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Abstract 
In this paper, we investigate the space of Lp p-harmonic 1-forms on a com-
plete noncompact orientable δ-stable hypersurface Mm that is immersed in 
space form 1m

c
+  with nonnegative BiRic curvature. We prove the nonexis-

tence of Lp p-harmonic 1-forms on Mm. Moreover, we obtain some vanishing 
properties for this class of harmonic 1-forms. 
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1. Introduction 

Let 1: m m
cx M +→  , be a complete noncompact orientable stable hypersurface 

mM  immersed in space form 1m
c
+  with nonnegative BiRic curvature bounded 

from below. Fix a point x M∈  and let { }1, , m ne e +  be local orthogonal frame 
of 1m

c
+  such that { }1, , me e  are tangent fields of mM . Now we will use the 

following convention on the ranges of induces: 1 , , ,i j k m≤ ≤  and  
1m m nα+ ≤ ≤ + . Let A denote the second fundamental form of x, is define by  

( ), , , , ,X xA X Y Y e e X Y T Mα α
α

= ∇ ∀ ∈∑               (1) 

where ∇  is the Levi-Civita connection on the ambient manifold 1m
c
+ . Here, 

we denote ,
iij e jh e eα

α= ∇ , then ( )22
, iji jA hα

α= ∑ ∑  denote the square 

length of the norm of A and the mean curvature vector field H is define by  

1 .ii
i

H H e h e
m

α α
α α

α α
= =∑ ∑∑                     (2) 
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The traceless second fundamental form Φ  is defined by  

( ) ( ), , , , , ,xX Y A X Y X Y H X Y T MΦ = − ∀ ∈              (3) 

where ,  is the metric of Mm. A simple computational shows that  
2 2 2 .A m HΦ = −                        (4) 

In particular, if 0Φ ≡ , then Mm is totally umbilical see ([1] [2] [3] [4]). 
Definition 1.1. [5], Let Mm be an m-dimensional Riemannian manifold, µ , 

ν  be orthonormal tangent vectors at a point mp M∈  and D be the 2-plane gen-
erated by µ  and ν . The bi-Ricci curvature of the plane D is defined by  

( ) ( ) ( ) ( ) ( ), : , , , , , ,BiRic D BiRic Ric Ric Rµ ν µ µ δ ν ν µ ν µ ν= = + −     (5) 

where 0δ > , ( ), , ,R µ ν µ ν  denotes the sectional curvature and ( ),BiRic µ ν , 
denotes the BiRic curvature in the direction ,µ ν . Observe that when 3m = , we 
have that  

( ) ( )2 , , , , .BiRic Rµ ν µ ν µ ν=                    (6) 

In general, BiRic is the sum of the sectional curvatures overall mutually or-
thogonal 2-planes containing at least one of these tangent vectors (see [6]). 

The vanishing theorems for Lp p-harmonic 1-forms on complete noncompact 
submanifolds have been studied extensively by many mathematicians from var-
ious points of views. There are some relations between the geometry and topol-
ogy of a manifold and the space of Lp p-harmonic 1-forms. According to the de-
composition theorem by Hodge-Rham [7], Lp p-harmonic 1-forms completely 
represent the Lp cohomology of the underlying manifold. The nonexistence of 
nontrivial Lp p-harmonic 1-forms on Mm implies that any codimension one cycle 
on Mm must disconnect Mm, also the uniqueness of the non-parabolic ends of the 
underlying manifold. In [8], Li considers hypersurface ( )2 5mM m≤ ≤  with 
constant means curvature and then drives the same vanishing properties. In [9], 
Dung studied immersed hypersurface in a weighted Riemannian manifold with 
weighted BiRici curvature and proved that if such hypersurfaces are weighted 
stable then the space of L2 weighted harmonic 1-forms is trivial. In [10], Tanno 
studied a complete noncompact oriented stable minimal hypersurface immersed 
in a Riemannian manifold with nonnegative BiRic curvature and proved that 
there are no nontrivial L2 harmonic 1-forms on Mm. In [11], Cheng generalized  

Li’s results by assuming that 25
4

mBiRic H−
≥ , where H is the mean curvature  

of Mm, and is normalized to be equal to the second fundamental form. In [5], the 
Author proves that there are no nontrivial L2 harmonic 1-forms on a strongly 
stable hypersurface Mm of a general Riemannian manifold   when the bi-Ricci 
curvature of   is no less than certain lower bound, which gives a topological 
obstruction for the stability of Mm. In [12], Palmer considered L2 harmonic 
forms on a complete oriented stable minimal hypersurface Mm in 1m+ , and 
proved that there exist no nontrivial L2 harmonic 1-forms on Mm. In this direc-
tion, many Authors give us various results for L2 harmonic 1-forms on stable 
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minimal hypersurfaces (see [13] [14]). In [15], the Author proved that the non-
existence of L2 harmonic 1-forms on a complete super stable minimal submani-
fold Mm in hyperbolic space. 

