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Abstract 
In this work, we will derive a numerical method of sixth order in space and 
second order in time for solving 3-coupled nonlinear Schrödinger equations. 
The numerical method is unconditionally stable. We use the exact single so-
liton solution and the conserved quantities to check the accuracy and the effi-
ciency of the proposed schemes. Also, we study the interaction dynamics of 
two solitons. It is found that both elastic and inelastic collisions can take place 
under suitable parametric conditions. 
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1. Introduction 

In recent years the concept of soliton has been receiving considerable attention 
in optical communications. Since soliton is capable of propagating over long 
distances without change of shape and velocity, it has been found that the soliton 
propagating through optical fiber arrays is governed by a set of equations related 
to the coupled nonlinear Schrödinger equation [1] [2] [3]. 

2

12 0, 1,2, ,N
jt jxx p jpiq q q q j N

=
 + + = =  ∑ 

            (1) 

where 2 1i = − , jq  is the envelope or the amplitude of the jth wave packets. 
Equation (1) reduces to the standard nonlinear Schrödinger equation for 

1N = , to Manakov integrable system for 2N = , and recently for this case the 
exact two soliton solution obtained and novel shape changing in elastic collision 
property has been brought out. The system for 3N =  is of physical interest, in 
optical communication, and in biophysics, this system can be used to study the 
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lunching and propagation of solitons along the three spines of an alpha-helix 
shape changing in protein [1] [2] [4] [5]. In this work, we are going to derive a 
numerical solution for the three coupled nonlinear Schrödinger equations 

( )22 2
1 1 1 2 3 12 0,t xxiq q q q q q+ + + + =                (2) 

( )22 2
2 2 1 2 3 22 0,t xxiq q q q q q+ + + + =                (3) 

( )22 2
3 3 1 2 3 32 0,t xxiq q q q q q+ + + + =                (4) 

with initial conditions 

( ) ( ),0 , , 1, 2,3.j j L Rq x g x x x x j= ≤ ≤ =               (5) 

and the homogenous boundary conditions 

( ) ( ), , 0, 1, 2,3.j L j Rq x t q x t j= = =                 (6) 

The exact soliton solution of the 3-coupled nonlinear Schrödinger equation 
[2] [3], is given by 

( ) 1, e sech , 1, 2,3.
2

Ii
j j R R

Rq x t A k jλ λ = + = 
 

             (7) 

( ) ( ) ( )2 2 21 2 32
1 1 1Δ ,α α α= + +

 
( ) ( ) ( )1 2 3
1 1 1

1 2 2, ,
Δ Δ Δ

A A Aα α α
= = =

 

( )
( )

2

1 12*
1 1

e , , 1, 2,3.R k x ik t j
k k

λ= = + =
+

∆

 
where ( )

1 1,, 1, 2,3j k jα =  are four arbitrary complex parameters. Further 12 Ik  
gives the amplitude of the jth mode and 12 Ik  the soliton velocity. 

The proposed system is of physical interest, in optical communication, and in 
biophysics. This system can be used to study the lunching and propagation of 
solitons along the three spines of an alpha-helix shape changing in protein [1] 
[2] [4] [5]. In this work we are going to derive a numerical method of sixth order 
in space and second order in time for the three coupled nonlinear Schrödinger 
Equations (2)-(4). 

Many numerical methods for solving the coupled nonlinear Schrödinger equ-
ation are derived in the last two decades. Finite difference and finite element 
methods are used to solve this system by Ismail [3] [6] [7] [8] [9] [10] [11]. A 
conservative compact finite difference schemes are given in [12] [13]. Xing Lü 
studied the bright soliton collisions with shape change by intensity for the coupled 
Sasa-Satsuma system in the optical fiber communications in [4] and [5]. To avoid 
complex computations, we assume 

1 1 2

2 3 4

3 5 6

q u iu
q u iu
q u iu

= +
= +

= +
                          (8) 
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where ( ), , 1, 2, ,6iu x t i = 
 are real functions, by separating the real and imagi-

nary parts, and we write, 

( ) ( ) ( ) ( )1 1 2 1I,0 , ,0Ru x g x u x g x= =  
( ) ( ) ( ) ( )3 2 4 2I,0 , ,0Ru x g x u x g x= =  
( ) ( ) ( ) ( )5 3 6 3I,0 , ,0Ru x g x u x g x= =  

and we have assumed 

( ) ( ) ( )1 1 1 2 2 2 3 3 3, andR I R I R Ig x g ig g x g ig g x g ig= + = + = +  
where and 1, 2,3,jR jIg g j =  are real functions. 
by substituting (8) into(2)-(4), the following system is obtained: 

