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Abstract 
In this paper, we present our research on building computing machines con-
sciousness about intuitive geometry based on mathematics experiments and 
statistical inference. The investigation consists of the following five steps. At 
first, we select a set of geometric configurations and for each configuration we 
construct a large amount of geometric data as observation data using dynam-
ic geometry programs together with the pseudo-random number generator. 
Secondly, we refer to the geometric predicates in the algebraic method of ma-
chine proof of geometric theorems to construct statistics suitable for measur-
ing the approximate geometric relationships in the observation data. In the 
third step, we propose a geometric relationship detection method based on 
the similarity of data distribution, where the search space has been reduced 
into small batches of data by pre-searching for efficiency, and the hypotheti-
cal test of the possible geometric relationships in the search results has be 
performed. In the fourth step, we explore the integer relation of the line seg-
ment lengths in the geometric configuration in addition. At the final step, we 
do numerical experiments for the pre-selected geometric configurations to ve-
rify the effectiveness of our method. The results show that computer equipped 
with the above procedures can find out the hidden geometric relations from 
the randomly generated data of related geometric configurations, and in this 
sense, computing machines can actually attain certain consciousness of intui-
tive geometry as early civilized humans in ancient Mesopotamia. 
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1. Introduction 

Intuitive geometric knowledge is an origin of human civilization, just as shown 
by the Plimpton 322 tablet that people in the Old Babylonian period (between 
−1900 and −1600) already knew the rule of the right triangle i.e., the Pythago-
rean theorem, through various instances of right triangles, almost one thousand 
years before proof was given in Greek time. From the analogue view, the ma-
chine’s consciousness would be better built starting from recognizing geometric 
configurations, formating of geometric concepts and discovering geometric prop-
erties from observing sufficiently many examples of geometric configuration with-
out human interference, and automated verification (or proof) of the observed 
geometric theorems. Indeed, machine proof of geometric theorems has been re-
garded as an essential subject of artificial intelligence research during the incep-
tion of artificial intelligence. In the past few decades, researchers have made sig-
nificant progress in using computers to prove geometric theorems. The research 
work of computer proof of geometric theorems is mainly developed from the 
following three directions:  

1) Algebraic calculation method based on coordinates;  
2) Point elimination method based on geometric invariants;  
3) Proving theorems by simulating human thinking the reasoning database 

search method.  
The machine proof of geometric theorems originated in the 1950s. Tarski [1] 

proposed that most of the decision problems in elementary algebra and elemen-
tary geometry can be verified using an algebraic method. Among many imple-
mentations, great progress was made by Wu Wen-Tsün in the 1970s. Inspired by 
ancient Chinese mathematics, Wu proposed the algebraic method of geometric 
theorem machine proof, called the “Wu’s method” [2] [3] [4]. Its basic idea is to 
transform a geometric problem into a system of algebraic equations, and then 
verify (prove or disprove) the geometric theorem by calculating the relationship 
between the system of algebraic equations. Wu’s method has been successfully 
used for the mechanized proof of geometric theorems along with the rapid de-
velopment of computer algebra systems like Reduce, Derive, Mathematica, Maple, 
and so on. Soon after Wu’s initial work, the Gröbner basis method, which was 
developed by Buchberger for processing polynomial system in the 1960s, has al-
so been widely used in the field of geometric theorem proving [5] [6]. Both Wu’s 
method and Gröbner basis method are essentially verifying algebraic identities 
with some constrained variables and a set of polynomial constrained equations. 
Starting from the fact that the lower and upper bounds of a polynomial equation 
can be determined by its coefficients, Hong [7] proposed the “one-example illu-
stration method” that can verify the correctness of a geometric theorem via a 
single instance of the related geometry statement. Furthermore, based on the 
following observation: if a multivariate polynomial has a value equal to zero on a 
sufficiently large grid, then this polynomial is always equal to zero, Zhang et al. 
proposed the “numerical parallel method” [8], which passed a certain scale of 
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examples to verify whether the given polynomial is an identity. As Hong’s me-
thod usually involves constructing a very complicated example and computation 
of too large objects, Hong’s method had never been used in any non-trivial 
theorem, meanwhile, the parallel numerical method is the first numerical algo-
rithm with practical and feasible significance in the machine proof of geometric 
theorems as it was easily implemented in portable computer (like CASIO’s PB700 
or Sharp PC1500) at the end of 1980s. 