The aim of this work is to investigate some vanishing theorems for Lp p-har- 
monic 1-forms on a complete noncompact orientable stable hypersurface that 
is immersed in space form with nonnegative BiRic curvature bounded from 
below. 

2. Preliminaries 

Let Mm be an m-dimensional Riemannian manifold and the Riemannian struc-
ture under a local coordinate system given by  

2d d d ,i j
ijs g x x= ⊗                       (7) 

where g is the Riemannian metric. We shall make use of the following conven-
tions about indices:  

1 , , , ,i j k m= =                        (8) 

and shall agree that repeated indices are summed over their ranges. Denote ix
∂
∂

 

by i∂ . The Riemannian curvature tensor ijklR , the Ricci curvature tensor ijRic  

and scalar curvature R  are defined by (see [16] [17])  

( ) [ ],, ,X Y Y X X YR X Y Z Z Z Z= ∇ ∇ −∇ ∇ −∇              (9) 

where ∇  denotes the Levi-Civita connection on mM  and  

( )
1 ,

, , , , .pq ij
ijkl i j l k ij ipjq ij

k i j n
R R Ric g R R g Ric

≤ ≤

= ∂ ∂ ∂ ∂ = =∑ ∑     (10) 

The Weyl conformal curvature tensor ijklW  and Einstein tensor ijA  are de-
fined respectively by  

( )

( )( ) ( )

1
2

1 ,
1 2

ijkl ijkl jk il jl ik il jk

ik jl il jk

W R Ric g Ric g Ric g
m

R g g g g
m m

= − − −
−

+ −
− −

          (11) 

and  

1
ij ij ijA Ric g R

m
= −                        (12) 

By direct computations, we obtain  

2 2 21 ,A Ric R
m

= −                       (13) 

( )( )
2 2 2 24 2 .

2 1 2
W R Ric R

m m m
= − +

− − −
            (14) 

Now we define a new tensor ijklB  of type (0,4) as follows:  

( ) ( ) ( )13 2 .
1ijkl ijkl ijkl ik jl il jkB m R m W R g g g g

m
= − − − + −

−
      (15) 
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It is clear that ijklB  has all the symmetries of the curvature tensor ijklR  and 
the Weyl curvature ijklW .  

.ijkl jikl ijlk jilk klijB B B B B= − = − = =                   (16) 

0.ijkl iklj iljkB B B= + =                       (17) 

By direct computations, the BiRici curvature of the plane generated by i∂ , 

j∂   

( )2 2

1 1 2 .ijij ii jj ii jj ij ij ijij
ii jj iji j

B R g g R R g R
g g g

= + − −
−∂ ∧ ∂

      (18) 

So BiRic behaves like a “sectional curvature” of the tensor ijklB .  

.ijkl ik jl jl ik il jk jk il ijklB R g R g R g R g R= + − − −              (19) 

From (19), we obtain  

( )2 2 2 24 1 .B R m Ric R= + − +                 (20) 

And  

( )
( ) ( ) ( )

( )

2 2
2 22 3 2 2 3

.
1 1ijkl ik jl il jk

m R m
B g g g g B R

m m m m
− −

− − = −
− −

        (21) 

Combining (13), (14) and (20), we obtain  

( ) ( )
( )

2 2
2 2 2 24 3 2 2 3

.
2 1

m m
B W A R

m m m
− −

= + +
− −

            (22) 

From (21) and (22), we obtain  

( )
( ) ( ) ( )2 2

2 22 3 4 3
.

1 2ijkl ik jl il jk

m R m
B g g g g W A

m m m
− −

− − = +
− −

       (23) 

When the BiRic curvatures of all 2 planes are the same at a point, by the ar-
gument of polarization, we have  

( ).ijkl ik jl il jkB c g g g g= −                     (24) 

We get 
( )

( )
2 3

1
m R

c
m m

−
=

−
. Therefore, 0W A= =  by (24) and the Riemannian 

curvature is constant. 