2
1 2

12 2
u u u

tx
ω

∂ ∂
= −

∂∂
                       (9) 

2
2 1

22 2
u u u

tx
ω

∂ ∂
= − −

∂∂
                     (10) 

2
3 4

32 2
u u u

tx
ω

∂ ∂
= −

∂∂
                      (11) 

2
34

42 2
uu u
tx

ω
∂∂

= − −
∂∂

                     (12) 

2
5 6

52 2
u u

u
tx

ω
∂ ∂

= −
∂∂

                      (13) 

2
6 5

62 2
u u

u
tx

ω
∂ ∂

= − −
∂∂

                     (14) 

where 

( ) ( ) ( )2 2 2 2 2 2
1 2 3 4 5 6u u u u u uω = + + + + +                (15) 

the system (2)-(4) can be written in a matrix-vector form as 

( )
2

2 2 0A F
t x

∂ ∂
+ + =

∂ ∂
u u u u                    (16) 

where 

( )

1

2

3

4

6

6

0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0
, , .

0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

u
u
u

A F
u
u
u

ω
ω

ω
ω

ω
ω

     
     − −     
     

= = =     
− −     

     
     

− −         

u u

 
Proposition 1: The three coupled nonlinear Schrödinger equations have the 

conserved quantities 

( ) ( )2 2
1 1 1, d ,0 dR R

L L

x x

x x
I q x t x q x x= = =∫ ∫             (17) 

( ) ( )2 2
2 2 2, d ,0 dR R

L L

x x

x x
I q x t x q x x= = =∫ ∫             (18) 
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( ) ( )2 2
3 3 3, d ,0 dR R

L L

x x

x x
I q x t x q x x= = =∫ ∫             (19) 

( )

( )

22 2
2 22 2 2 231 2

4 1 2 1 3 2 3

44 4
1 2 3

1 2
2

d

R

L

x

x

qq qI q q q q q q
x x x

q q q x

 ∂∂ ∂= − − − + + +
∂ ∂ ∂


+ + + 



∫
 (20) 

To prove the first conserved quantity (17), we have 

( ) ( ) ( )
2

1 2
22

, ,
, 0

u x t u x t
u x t

t x
ω

∂ ∂
+ + =

∂ ∂
               (21) 

( ) ( ) ( )
2

2 1
12

, ,
, 0

u x t u x t
u x t

t x
ω

∂ ∂
− − =

∂ ∂
               (22) 

by multiplying (21) by ( )1 ,u x t  and (22) by ( )2 ,u x t , and by adding the re-
sulting equations to obtain 

( ) ( ) ( ) ( ) ( ) ( )2 12 2
1 2 1 2

, ,
, , , , 0

u x t u x t
u x t u x t u x t u x t

t x x x
∂ ∂ ∂ ∂ + + − =  ∂ ∂ ∂ ∂ 

  (23) 

Integrating Equation (23) with respect to x from xL to xR and using the va-
nishing boundary conditions to obtain 

( ) ( )2 2
1 2, , d 0R

L

x

x
u x t u x t x

t
∂  + = ∂ ∫  

and this is the proof of the first conserved quantity (17). The other two con-
served quantities (18) and (19) can be proved in the same way. 

The exact values of the conserved quantities using the exact soliton solution 
(7) are given by the following formula 

( )

( ) ( ) ( )

2

1 1

2 2 21 2 3
1 1 1

2
, 1, 2,3

j
R

j

k
I j

α

α α α
= =
 + +  

              (24) 

The paper is organized as follows. In Section 2, we derived the high order 
compact finite difference scheme. The Fixed-Point scheme is derived in Section 
3 to solve the block nonlinear penta-diagonal systems obtained in Section 2. In 
Section 4, we study the stability of our scheme. The numerical results of the de-
rived method are reported in Section 6. Finally, we draw some conclusions in 
Section 7. 