When the above-mentioned algebraic methods are used to prove geometric 
theorems, they usually include large-scale complicated calculations involving po-
lynomials, which geometric meaning generally can’t be understood by human, 
and for human it is also too difficult to check the correctness of the machine 
computation by manual method. Therefore, such proofs are called “human non- 
readable”. Zhang et al. [9] proposed to use the area method to prove the geome-
tric theorem and realized the readable proof for the first time. Zhou et al. [10] 
introduced the Pythagorean difference to the proof process of Non-Euclidean 
geometric theorems. Similar to the area method and the Pythagorean difference 
method, a generalized vector method was suggested in [11]. These methods are 
collectively referred to as the “geometric invariant method” [12] [13]. 

Another category method, the “deductive reasoning method” based on data-
base searching, which simulates the idea of human proof of geometric theorems, 
namely, using known hypotheses and standard axioms to perform inference 
searches on geometric propositions, can be traced to 1960. Gelernter et al. [14] 
proposed a method that combined the backstepping method with the depth-first 
search and implemented a program based on the backstepping method on the 
computer. Nevins [15] combined the forward and backstepping method to prove 
the geometric theorem. Zhang et al. [16] gave a more effective method based on 
a geometric deduction database system. Based on the idea of a structured data-
base, the amount of calculation in the inference process was significantly reduced, 
and it proves that generate geometric propositions are generally readable. It 
worths indicating that together with dynamic geometry programs (like Geome-
ter’s Sketchpad), the deductive reasoning method has been widely used for de-
veloping educational software in China. Nevertheless, there has no report on 
studies to promote computers to obtain graphical intuitive analysis capabilities 
for elemental geometry yet. 

Considering that the intuitive knowledge of geometry played the essential role 
in the development of human intelligence—in both meaning of humankind and 
human individuals, it is natural to expect that computing machines that are able 
to see or understand certain geometry meaning, like three-point collineance, 
four points lie on the same circle, or square of one edge equals to the sum of 
squares of other two edges in certain triangles, would eventually lead to a higher 
stage of machine intelligence—the ASI (Artificial Super Intelligence), Sun stu-
died recently in his Master thesis [17] the problem to train the intelligent agents 
such as computers to “observe” a large number of intuitive geometric configura-
tions, to combine the powerful algebraic computing capabilities and data storage 
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capabilities of machine, so to understand and master the intuitive geometrical 
analysis capabilities of humans in the long-term goal of AI. The work imple-
mented a symbolic computation program with Maple software to mimic dynamic 
geometry for randomly generating geometric configuration in batch, and de-
signed several statistical formulas to discover latent geometry relationships from 
suitable amount of graphic data, therefore, exhibited a potential probability of the 
conscious evolution of the computing machine species. 

As an English translation of one part of the thesis, this paper focuses on estab-
lishing statistics of geometric relations in graphic data and establishing a quan-
titative method for comparing the similarities between the distributions of graphic 
data. 

The rest of this paper is organized as follows. In Section 2, we introduce the 
geometric theorem machine proof methods related to the content of this paper. 
In Section 3, we propose the geometric relationship detection method based on 
distribution similarity. In Section 4, we conducted numerical experiments and 
compared the results under different observation error levels. In the final sec-
tion, we draw a short conclusion. 

2. Related Methods of Mechanical Geometry  
Theorem-Proving 

2.1. Wu’s Method  

Let F and G be two multivariate polynomials about the variable x , the class of 
F is k, and the highest degree of F and G about kx  are d and s respectively. Ar-
range F and G in descending order of the variable kx  and write as follows form:  

1
1 0

1
1 0

d d
d k d k

s s
s k s k

F f x f x f

G g x g x g

−
−

−
−

 = + + +


= + + +

�

�
                      (1) 

Then, there must be a non-negative integer t and polynomials T and R. The 
highest coefficient of R with respect to kx  is less than d or 0R = , which satis-
fies:  

t
df G T F R× = × +                           (2) 

In Equation (2), R is the pseudo remainder of polynomial G with respect to 
polynomial F, denoted as ( ),prem G F R= . 