3. The Estimation of the BiRic Curvature 

Let 1m m
cM +→   be a complete noncompact orientable stable hypersurface 

mM  immersed in space form 1m
c
+ . We shall make use of the following con-

ventions about indices:  

1 , , , , 1 , .i j k m m m nα β≤ ≤ + ≤ ≤ +  

Denote by ∇ , R , Ric  and BiRic  the Levi-Civita connection, sectional 
curvature, Ric curvature and BiRic curvature of 1m

c
+  respectively. 

The Gauss equation is  
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( ).ijkl ijkl ik jl il jkR R h h h hα α α α

α
= + −∑                   (25) 

we have  

( ) .klkl kk ll klkl ikik ilil klkl
i

B Ric Ric R R R R= + − = + −∑           (26) 

By the Gauss Equation (25), we have  

( ) ( ) ( ) ( )2, , , , , , .i i i
i i

Ric X X R X e X e h X X H h e X= + −∑ ∑       (27) 

Lemma 3.2. [9] Let ( ) , 1

m
ij i j

h
=

 be a symmetric matrix m m× , 3m ≥ . 

And let 1
m

iiiH h
=

= ∑  and ( )22
, 1

m
iji jS A h

=
= = ∑  then  

( ) ( )

( ) ( ) ( )( ) ( ){ }

2

2
2 2

2

, ,

2 1 2 1 1 .

i
i

h X X H h X e

X
m H m H m mS H m m S

n

−

≥ − − − − − − −

∑
    (28) 

Assume that 0X ≠ . By the definition of the BiRic in Equation (5), we obtain  

( ) ( ) ( )( ) 2, , , , , .i i
i

Ric X X R X e X e S H S Xδ ϕ≥ − +∑           (29) 

Let us first assume that 0X ≠  everywhere. By the definition, we have  

( ) ( ) 2, , , , , .i i
i

XR X e X e BiRic N Ric N N X
X

δ
  

= −      
∑          (30) 

Combining (29) with (30), we obtain  

( ) ( ) ( )( ) 2, , , , ,XRic X X BiRic N H S Ric N N S X
X

ϕ δ
   ≥ − − +      

    (31) 

where  

( ) ( ) ( ) ( )( ){ }2 2
2

1 1, 2 1 2 1 .mH S S m H m H m mS H
m m

ϕ δ− = − − − − − − − 
 

 (32) 

From the Bochner formula [18], we have  

( )( )2 22 , .Ricω ω ω ω∆ = ∇ +                   (33) 

Since  

( )22 2 .ω ω ω ω∆ = ∆ + ∇                   (34) 

Combining (33) with (34), we get  

( ) 2 22 1, .
1

Ric
m

ω ω ω ω ω ω ω∆ − = ∇ − ∇ ≥ ∇
−

         (35) 

Inparticular, we know  

( ) ( ) ( )( ) 2, , , , .XRic BiRic N H S Ric N N S
X

ω ω ϕ δ ω
  

≥ − − +      
  (36) 

We set ( ),q Ric N N S= + , thus  
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( ) ( )( ) 2, , , .XRic BiRic N q H S
X

ω ω δ ϕ ω
  

≥ − +      
        (37) 

4. The Structure of δ-Stable Hypersurfaces in m
c 1+  

In this section, we assume that 1m
c
+  is a complete noncompact oriented space 

form and Mm is a complete noncompact oriented stable hypersurface of 1m
c
+ . 

Adapt the same notations as in the previous section and the second fundamental 
form can be written as , ij i ji jh h ω ω= ⊗∑ . We assume that the mean curvature 
vector is in the same direction as in 1me + . We have  

1 0.ii
i

H h
m

= ≥∑                        (38) 

Definition 4.1. [19], Let 1: m mx M +→  , 3m ≥ , be a complete noncompact 
hypersurface immersed in a Riemannian manifold 1m+ . Then the first eigen-
value of the Laplacian of M is defined by  

( ) 22
1 ,

M M
Mλ ϕ ϕ≤ ∇∫ ∫                     (39) 

for all smooth function ( )0C Mϕ ∞∈ . 
Definition 4.2. [11], Let Mm be a complete noncompact manifold and let 

0H ≠ , Mm is said to be strongly stable if  

( ) ( )( )( ) ( )2 2
0, d 0, ,

M
I Ric N N S v C Mϕ ϕ ϕ ϕ ∞= ∇ − + ≥ ∀ ∈∫      (40) 

where 0C∞  is the smooth functions and dv  is the volume form. 
Definition 4.3. [11], For some number 0 < 1δ ≤ , Mm is δ-stable if  

( ) ( )( )( ) ( )2 2
0, d 0, ,

M
I Ric N N S v C Mϕ ϕ δ ϕ ϕ ∞= ∇ − + ≥ ∀ ∈∫      (41) 

where S is the square norm of the second fundamental form of Mm. Obviously, 
given 1 2δ δ> , δ1-stable implies δ2-stable. So, that Mm is stable implies that Mm is 
δ-stable. 