The scheme in (33)-(38) is of sixth order accuracy in space and second order 
in time, and it is unconditionally stable using von-Neumann stability analysis. A 
nonlinear block tridiagonal system must be solved at each time step. Fixed point 
method is used to do this job, and this will be discussed later. 

2. High Order Compact Finite Difference Scheme 

The compact finite difference is a numerical method to compute finite difference 
approximations. Such approximations tend to be more accurate for their stencil 
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size (i.e. their compactness) and, for hyperbolic problems, have favorable disper-
sive error and dissipative error properties when compared to explicit schemes 
[14]. In order to develop a numerical method for solving the system given in 
(2)-(4), the region [ ] [ ]0L RR x x x t= < < × >  will be covered with a rectangular 
mesh of points with coordinates, 

, 0,1, 2, ,m Lx x mh m M= + =   
, 0,1, 2,nt t nk n= = =   

where h and k are the space and time increments respectively. We denote the 
exact and numerical solution at the grid point ( ),m nx t  by ,

n
i mu  and 1

,
n
i mU + , re-

spectively. To evaluate the second derivatives at interior nodes, we assume that 
they can be obtained by solving the following penta-diagonal system [14] 

ˆ

2 2 2
2 2

, ,2 2 2 2 2
1 1

4
i i i

x i m x i m
m m m

u u u b aU U
x x x h h

α α δ δ
− +

     ∂ ∂ ∂
+ + = +     

∂ ∂ ∂     
     (25) 

where 
2

, , 1 , , 12x i m i m i m i mU U U Uδ + −= − +  
2

, , 2ˆ , , 22 ,i m i m i mx i mU U U Uδ + −= − +  
and 1,2, ,6i =  . 

Now, by Taylor Expansion, we can have the truncation error as the following 

( )
2 4

2
2 4

6
4

6

1 12 1
3 12

1 2 1
12 45 360

i i

m m

i

m

u u
R b a b a h

x x

u
b a h

x

α α

α

   ∂ ∂ ≡ + − − + − −    ∂ ∂    

 ∂ + − −    ∂     

if we solve ( )2 1 0b aα + − − =  and 
1 1 0
3 12

b aα − − = 
 

, we get 

( ) ( )4 11 and 10 1
3 3

a bα α= − = −
 

so, the truncation error becomes 

( ) ( )
6

4 6
6

4 11 2
6!

i

m

u
R h O h

x
α

 ∂
≡ − − + 

∂   

if 0α =  then 
4
3

a =  and 
1
3

b = −  which gives the explicit fourth-order 

scheme for the second derivative. Furthermore, when 2
11

α = , the scheme be-

comes sixth order accurate, in this case 12
11

a =  and 3
11

b = . By substituting 

these on formula (25) and after simplification, the space derivative of sixth order 
can be given implicitly as 

[ ] [ ]1 1 2 1 1 22

1 32 11 2 16 34 16
11 44m m m m m m m mu u u u u u u u

h− + − − + +′′ ′′+ + = + − + +    (26) 
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Imposing the approximation given on the spatial direction, by using (9)-(14) 
into Equation (26), we get 

( )

( )

1 , 1 1 , 1 , 1

2, 2 2, 1 2, 2, 1 2, 22

2, 1 2, 2, 1

2 11 2

3 16 34 16
4
2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = − + − + + 

− + +

        (27) 

( )

( )

2 , 1 2 , 2 , 1

1, 2 1, 1 1, 1, 1 1, 22

1, 1 1, 1, 1

2 11 2

3 16 34 16
4

2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = + − + + 

+ + +

          (28) 

( )

( )

3 , 1 3 , 3 , 1

4, 2 4, 1 4, 4, 1 4, 22

4, 1 4, 4, 1

2 11 2

3 16 34 16
4
2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = − + − + + 

− + +

        (29) 

( )

( )

4 , 1 4 , 4 , 1

3, 2 3, 1 3, 3, 1 3, 22

3, 1 3, 3, 1

2 11 2

3 16 34 16
4

2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = + − + + 

+ + +

         (30) 

( )

( )

5 , 1 5 , 5 , 1

6, 2 6, 1 6, 6, 1 6, 22

6, 1 6, 6, 1

2 11 2

3 16 34 16
4
2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = − + − + + 

− + +

        (31) 