If the polynomial group 1 2, , , sTS T T T= �  satisfies 1s = , 1 0T ≠  or i j∀ < , 
( ) ( )i jclass T class T< , then the polynomial group TS of the following form is 

called a triangular polynomial group:  

( )
( )

( )

1 1 2 1

2 1 2 1 2

1 2 1

, , ,

, , , ,

, , , , ,

i

i i

s i is

T x x x

T x x x x

T x x x x









�

�

�

� �

                       (3) 

Assuming that 1 2, , , sTS T T T= �  is a triangular polynomial group, the re-
mainder of polynomial G with respect to TS can be obtained by the following 
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“continuous pseudo division”:  

( )
( )

( )

1 1

2 1 1

,

,

,

s s

s s s

prem G T R

prem R T R

prem R T R

− −

 =


=


 =

�
                       (4) 

Let 1R R= , and write Equations (4) as ( ),prem G TS R= . Further, the re-
mainder formula Equation (2) can be extended to the following form:  

1
1

1

s
tt s
s i i

i
I I G C T R

=

× × × = × +∑�                    (5) 

Among them, iI  and iC  are the initial formula and polynomial of iT  re-
spectively. 

The general procedure of Wu’s method to prove geometric theorem is as fol-
lows:  

1) The geometric theorem is algebraized, the known assumptions are partially 
transformed into a polynomial group H, and the theorem’s conclusion is trans-
formed into a polynomial g.  

2) The polynomial group H is sorted according to the Wu-Ritt principle [2] 
[18], and the ascending { }1 20, 0, , 0sCS f f f= = = =�  is obtained.  

3) Solve the theorem conclusion polynomial g and the continuous pseu-
do-division of ascending sequence, get ( ),prem g CS R= , and judge whether 
the residue R is 0. If 0R = , according to Equation (5), it is easy to get the equa-
tion 1

1 1 1 2 2
stt

s s sI I g C f C f C f× × × = + + +� � , and 0g =  can be derived from 
the non-degenerate condition 0it

iI ≠  and 0if = . From this, we can know that 
the theorem to be proved holds under non-degenerate conditions.  

2.2. Numerical Parallel Method  

The single-example illustration method has expanded a new idea for the ma-
chine proof of geometric theorems, but it has not been realized due to its high 
computational complexity. Zhang et al. [8] proposed a numerical parallel method 
inspired by Wu’s method. 

Suppose the polynomial ( ) [ ]1 2 1 2, , , , , ,n nF x x x x x x∈� � , the highest degree 
of the polynomial F to the variable ix  is less than or equal to ( )1,2, ,id i n= � , 
and ( )1,2, ,iS i n= �  is an arbitrary subset of 1id +  elements in the domain 
 . If the following Equation (6) holds, F is an identity that is always 0:  

( ) ( )* * * * * *
1 2 1 2 1 2, , , , , , , 0n n nx x x S S S F x x x∀ ∈ × × × =� � �          (6) 

The conclusion can be drawn from the above: To verify whether an n-ary po-
lynomial ( )1 2, , , nF x x x�  with the highest degree of each variable of 

( )1,2, ,id i n= �  is an identity that is always 0, only N different numerical ex-
amples need to be verified, where ( ) ( ) ( )1 21 1 1nN d d d= + × + × × +� . 

The general procedure of Wu’s method to prove geometric theorem is as fol-
lows:  
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1) The geometric theorem is algebraized, the known assumptions are partially 
transformed into a polynomial group H, and the theorem’s conclusion is trans-
formed into a polynomial g.  

2) Solve the triangle polynomial set TS reduced by the polynomial set H. Solve 
the conclusion of the polynomial g for the remainder of TS, ( ),R prem g TS= . 
Estimate the maximum degree ( )1,2, ,id i n= �  of the remainder R for the in-
dependent variable.  

3) According to Equation (6), construct the set of instances to be tested and 
substitute these instances into TS one by one, solve the specific values of the 
constraint variables, and then substitute them into g. If 0g = , it indicates that 
the instance is consistent with the theorem; Otherwise, this geometric theorem is 
generally invalid.  