Mm is said to be δ-stable or weakly δ-stable if ( ) 0I ϕ ≥ , 0 Cϕ ∞∀ ∈  satisfying  

0.
M
ϕ =∫                            (42) 

Remark. When 0H = , i.e. Mm is minimal, then the immersion is called stable 
if it is in the strong sense, which is different from the stability of the hypersur-
faces with constant mean curvature as said above. 

5. The Vanishing Theorems 

In this section, we presented some vanishing theorems as follows. 
Theorem 5.1. Let 1: m m

cx M +→  , 3m ≥ , be a complete noncompact orient-
able δ-stable minimal hypersurface mM  immersed in space form 1m

c
+  with 

nonnegative BiRic curvature bounded from below. If  

( ) 1, .mBiRic Y N S
m

δ− ≥ − 
 

 

https://doi.org/10.4236/apm.2021.115029


B. Musa, J. C. Liu 
 

 

DOI: 10.4236/apm.2021.115029 433 Advances in Pure Mathematics 
 

Then there is no nontrivial Lp p-harmonic 1-form on Mm. 
Proof: Using (35) and (37), we obtain  

( )( )2 21 , , .
1

XBiRic N q H S
m X

ω ω ω δ ϕ ω
  

∆ ≥ ∇ + − +    −   
     (43) 

Since  
2 2 21p p p pp p

p
ω ω ω ω ω ω−−

∆ = ∇ + ∆              (44) 

for any 0p > . Combining (43) with (44), we get  

( )( )

2 22 2

2

1
1

, ,

p p p p

p

p p
p m

Xp BiRic N q S
X

H

ω ω ω ω ω

δ ϕ ω

−

 
 

−
∆ ≥ ∇ + ∇

−

 
+ − +   

 
 



         (45) 

Let ( )0C Mη ∞∈  be a smooth function with compact supported. Multiplying 
both sides of (45) by 2η  and integrating over M, we obtain  

( )

( )( )

2
2 2

22

21
1

, ,

p p p
fM M

p

M

m
p m

Xp BiRic N H S
X

q

η ω ω η ω

δ ϕ η ω

 −
∆ ≥ − ∇  − 

 
+ − +  

 

 
  
 

∫ ∫

∫
   (46) 

Applying the divergence theorem, we obtain  

( )

2

2
2 2

2
2

2 ,

2 , .

p p
fM

p p p p p

M M M

p p p

M M

div

η ω ω

η ω ω η ω η ω η ω

η ω η ω η ω

∆

= ∇ − ∇ − ∇ ∇

= − ∇ − ∇ ∇

∫

∫ ∫ ∫

∫ ∫

     (47) 

Combining (46) with (47), we get  

( ) ( )
( )

( )( )

2
2

22

2 1 2
1

, ,

2 , .

p

M

p

M

p p

M

p m m
p m

Xp BiRic N q H
X

S

η ω

δ ϕ η ω

η ω η ω

 − − −
∇  − 

  
≤ − − +      

− ∇ ∇

∫

∫

∫

          (48) 

( ) ( )
( )

( )

2
2

22

22

2 1 2
1

, ,

2 , .

p

M

p

M

p p p

M M

p m m
p m

Xp BiRic N S

p q

X
H

η ω

ϕ η ω

η ω η ω δ η ω

  

 − − −
∇  − 

≤ − −

− ∇

      

+



∇

∫

∫

∫ ∫

             (49) 

From definition (4.2), we obtain  
2 2d .

