero constant, ( )1 2,F F F E= ∈  then: 

(a) ( )* ,1Ss P F∈  if and only if there exists subsets { }1 1,iX x i I= ∈ , 
{ }2 2,iX x i I= ∈  of [ ],a b  and positive numbers 1 2, ,i ii I Iλ µ∈ ∈  with  

1 2

1i i
i I i I

λ µ
∈ ∈

= =∑ ∑  

such that  

( ) ( )( )* *
1 1 1, ,i i iF x s x F s i Iθ − = − ∈  

( ) ( )( )* *
2 2 2, ,i i iF x s x F s i Iθ − = − ∈  

( ) ( )
1 2

0 ,i i i i i i
i I i I

s x s x s Sθ λ θ µ
∈ ∈

+ = ∀ ∈∑ ∑  

1iθ = ± . 

(b) If ( )* ,1ss P F∈  with * *
1 2F s F s− = −  then ( )* ,Ss P F p∈  for all p,  

1 p< ≤ ∞ . 

Theorem 2 Let S be an n-dimensional Haar subspace of [ ],C a b , if 1 2F F≥  
on [ ],a b  then ( )* ,ss P F∈ ∞  if and only if *

1F s−  & *
2F s−  have a straddle 

point or n alternations on [ ],a b  with * *
1 2F s F s− = − . Furthermore, if 

*
1F s−  & *

2F s−  have n alternations on [ ],a b  then *s  is unique. 
Remark If [ ],t a b∈  is a straddle point for *

1F s−  & *
2F s− , 1 2F F≥  on 

[ ],a b  then  

( )( ) ( )( ) ( )( )* * * *
1 2 1 2 1 2 1 2 .F F t F s t F s t F s F s F F− = − + − = − + − ≥ −  

This implies that ( )( )1 2 1 2F F t F F− = −  and  
* *

1 2 1 2 1 2 .F s F s F F F s F s s S− + − = − ≤ − + − ∀ ∈  

Hence ( )* ,1Ss P F∈ . 

2. The Main Result 

Theorem 3 Let ( )*
k S ks P F∈ , where [ ],kF C a b∈ , { }1,2k ∈ , 1 2F F≥  on 

[ ],a b , ( )1 2,F F F=  and S is a 2-dimensional Chebyshev subspace of [ ],C a b  
containing a nonzero constant function. And let { }1 2 3X a x x x b= = < < =  be 
the alternating set for *

1 1F s− , { }1 2 3Y a y y y b= = < < =  be the alternating set 
for *

2 2F s− . 
(i) If ( ) ( )( )* *

1 1 1 1 1 1F x s x F s− = −  and ( ) ( )( )* *
2 1 2 1 2 2F y s y F s− = − , then 

( )*
1 ,1Ss P F∈ . 
(ii) If ( ) ( )( )* *

1 1 1 1 1 1F x s x F s− = − −  and ( ) ( )( )* *
2 1 2 1 2 2F y s y F s− = − − , then 

( )*
2 ,1Ss P F∈ . 
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Proof 
(i) suppose that ( ) ( )( )* *

1 1 1 1 1 1F x s x F s− = −  and ( ) ( )( )* *
2 1 2 1 2 2F y s y F s− = − , 

since 2 1F F− ≥ −  then  

( ) ( )( ) ( ) ( )( )* * *
1 2 2 2 1 2 1 2 1 1s x F x s x F x F s− ≥ − = −  

and if [ ],x a b∈  is such that ( )( )*
2 1 0F s x− ≥ , then  

( )( ) ( )( )* * *
1 1 1 1 2 1 0F s F s x F s x− ≥ − ≥ − ≥ . 

Hence there exists a [ ],a bγ ∈  such that 

( )( )* *
2 1 2 1F s F s γ− = − − . 

If aγ =  or bγ =  then γ  is a straddle point for *
1 1F s−  & *

2 1F s−  which 
implies that ( )*

1 ,1Ss P F∈ . 
If a bγ< <  then taking 1 1 2 3 3, ,x z z x zγ= = =  we have: 

( )( ) ( )( )* * *
1 1 1 1 1 3 1 1F s z F s z F s− = − = − , 

( )( )* *
2 1 2 2 1F s z F s− − = − , 

1 2 3a z z z b≤ < < ≤ .  