3. Intuitive Geometry Based on Experimental  
Mathematics and Statistical Analysis 

3.1. Data and Statistics  

The algebraic methods such as Wu’s method, single-example illustration me-
thod, and numerical parallel method prove geometric theorems. It is necessary 
to algebraize the geometric theorems. We propose to calculate the numerical value 
of the geometric configuration instance without algebraic processing, so it needs 
to generate a large number of geometric configuration legends. Data can be gen-
erated by changing the free points in the geometric configuration. We use Maple 
to write a dynamic geometry subroutine module similar to the geometric sket-
chpad and super sketchpad to realize the data generation of the geometric con-
figuration. 

The algebraic method proves the geometric theorem, and a polynomial 
( )1 2, , , 0nf x x x =�  expresses the geometric relationship by selecting appropri-

ate coordinates. Our Maple program simulates the intelligent subject to observe 
the geometric configuration intuitively, adding slight disturbances to the data 
and rounding the coordinates of the points. In this way, it is not possible to di-
rectly use the polynomial ( )1 2, , , 0nf x x x =�  to express the geometric rela-
tionship. In analogy to the geometric predicate in the algebraic method, we have 
constructed relevant statistics to express the geometric relationship. 

The construction of statistics satisfies the following three principles:  
1) 0f = , if and only if a particular geometric relationship is strictly valid 

numerically, the degree of approximate validity of a particular geometric rela-
tionship is measured by the degree of deviation from 0.  

2) Statistics should eliminate the influence of dimensions.  
3) For N samples Equation (7) that satisfy a particular geometric relationship, 

satisfy Equation (8)  
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 3 3, , , , , , , 1, 2, ,i i i i i i i i iA u v B u v C u v i N= = = =� �      (7) 

( ) ( ) ( )( )
1

1lim , , , 0
N

i i i

N i
f A B C

N→∞ =

→∑ �                  (8) 
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We briefly explain the construction of statistics corresponding to commonly 
used geometric relations. 

Measure equilateral triangle: use Equation (9) to measure.  

arg max , , ,
3i

f i i A B C = − = ∠ ∠ ∠ 
 

π
                (9) 

Measurement angle bisector: Measured by the difference between the two an-
gles formed by dividing the angle by a straight line. Measure vertical (or parallel):  

the value is measured by the difference between the angle of two vectors and 
2
π   

(or 0), and the outer product of the vector measures the sign. The three points 
are measured in common: the value is measured by the farthest distance among 
the three points, and the directed area of a triangle measures the sign. Measure the 
collinearity of three points: use the smallest angle between the three points in the 
vector. Measure multiple points in a circle: fit a circle ( ) ( )2 2 2

0 0 0x x y y r− + − =  
closest to these N points by the least square method, and then use Equation (10) 
to measure.  

( )0 0arg max 1
i

i
r

f r r r 
= − − 
 

                  (10) 

3.2. Distribution Similarity Geometric Relationship Detection  

In this section, we propose a geometric relationship detection method based on 
distribution similarity. Before that, let me introduce the methods of measuring 
the similarity of distributions and the nonparametric test methods used in this 
paper. 

Considering the similarity of two probability distributions, P and Q, Kull-
back-Leibler divergence (KL divergence) in Equation (11) and Jensen-Shannon 
divergence (JS divergence ) in Equation (12) can be used.  

( ) ( ) ( )
( )

|| log dKL x

p x
D P Q p x x

q x
 

=   
 

∫                (11) 

( ) ( ) ( )1 1|| || || ,
2 2 2JS KL KL

P QD P Q D P M D Q M M +
= + =       (12) 

When the support sets of the two distributions, P and Q, do not overlap or the 
overlap is small, it is difficult for KL divergence and JS divergence to quantify the 
similarity between the distributions. In recent years, the similarity of the Was-
serstein distance Equation (13) metric distribution has been widely used in ma-
chine learning. In this paper, we use Wasserstein distance to measure the simi-
larity of distributions. In Equation (13), ( ),x yγ  satisfies ( ), dd x y y Pγ =∫�  and 

( ), dd x y x Qγ =∫� . In general, it is tough to calculate the Wasserstein distance, 
but when the data dimension 1d = , the p-Wasserstein distance can be expressed 
as Equation (14). Among them, 1F −  and 1G−  are the quantile functions of P 
and Q, respectively.  
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( )
( )

( )
1

,
, inf ,d d

p
p

p P Q
W P Q x y x y

γ
γ

×∈Γ

 = − 
 ∫� �

             (13) 

( ) ( ) ( )1 1 1
0

, d
p

pW P Q F t G t t− −= −∫                  (14) 

In this way, the calculation of p-Wasserstein distance is simplified. In the pre-
vious section, we constructed the statistics of geometric relations and mapped 
the observation data to one dimension to use 1-Wasserstein distance Equation 
(15) to measure similarity.  