M M
q vϕ ϕ∇ ≥∫ ∫                       (50) 
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Replacing ϕ  by pη ω , we obtain  

( ) 2 22 d .p p

M M
q vη ω η ω∇ ≥∫ ∫                   (51) 

Combining (49) with (51), we obtain  

( ) ( )
( )

( )

( )

2
2

22

2

2 1 2
1

, ,

2 , .

p

M

p

M

p p p

M M

p m m
p m

Xp BiRic N H S
X

p

η ω

ϕ η ω

η ω η ω δ η ω

 − − −
∇  − 

  
≤ − −      

− ∇ ∇ + ∇

∫

∫

∫ ∫

            (52) 

( ) ( )
( )

( )

( )

2
2

22

2 2

2 1 2
1

, ,

2 1 , .

p

M

p

M

p p p

M M

p m m
p

p m

Xp BiRic
X

N H S

p p

δ η ω

ϕ η ω

δ η ω η ω δ η ω

 − − −
+ ∇  − 

  
≤ − −      

− + ∇ ∇ + ∇

∫

∫

∫ ∫

         (53) 

Note that  
2 2 22 12 , ,p p p p

M M M
η ω η ω ε η ω η ω

ε
− ∇ ∇ ≤ ∇ + ∇∫ ∫ ∫        (54) 

for some constant 0ε > .  

( ) ( )
( )

( )

2
2

22

2 2

2 1 2
1

1

, ,

1
.

p

M

p

M

p

M

p m m
p p

p m

Xp BiRic N H S

p

X

p

δ δ ε η ω

ϕ η ω

δ
δ η ω

ε

 − − −
+ − + ∇  − 

  
≤ − −      

 + 
+ + ∇ 
 

∫

∫

∫

          (55) 

Thus  
2 2 2 22 2p p p

M M M
η ω η ω η ω∇ + ≤ ∇∫ ∫ ∫A B C             (56) 

Set  

( ) ( )
( )

2 1 2
1 ,

1
p m m

p p
p m

δ δ ε
− − −

= + − +
−

A  

( ), ,Xp BiRic N
X

H Sϕ
  

= −      
B  

1
.

p
p

δ
δ

ε
+

= +C                        (57) 

Let rB  be a geodesic ball of radius 0r >  on Mm centered at the point p. 
Choose a cut-off function η  satisfying  
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2

2

0 in \ ,
1 in ,

2 in \ .

r

r

r r

M B
B

B B
r

η
η

η

=
 =

∇ ≤

                      (58) 

Let 0 1η≤ ≤ . Using (56) with (58), we obtain  

2

2 2
2 \

4 .
r r r

p p

B B Br
ω ω ∇ ≤  

 ∫ ∫A C                 (59) 

Taking r →∞ , we get 0ω∇ = , and Xω =  is constant. Hence,  

( )22 0, , , .
1

m XBiRic N H S
m X

ω ω ϕ
 

∇ = ∇ = =  −  
        (60) 

By (60) we obtain  

( ) ( )( ), , 0.Ric Ric N N Sω ω δ+ + =                 (61) 

Moreover, since 0ω∇ = , and Xω =  is constant, the Bochner formula 
implies  

( ), 0.Ric X X =                          (62) 

Thus, by (62) we can deduce  

( ), 0.Ric N N S+ =                        (63) 

Therefore, for any unite tangent vector Y, it follows from (31) and (63) that  

( ) ( ) ( )( ) ( )
( ) ( )

, , , ,

, , 0.

Ric Y Y BiRic Y N Ric N N S H S

BiRic Y N H S

δ ϕ

ϕ

≥ − + −

= − ≥
       (64) 

Thus, using (32) with (64) we get  

( )

( ) ( ) ( )( ){ }2 2
2

,

1 1 2 1 2 1 .

BiRic Y N

m S m H m H m mS H
m m

δ− ≥ − − − − − − − 
 

  (65) 

Assume that Mm is a minimal stable hypersurface immersed in space form 
1m

c
+ . Hence 0H = , and this implies  

( ) 1, .mBiRic Y N S
m

δ− ≥ − 
 

                  (66) 

Then there is no nontrivial Lp p-harmonic 1-forms on Mm. Hence we get the 
prove as assumption in theorem. 

Corollary 5.2. Let 1: m m
cx M +→  , 3m ≥ , be a complete noncompact orien-

table δ-stable minimal hypersurface Mm immersed in space form 1m
c
+  with 

nonnegative BiRic curvature bounded from below. If ( ), 0BiRic H Sϕ− ≥  for 
any positive number δ satisfy  

1.m
m

δ −
≤  

Then there is no nontrivial Lp p-harmonic 1-form on Mm. 
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Corollary 5.3. Let 1: m m
cx M +→  , 3m ≥ , be a complete noncompact orien-

table δ-stable hypersurface Mm immersed in space form 1m
c
+ . If  

( ), 0BiRic H Sϕ= = , then one of the following conditions holds 
1) M is minimal and S is totally geodesic. 

2) M is minimal and 1m
m

δ −
= . 