Now, since S is a Chebyshev subspace of dimension 2, there exists 
{ }0, 1,2,3i iµ > ∈  such that 

( ) ( ) ( )1 1 2 2 3 3 0s z s z s z s Sµ µ µ− + = ∀ ∈  

because 1 S∈ , 2 1 3µ µ µ= +  and setting { }
2

, 1, 2,3i
i i

µ
ω

µ
= ∈  we have 

( ) ( ) ( )1 1 2 2 3 3 0s z s z s z s Sω ω ω− + = ∀ ∈  where 2 1 3 1ω ω ω= + =  and from 

theorem 1 ( )*
1 ,1Ss P F∈ .  

ii) If ( ) ( )( )* *
1 1 1 1 1 1F x s x F s− = − −  and ( ) ( )( )* *

2 1 2 1 2 2F y s y F s− = − − , since 

1 2F F≥  then  

( ) ( )( ) ( ) ( )( )* * *
1 2 2 2 2 2 2 2 2 2F y s y F y s y F s− ≥ − = −  

and if [ ],x a b∈  is such that ( )( )*
2 1 0s F x− ≥ , then  

( )( ) ( )( )* * *
2 2 2 2 2 1 0F s s F x s F x− ≥ − ≥ − ≥ . 

Hence there exists a [ ],a bγ ∈  such that 

( )( )* *
1 2 1 2F s F s γ− = − . 

If aγ =  or bγ =  then γ  is a straddle point for *
1 2F s−  & *

2 2F s−  which 
implies that ( )*

2 ,1Ss P F∈ . 
If a bγ< <  then taking 1 1 2 3 3, ,y z z y zγ= = =  we have: 

( )( ) ( )( )* * *
2 2 1 2 2 3 1 1F s z F s z F s− = − = − − , 

( )( )* *
1 2 2 1 2F s z F s− = − , 

1 2 3a z z z b≤ < < ≤ .  

Now, since S is a Chebyshev subspace of dimension 2, there exists  
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{ }0, 1, 2,3i iµ > ∈  such that  

( ) ( ) ( )1 1 2 2 3 3 0s z s z s z s Sµ µ µ− + − = ∀ ∈  

because 1 S∈ , 2 1 3µ µ µ= +  and setting { }
2

, 1, 2,3i
i i

µ
ω

µ
= ∈  we have 

( ) ( ) ( )1 1 2 2 3 3 0s z s z s z s Sω ω ω− + − = ∀ ∈  where 2 1 3 1ω ω ω= + =  and from 

theorem 1 ( )*
2 ,1Ss P F∈  and the theorem is proved. 

The following example shows that conditions (i) & (ii) in theorem 3 are ne-
cessary conditions.  

Example 1 { }span 1,S x=  is a Chebyshev subspace of [ ]0,1C  and  
*
1

1
8

s x= +  is the best uniform approximation to 1F x= , *
2

1
8

s x−
= +  is the  

best uniform approximation to 2
2F x= , 1 2F F≥  on [ ]0,1 , ( )*

1 ,1Ss P F∉  and 
( )*

2 ,1Ss P F∉ .  
It is possible, under the assumptions of theorem 3 that both *

1s  and *
2s  be-

long to the set of best A(1) simultaneous approximation as illustrated in the fol-
lowing example  

Example 2 { }span 1,S x=  is a Chebyshev subspace of [ ]0,1C  and  
*
1

1
8

s x−
= +  is the best uniform approximation to 2

1F x= , *
2

1
3 3

s x−
= +  is the  

best uniform approximation to 3
2F x= , 1 2F F≥  on [ ]0,1 . 

( )* *
1 2, ,1Ss s P F∈ . Furthermore *

2
1

3 3
s x−
= +  is the unique best ( )A ∞   

simultaneous approximation to ( )1 2,F F F=  from S. 
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