( ) ( ) ( )1 1 1
1 0

, dW P Q F t G t t− −= −∫                   (15) 

In statistics, hypothesis testing is often used in statistical inference, inferring 
hypotheses about the population based on empirical data. It can also be used to 
test whether two distributions come from the same distribution. In this paper, 
we used two non-parametric tests. One is the Kolmogorov-Smirnov (K-S) test, 
which uses the K-S statistic Equation (16) or Equation (17) to accept or reject the 
null hypothesis.  

( ) ( )supn n
x

D F x F x= −                      (16) 

( ) ( ), 1, 2,supn m n m
x

D F x F x= −                    (17) 

Another method is referred to as the permutation test based on the 2-Wasserstein 
distance used in Matsui et al. [19] and Schefzik et al. [20]. Considering the Was-
serstein distance when 1d =  and 2p = , it can be decomposed into three parts 
[21] in Equation (18).  

( ) ( ) ( )

( ) ( ) ( )

21 1 1
2 0

2 2
,

, d

2 1p q p q p q p q

W P Q F t G t t

µ µ σ σ σ σ ρ

− −= −

= − + − + −

∫          (18) 

Among them, the mean, variance and shape of the three items on the right are 
respectively distributed. ,p qρ  is the Pearson correlation coefficient of the cor-
responding point in the quantile map of F and G. Equation (18) can be approx-
imated by the empirical estimation formula Equation (19).  

( ) ( ) ( )
21 1 1

2 0
ˆ ˆˆ ˆ, dW P Q F t G t t− −= −∫                (19) 

P̂  and Q̂  are the distribution of the observation data  

( ) ( ), , 1, 2, ,X i Y i i n= � , and ( )1F̂ t−  and ( )1Ĝ t−  are the quantile functions of 
the observation data. The null hypothesis is 0 :H P Q= . Under the condition 
that the null hypothesis is established, the distribution functions P and Q are ob-
tained by random replacement of samples. Calculate the distance ( )* * *

2
ˆˆ ,i i id W P Q=  

according to Equation (18), mark ( )* * * *
,1 ,2 ,, , ,i i i i BD d d d= �  as the distances be-

tween the two distributions after all possible permutations. Then the p-value can 
be calculated according to Equation (20), where ( )2

ˆˆ,id W P Q= . The subset 

( )* * * *
, ,1 ,2 ,, , , ,

si sub i i i B sD d d d B B= <� � ��  of *
iD  can approximate Equation (20) to 

reduce the amount of calculation, and Equation (21) can be obtained.  
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( )*
,1

B
i b ib I d d

p
B

=
≥

=
∑

                      (20) 

( )*
,1

B
i b ib

s
s

I d d
p

B
=

≥
=
∑ �

                     (21) 

The geometric relationship detection method based on distribution similarity 
mainly includes the following steps:  

Step 1: Call the Maple subroutine to generate the corresponding geometric 
configuration legend, and generate a large sample data according to the dynamic 
geometry.  

Step 2: Randomly select a batch of samples, and measure the similarity ac-
cording to Equation (15). Under fixed disturbance δ , construct the standard 
distribution ( ), fPδ  of each geometric relationship to measure the observation 
data distribution ( ),emp fP . Among them, f is a statistic that measures geometric 
relations.  

Step 3: In Step 2, reduce the search range according to the 1-Wasserstein dis-
tance, and perform a significance test on the remaining distributions with high 
similarity. When ( ), fPδ  and ( ),emp fP  approximately obey the normal distribu-
tion, use the T-test and the F-test to test the position and scale parameters of the 
normal distribution, respectively. Otherwise, the permutation test is used for the 
non-parametric test. Use the K-S method to test whether ( ), fPδ  and ( ),emp fP  ap-
proximately obey a normal distribution.  