Then there is no nontrivial Lp p-harmonic 1-form on Mm. 
Theorem 5.4. Let 1: m m

cx M +→  , 3m ≥ , be a complete noncompact orient-
able δ-stable minimal hypersurface Mm immersed in space form 1m

c
+  with 

nonnegative BiRic curvature bounded from below. If Mm satisfy  

( )
( )

1

, ,
.

XBiRic N
X

H S
M

ϕ
λ

δ

 
−  

 >  

Then there is no nontrivial Lp p-harmonic 1-form on Mm. 
Proof: From the definition (4.1) and replacing ϕ  by pη ω  we get  

( ) ( ) 222
1 .p p

M M
Mλ η ω η ω≤ ∇∫ ∫                (67) 

Thus,  
22 2 22 2

1 2 , .p p p p p

M M M M
λ η ω η ω η ω η ω η ω≤ ∇ + ∇ + ∇ ∇∫ ∫ ∫ ∫   (68) 

Using Cauchy-Schwartz inequality  
2 2 22 12 , ,p p p p

M M M
s

s
η ω η ω η ω η ω∇ ∇ ≤ ∇ + ∇∫ ∫ ∫      (69) 

where 0s > , using (68) with (69), and multiplying both said by B  we get  

( ) 22 2 22 2

1 1

111
.p p p

M M M

s sη ω η ω η ω
λ λ

 + +  ≤ ∇ + ∇∫ ∫ ∫
BB

B     (70) 

Compining (56) with (70), we get  
2 2 22 .p p

M M
η ω η ω∇ ≤ ∇∫ ∫D E                 (71) 

Set  

( )
1 1

111
, ,

s s
λ λ

 + +  = + = −
BB

D A E C               (72) 

for some constant 0>E   

1

11
0.s

λ

 + 
 = − >

B
E C                     (73) 

Thus,  

( )

1

1, , 1
1

Xp BiRic N H S
sp

p
X

ϕ
δ

δ
ε λ

    − +       +   + >        (74) 
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Choosing ε  and s  small enough, we get  

( )
( )

1

, ,
.

XBiRic N
X

H S
M

ϕ
λ

δ

 
−  

 >                  (75) 

Now we observe that   

( ) ( ) ( ) ( )( )22

2 2

2 12 1
, .

m H m mS Hm HS SH S
m mm m

ϕ
− − −−−

= − + ≤   (76) 

This implies  

, 0.X SBiRic N
mX

 
  =


≥


                      (77) 

Using (58) with (71), we obtain  

2

2 2
2 \

4 .
r r r

p p

B B Br
ω ω ∇ ≤  

 ∫ ∫D E                    (78) 

Taking r →∞ , we get 0ω = . Then there are no nontrivial Lp p-harmonic 
1-forms on Mm. Hence we get the conclusion. 

On the other hand, Dung and Seo [3] proved that  

( ) ( ) ( )( )22

2 2

2 12 11 1 .
2

m H m mS Hm Hm mS S
m m m

− − −−− −
− + ≤  

In fact, in [3], Dung showed that  

( ) ( ) ( )( )

( ) ( )

22

2 2

2
2

2
2

2 12 11

21 1 1 1
2 2 1 1

1 .
2

m H m mS Hm Hm S
m m m

m mS Hm mS m H
m m

m S

− − −−−
− +

 − −− −  = − − − +
 − + 

−
≤

      (79) 

This implies that ( ) 1,
2

mH S Sϕ δ
 −

≤ −  
 

. Therefore, Theorem 5.4 implies 

the following conclusion. 
Corollary 5.5. Let 1: m m

cx M +→  , 3m ≥ , be a complete noncompact δ-sta- 
ble minimal hypersurface immersed in space form 1m

c
+  with nonnegative Bi-

Ric curvature bounded from below. Suppose that one of the following conditions 
holds. Then there is no nontrivial Lp p-harmonic 1-form on Mm. 

1) If , 0X SBiRic N
X m

 
= =  

 
, then S is totally geodesic. 

2) If 1 0
2

mBiRic Sδ
 −

= − =  
 

, then either 1
2

mδ −
=  or S is totally geo-

desic. 
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6. Conclusion 

We investigated the space of Lp p-harmonic 1-forms on a complete noncompact 
orientable δ-stable hypersurfaces that are immersed in space form with nonneg-
ative BiRic curvature. We proved the nonexistence of Lp p-harmonic 1-forms on 
Mm. Moreover, we obtained some vanishing properties for this class of harmonic 
1-forms. 
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