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Abstract

Tensor complementarity problem (TCP) is a special kind of nonlinear com-
plementarity problem (NCP). In this paper, we introduce a new class of
structure tensor and give some examples. By transforming the TCP to the
system of nonsmooth equations, we develop a semismooth Newton method
for the tensor complementarity problem. We prove the monotone conver-
gence theorem for the proposed method under proper conditions.
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1. Introduction

A Tensor is a multi-arrray. We denote by Af(m,n) the space of all m-order

and n-dimension tensors. .7/ €. /‘(m, n) is in the form of

f/:[ailizmim] &, €R,1<i,iy, i, <.

m

If the entries a

ii,i, Are invariant under any permutation of their indices,

then .~/ is called a symmetric tensor. We denote by .2/~ (m,n)c./ (m,n)
the space of all symmetric tensors in . /‘(m, n).

In this paper, we discuss the following tensor complementarity problem (sim-
plified as TCP (A, p, q) ): finding a point X € R" such that

F(x)=-/x"*-q>0, x>p, (x-p) F(x)=0, (1.1)

where ¢,peR", p>0 and ./ e~/ (mn). ./X"" is an n-dimensional

vector, whose ith component is given by [1]

n
X X ...X

("/Xmil)i = Z &;,...i., %i, X,

i i =

Im
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/X™? isan nxn matrix, whose ith row and jth column is given by
2 n
M= _
(' /X )i' - z aiiis“'im Xi3 Xi4 ”'Xim'
L S |

It is obvious that VF (x)=(m-1).~/x"2.

Tensor complementarity problem has many applications, such as nonlinear
compressed sensing, communications, DNA microarrays, n-person noncoopera-
tive game and so on, see for example [2] [3]. TCP has received much attention
and has taken good progress in recent years [4]-[13], such as the structure of the
solution set, the global uniqueness solvability and the error bound and so on.
Bai, Huang and Wang [4] proved that the P-tensor complementarity problem
has a nonempty compact solution set. What’s more, they showed the global un-
iqueness solvability property for the TCP with a strong P-tensor. Che, Qi and
Wei [5] showed that when the tensor is a positive definite or strictly copositive
tensor, the TCP has a nonempty compact solution set. On the other hand, how-
ever, the study in the related numerical methods is very few. Luo, Qi and Xiu [3]
proposed an iterative method to find the sparsest solutions to the Z-tensor com-
plementarity problem with a non-positive constant term. Xu, Li and Xie [14]
concerned with the tensor complementarity problem with a positive semi-definite
Z-tensor. Under the assumption that the problem has a solution at which the
strict complementarity holds, they showed that the problem is equivalent to a
system of lower dimensional tensor equations. In this paper, we present a se-
mismooth Newton method for TCP, under the assumption that F (X) is a
concave function, we establish the monotone convergence theorem for the pro-
posed method. Here F(X) isconcave means F (X) isa concave function,
i=12--,n.

For convenience of presentation, we introduce some concepts and notations
which will be used throughout the paper. We denote [n] = {1, 2, n} . Let

| =[n] with [I|=r.Denote by ( o Xm-1)| the r-dimensional subvector of
/X" and its elements are ( o Xm’l)i , iel.Similarly, we denote @, asthe

r-dimensional subvector of gand its elementsare ¢, iel.

2. Semismooth Newton Method and Its Convergence

We first introduce a new class of structure tensor, called A-like tensor.
Definition 2.1. A tensor .~/ €./ (m,n) is called an M-like tensor, if for
vxeR", /X" isan M-matrix.
Remark 2.1. As an example, it is easy to verify that the even-order diagonal ten-
sors with all positive diagonal entries are AM-like tensors. We give a non-diagonal
Mlike tensor.

Example 2.1. Let .7/ be a 4th-order 2-dimensional tensor with elements

A1y = Ay = 2,
A1y = 8pppy = _37/2!
A1 =8y = _1/3-
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It is easy to verify .~/ is an M-like tensor over R?. In the following, with-
out specification, we always suppose .7/ is an M-like tensor.
Let ¢:R®>—> R be the well-known Fischer-Burmeister function defined by

d(uv)=pu+v—u’ +v=:. (2.1)

It is easy to see that TCP (1.1) can be transformed to the system of nonsmooth

equations:

Hl(X) ¢(X1—p1,F1(X))
2| P (2| d0emPe R ()| (22)

H.0) | g0, porF (0)

where F (x)= (.’/Xm_1 —q)i .
Let 0gH (X k)) denote the B-subdifferential of H at x*). V* e H (X(k)) ,

if it satisfies

HH(x(k))—H(x*)—Vk(x(k)—x*) :O(“x(k)—x* 2) as “x(k)—x* —0.
Forany V €0gzH (X) can be expressed as follows.
V =diag (@, )(m—1)(-x"*)+diag(b,), (2.3)
where
(a -1)" +(b -1)" <1, i=1,2,--,n, (2.4)

It is easy to see that &, >0,b, >0 and ai2 +bi2 >0 for i=1,2,---,n.
Now, we present semismooth Newton method for TCP (1.1).
Algorithm 2.1 (Semismooth Newton Method)

Step 0. Choose ¢ >0 and initial point x© Let k=0.

Step 1. If HH (x(") )H <&, stop.

Step 2. Choose V* e 0 H (X(k)) , calculate d* satisfying the following linear

equations
Vid =—H(xY). (2.5)

Step 3. Calculate
X = %) g, (2.6)

Let k:=k+1 and goto Step 1.

Theorem 2.2. [15] Let X" be the solution of (1). Then the sequence {X(k)}
generated by (6) is Q-quadratically convergent to X" if x© s sufficiently
closeto x*.