The complete process can be found in Algorithm 1. 
 

 

3.3. Integral Coefficient Invariant Discovery  

In Section 3.2, we propose a geometric relationship detection method based on 
distribution similarity to explore the deterministic vertical and collinear geome-
tric relationships in geometric configurations. In this section, we explore the in-
teger coefficient relationship between the lengths of geometric quantities. This 
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type of relationship involves uncertain, unknown quantities and uncertain in-
teger coefficients. Since most of the relations between geometric quantities are 
homogeneous relations of first and second order in plane geometry, we study the 
first and second integer coefficient relations between the length of line segments 
in geometric figures. Specifically, there is a vector ( )1 2, , , n

nx x x= ∈x �  , and a 
group of integers 1 2, , , na a a�  that is not all 0 is found to satisfy Equation (24).  

1 1 2 2 0n na x a x a x+ + + =�                       (22) 

At present, the widely used integer relational algorithms are mainly the LLL 
algorithm proposed by Lenstra et al., and the PSLQ algorithm proposed by Bai-
ley et al. In addition, Feng et al. [22] researched a PSLQ algorithm with empirical 
data as input. Our data is observational data, and the accuracy of the data does 
not meet the requirements of these algorithms, so we try to solve it in the fol-
lowing way. 

First, we converted the sample data, and the generated data is uniformly ex-
pressed as an array of points P Equation (23),  

( ) ( ) ( )1 1 1 2 2 2: , , : , , , : ,n n nP p x y p x y p x y =  �             (23) 

where the order of points ip  in P is fixed. There is a line between any two 
points by default, and all the line segment lengths in the geometric figure D Eq-
uation (24) are obtained, where d is distance.  

( ) ( ) ( )1 2 1 3 1, , , , , ,n nD d p p d p p d p p− =  �              (24) 

Extending it to quadratic and the reciprocal of the geometric quantity get 2D  
Equation (25) and 1D−  Equation (26).  

( )( ) ( ) ( ) ( )( )22
2 1 2 1 2 1 3 1, , , , , , ,n nD d p p d p p d p p d p p−

 = ∗  
�      (25) 

( ) ( ) ( )1 1 2 1 3 11 , ,1 , , ,1 ,n nD d p p d p p d p p− − =  �          (26) 

Then, we randomly select no less than m converted samples and write them as 

m m×A  in the form of a matrix, and write the integer coefficient vector to be 
solved as 1m×x , ,m∈ ≠x x 0 , where m is the number of elements in D or 2D . 
If the length of the line segment in the geometric configuration has an integral 
coefficient relationship, then there is such a x  that satisfies =Ax 0 . Due to 
the observation error of the sample data, the problem is transformed into Equa-
tion (27).  

2

2

1arg min , ,m

m
∈ ≠

x
Ax x x 0                  (27) 

Usually, in plane geometry, the integer coefficients between geometric quanti-
ties are relatively small. Due to the existence of such prior knowledge, we add 
regular term constraints based on Equation (27) to obtain Equation (28).  

2

2 2

1arg min , ,m

m
λ+ ∈ ≠

x
Ax x x x 0               (28) 

In addition, in geometric figures, the integer coefficient relationships that ex-
ist are not unique. In Equation (28), integer coefficient relationships involving a 
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small number of geometric quantities will conceal the relationship involving more 
integer coefficients involving geometric quantities. Consider decomposing Equ-
ation (28) into sub-problems Equation (29).  

( )2

2 2

1arg min , 1 1 , m
ix i m

m
λ+ ≥ ≤ ≤ ∈

x
Ax x x             (29) 

Since the elements in D, 1D− , and 2D  are always non-negative, if x  satis-
fies Equation (28), then at least two components of x  are not 0 and are integ-
ers. We let a component ix  of x  add constraints to Equation (28) to get Eq-
uation (29) to search sequentially. 

The solution of Equation (29) is complex. We use the Cplex solver developed 
by IBM to solve this problem. The algorithm steps are shown in Algorithm 2, 
where the err refers to the sum of the difference between the approximate 
integral relationship and the strict integral relationship and the regular term. 
 

 

4. Numerical Experiment  

In this section, we construct observation data of some geometric theorems and 
performed numerical experiments on this basis, including 12 geometric theo-
rems such as Orthocenter theorem, Centroid theorem, Incenter theorem, Morley 
theorem, Euler Line, Five Circles theorem, Nine-point Circle theorem, Ptolemy’s 
theorem, corollary to Ptolemy’s theorem, Candy theorem, Pappus theorem, and 
Desargue theorem. We first carry out numerical experiments under ( )0,2Nδ =  
disturbances and then carry out numerical experiments with different disturbance 
levels of ( )0,1Nδ =  and ( )0,3Nδ = , where ( )0,2N  is normal distribution. 

Take the Orthocenter theorem to illustrate a feasible method of selecting 
thresholds to reduce the search space. Figure 1 is the Wasserstein distance of the 
geometric relationship of the three-point collinear relationship in the Orthocen-
ter theorem. The Wasserstein distance is naturally divided into two categories. 
The right part does not satisfy the three-point collinear relationship, so the data 
of these combinations can be quickly excluded. In the Orthocenter theorem, the 
perpendicular, three-point common point relationship test is the same, and the 
hypothetical test of the result after rapid elimination is performed. The Ortho-
center theorem, the empirical distribution of the perpendicular relationship  
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Figure 1. Wasserstein distance of the three-point collinear relationship in the Ortho-
center theorem. 

 
statistics of the three vertical lines, and the standard distribution of the perpen-
dicular relationship statistics under ( )0,2Nδ =  disturbance are shown in Fig-
ure 2. A further hypothetical test is performed on the perpendicular relationship 
of the three vertical lines and the significance level a = 005. Because the empiri-
cal distribution and the standard distribution are approximately normal distri-
butions, the parameter test is used directly. The results are shown in Table 1. 

Since there are many collinear and perpendicular relationships, it is too ver-
bose to list them all. Here are examples of each type of geometric relationship. 
The results are shown in Table 2, where 1-Wd means 1-Wasseratein distance.  

We take Ptolemy’s theorem, the corollary of Ptolemy’s theorem, and Candy 
theorem as examples to carry out numerical experiments on the invariants of 
integral coefficients. The first is Ptolemy’s theorem, 100 samples are randomly 
selected to solve, and three effective solution vectors Equation (30) are obtained. 
These three solution vectors correspond to the same geometric relationship, 
which is the conclusion of Ptolemy’s theorem. We re-selected 100 samples for 10 
experiments, and the errors obtained were 94.3702, 78.3523, 59.2743, 31.8584, 
76.5764, 81.6923, 43.1427, 69.1004, 118.8367, 76.9757.  

( )
( )
( )

1

2

3

0,0,0,0,0,1,0,0,0, 1,0,0,1,0,0,0,0,0,0,0,0

0,0,0,0,0, 1,0,0,0,1,0,0, 1,0,0,0,0,0,0,0,0

0,0,0,0,0,1,0,0,0, 1,0,0,1,0,0,0,0,0,0,0,0

= −


= − −
 = −

x

x

x

         (30) 

The second is the corollary of Ptolemy’s theorem, where the result of the co-
rollary is in an order relationship with the size of the geometric value, and the 
length of the line segment is sorted before starting the solution. Similarly, 100 
samples are randomly selected and solved to obtain the solution vector Equation 
(31).  
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Figure 2. The distribution of the perpendicular relationship statistics of the vertical lines, 
the lower right corner subfigure is the standard distribution and the rest are the empirical 
distribution. 
 
Table 1. Hypothesis test of perpendicular relationship ( 0.05α = ). 

p-value of T-test p-value of F-test 

0.1097 0.2907 

0.7752 0.3685 

0.6879 0.4565 

 
Table 2. Geometric relationship detection results based on distribution similarity 
( ( )0,2 , 0.05Nδ α= = ). 

name conclusion 1-Wd hypothesis testing type p-value 

Orthocenter three points in common 0.1446 Non-parametric test 0.8879 

Morley form an equilateral triangle 0.0104 Non-parametric test 0.8623 

Five Circles five points round 0.1328 Non-parametric test 0.3572 

Nine-points 
Circle 

nine points round 0.1475 Non-parametric test 0.4741 

Pappus three points collinear 0.0954 Non-parametric test 0.8186 

 