In the following, we will prove the sequence {X(k) } monotonically converges
to the solution of (1). First, we give some useful lemmas.

Lemma 2.3. [16] Let AeR™ be an M-matrix and B> A satisfy b, <0
for i# j.Then Bisan M-matrix and
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0<B?t<Al

Furthermore, any principle submatrix of A is again an AM-matrix.
By the definition of V; the ith row V, of Vcan be presented by

(m—l)ai(.'/xm’z)ieriei, a >0 and b >0,
Vi =(m-1)(-x"?) a =1 and b =0,

e, a8, =0 and b =1,

where ( X2 )i is the ith row of ./ x™? and g isthe ith row of the nxn
identity matrix. It is easy to verify V = KB, where K =diag(k;) with

a, a =0,
‘-

1/(61"), a =0

and
B,
B=|
3
with

B = {(m_l)("/xmz )i +(bi/ai)ei’ a #0,

a;€, a, =0,

i

where a; is the jth diagonal element of (m—1)./x"*. Noting that
B>(m-1).~/x"? with the off-diagonal element being nonpositive, we have B
is an M-matrix and 0<B™ < ((m —1)./x"? )_1 by Lemma 2.3. This together
with K'being a positive diagonal matrix, we obtain the following lemma.

Lemma 2.4. Let the matrix "be defined by (2.3), then V'is an M-matrix.

Define the set Dby

D={x>p|H(x)<0}.
As palways belongs to D, Dis not empty.
Lemma 2.5. Let X* be the solution of (1.1). Then X* e D and
X" =X, VxeD.

Proof. Since X* is the solution of (1.1), we have X*>p and H (X*) =0.
This implies that X" e D.

For any XxeD, we have x>p and H(x)<0. Associated to x, we define
two disjoint index sets as follows:

l,={ilx =p} and 1,:={i|x >p}.

This together with the fact X" > p implies X >x for all iel, . Since

H (X)SO,we have

F,(X)<0<F_(x).

I2

Noting that .~/ is an M-like tensor, by Theorem 4 in [17], we have F(x)
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is a strong 7-monotone function. Hence by Lemma 2.2 in [18], we immediately
have that X* < x. This completes the proof.
Lemma 2.6. Let x© € D. Then the sequence {X(k)} generated by (2.6) is

contained in D and satisfies

Proof. We prove the conclusion by induction. For simplicity, we denote x®)

(k+1

and x** by x and y respectively. Suppose Xe D, we only need to verify

X<y and yeD.Since V' >0, by (2.5) we have
d=-V7'H(x)=0.

Hence, we get

y=x+d>x>p. 2.7)

Now, we prove H(y)<0. Associated to x, we define four disjoint index sets

as follows:
J={ilx =p.F(x)>0}, J,={ilx>p,F(x)=0},
J={ilx=p,F(x)=0}, J,={ilx=p,F(x)<0}.
Then by (2.1), (2.2), (2.4), we have
H(x)=0, a=0, b=1 ifieJ,
H (x)=0, a=1 b=0  ified,
H,(x)=0, a >0, b >0, if ied,,
H,(x)<0, a>1 be(01], ified,.
If iel;,by(2.3),(25),(2.8) weget d,=—H;(x)=0 and

y; =% +d, =X = p, . This together with (2.2), (2.1) implies H,(y)<0.
If ied,, y,=x+d; =X >p;.Since F(x) is concave, by (2.3), (2.5), (2.8)

(2.8)

<

again, we have
F(y)=F (x+d)=F ()+ [ VF (x+t(y=x) (y-x)dt
<F (x)+ [ VR (x)" (y-x)dt=0.
Hence, H,(y)<0.
If ieJ;,by(2.5)and (2.3), we obtain
8, (m-1)(-~/x"2) d+bd, =—H, (x) =0.
where a >0 and b >0. Hence, we have

a (m-1)(~/x"2)"d = -bd, <0.

If a>0,then F(y)<F (X)+(m—1)(."/xm_2 )IT d <0, which implies
H,(y)<0.

If 3, =0, then by (2.4) we have b =1, and then d, =0. Since .°/ 1is an
M-like tensor, (.A/Xm’2 )ij <0 and d; >0 for j=#i,wehave
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F(y)<F (X)+(m—1)(f/xm’2)iT d :(m—l);(.”/xm’z)ij d; <0.

Hence, H,(y)<0.

Similarly, if i€ J,, by simple calculations,

ai(m—l)(.”/xm‘z):dS—Hi(x) and ai=1—Fi(x)/ x> +F?(x),

and hence

me2\T \/Xi2+Fi2(x)_Xi_Fi(x)
m-1)(.~/x d< .
(D), 1=, (x)/¥ + R (x)

Therefore, we have

Hence,
H, (y)SO, Viel,.

The above argument has shown H(y)<0. From (2.7), we have y>Xx and
y € D. The proof is completed.

Noting that the sequence {Vk} is uniformly bounded, by Lemmas 2.5 and
2.6 and Theorem 2.2, it is easy to obtain the following theorem.

Theorem 2.7. Let x° e D and { X(k)} be the sequence generated by (2.6).
Then we have forall k>0

Moreover, the sequence {X(k)} converges to X" (-quadratically.

3. Conclusion

We have introduced a new kind of structure tensor and discussed the numerical
algorithm for TCP. By transforming the TCP to the system of nonsmooth equa-
tions, we have presented a semismooth Newton method for TCP. At each itera-
tion, only linear equations need to be solved. The sequence generated by the al-
gorithm is monotonically convergent to the solution of the TCP under proper
conditions. This method can be regarded as a kind of Newton-iteration method.
There are still some interesting future works that need to be done. For example,
we can extend Algorithm 2.1 for other structure TCP and discuss its conver-

gence.
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