( )
( )
( )
( )
( )
( )

1

2

3

4

5

6

1,1,0,0,0, 1
1,1,0,0,0, 1
0,0,1, 1,0,0
0,0,0,1, 1,0
0,0,0, 1,1,0

1, 1,0,0,0,1

 = −
 = −
 = −
 = −
 = −


= − −

x
x
x
x
x
x

                      (31) 

Finally, in the numerical experiment of Candy theorem, the theorem’s conclu-
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sion could not be obtained. If we expand the conclusion of Candy theorem, we 
get a cubic relationship. It is tough to solve the cubic relationship. The dimen-
sion of the solution vector x  will be increased very largely, and the error will 
also accumulate due to the multiplication of each item. 

The comparative experimental results of the other two groups of different 
disturbances can be seen in Table 3 and Table 4. The error of the integral coef-
ficient invariant relationship in Table 4 is taken from the average of the results 
of 10 experiments, and “−” means that the result of the theorem is not obtained.  

5. Conclusion  

In this paper, we construct statistics that measure approximate geometric rela-
tionships for inaccurate observation data, map the observation data to one di-
mension through statistics. Using the distribution similarity of the Wasserstein 
distance metric, we propose a method for detecting geometric relationship simi-
larities. The method has been successfully applied for checking the following 
geometric relations: 1) three lines intersect at one point; 2) three points lie on 
one line; 3) three points form one equilateral triangle; 4) two lines are parallel or 
perpendicular to each other; 5) one line bisects a given angle; 6) four points form 
a convex quadrilateral; and 7) four or more points lie on the same circle. We 
have also proposed a searching method to find linear or quadratic equations with 
integer coefficients between observed geometric quantities under certain prior 
conditions. The constrained searching method can be used to find linear or qu-
adratic relation with integer coefficients between geometric quantities under a 
priori conditions. Numerical experiments show that the method proposed in this  
 
Table 3. Geometric relationship detection results ( ( )0,1Nδ =  and ( )0,3Nδ = , 

0.05α = ). 

name 
1-Wd 

( ( )0,1Nδ = ) 
1-Wd 

( ( )0,3Nδ = ) 
p-value 

( ( )0,1Nδ = ) 
p-value 

( ( )0,3Nδ = ) 

Orthocenter 0.0946 0.3060 0.6410 0.7904 

Morley 0.0118 0.0161 0.7582 0.3920 

Five Circles 0.0195 0.0293 0.5596 0.6654 

Nine-points 
Circle 

0.1408 0.1846 0.2574 0.1939 

Pappus 0.0392 0.0705 0.7406 0.7195 

 
Table 4. Integral coefficient relation error under different disturbance levels. 

δ  Ptolemy’s theorem 
corollary of Ptolemy’s 

theorem 
Candy theorem 

( )0,1Nδ =  6.9082 1.9009 - 

( )0,2Nδ =  73.0179 1.9890 - 

( )0,3Nδ =  229.6791 2.0426 - 
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paper is adequate, which will help the machine to obtain intuitive analysis capa-
bilities for geometric figures, which have practical significance and certain ap-
plication prospects. Our experiment failed in finding a cubic relation in the Can-
dyTheorem, namely, assume that AB is an arbitrary chord in the circle O, P is a 
point on AB, ,C D  are arbitrary two points on the circle O, ,E F  are intersec-
tion points of the circle O and line ,CP DP , and ,G H  are intersection points 
of the chord AB with ,CF DE , respectively, then 1 1 1 1AP BP GP HP− = − . 
We will try to overcome this difficulty by control error accumulation in numer-
ical analysis. An interesting problem is to train computers to find latent inequa-
lities from configuration data. A very simple and famous example of such kind is 
Euler’s Inequality, which states that the distance d between the incenter r and the 
circumcenter R of a triangle satisfies  

( )2 2 ,d R R r= −  

and therefore 2R r≥ . Since almost interesting theorems that involved equalities 
in Euclidean geometry have been well established in past three thousand years, a 
prospective application of machine intelligence in the future would be auto-
mated discovering of geometric inequalities through analyzing big data of geo-
metric configurations. 
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