( )

( )

6 , 1 6 , 6 , 1

5, 2 5, 1 5, 5, 1 5, 22

5, 1 5, 5, 1

2 11 2

3 16 34 16
4

2 11 2

t m t m t m

m m m m m

m m m

u u u

u u u u u
h

u u uω ω ω

− +

− − + +

− +

+ +

 = + − + + 

+ + +

         (32) 

The Crank-Nicolson discretization on the temporal direction of the 3-CNLS 
equation to obtain the numerical scheme 

( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
1, 1 1, 1, 1 2, 2 2, 1 2, 2, 1 2, 2

1, 1 1, 1, 1 2, 2 2, 1 2, 2, 1 2, 2

1 1 1
2, 1 2, 2, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + + + − + +

= + + − + − + +

− + +

 (33) 

( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
2, 1 2, 2, 1 1, 2 1, 1 1, 1, 1 1, 2

2, 1 2, 2, 1 1, 2 1, 1 1, 1, 1 1, 2

1 1 1
1, 1 1, 1, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + − + − + +

= + + + + − + +

+ + +

 (34) 

( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
3, 1 3, 3, 1 4, 2 4, 1 4, 4, 1 4, 2

3, 1 3, 3, 1 4, 2 4, 1 4, 4, 1 4, 2

1 1 1
4, 1 4, 4, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + + + − + +

= + + − + − + +

− + +

 (35) 
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( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
4, 1 4, 4, 1 3, 2 3, 1 3, 3, 1 3, 2

4, 1 4, 4, 1 3, 2 3, 1 3, 3, 1 3, 2

1 1 1
3, 1 3, 3, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + − + − + +

= + + + + − + +

+ + +

 (36) 

( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
5, 1 5, 5, 1 6, 2 6, 1 6, 6, 1 6, 2

5, 1 5, 5, 1 6, 2 6, 1 6, 6, 1 6, 2

1 1 1
6, 1 6, 6, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + + + − + +

= + + − + − + +

− + +

 (37) 

( ) ( )
( ) ( )
( )

1 1 1 1 1 1 1 1
6, 1 6, 6, 1 5, 2 5, 1 5, 5, 1 5, 2

6, 1 6, 6, 1 5, 2 5, 1 5, 5, 1 5, 2

1 1 1
5, 1 5, 5, 1

2 11 2 16 34 16

2 11 2 16 34 16

2 11 2

n n n n n n n n
m m m m m m m m

n n n n n n n n
m m m m m m m m

n n n
m m m

U U U p U U U U U

U U U p U U U U U

F F F

+ + + + + + + +
− + − − + +

− + − − + +

+ + +
− +

+ + − + − + +

= + + + + − + +

+ + +

 (38) 

where 

( )( )2 231 1 1
, , , , ,1

, 1, 2,3
2

n n n n n
j m i m i m j m j mi

kF q q U U j+ + +
=

= + + =∑         (39) 

and 2

3
8

kp
h

= . 

Equations (33)-(38) form a block pentadiagonal system as the following 

,1 ,1

,2 ,2

,3 ,3

, 3 , 3

, 2 , 2

, 1 , 1

0 0
0

0
0

0
0

0
0 0

i i

i i

i i

i M i M

i M i M

i M i M

U GC D E
U GB C D E
U GA B C D E

U GA B C D E
U GA B C D
U GA B C

− −

− −

− −

    
    
    
    
    
     =    
    
    
    
    
        

  





 
      

 
      





  


       (40) 

where 1, 2,3i = . 
1 1 1

1, 3, 5,
1, 2, 3,1 1 1

2, 4, 6,

1, 3, 5,
1, 2, 3,

2, 4, 6,

, ,

0
0

2 16
16 2

11 34
34 11

, ,

n n n
m m m

m m mn n n
m m m

m m m
m m m

m m m

U U U
U U U

U U U

p
A E

p

p
B D

p

p
C

p

f f f
G G G

f f f

+ + +

+ + +

     
= = =     
          
− 

= = 
 

− 
= = 
 
 

=  − 
     

= = =     
       

( )
( )

( )

1, 1, 1 1, 1, 1

2, 2 2, 1 2, 2, 1 2, 2

1 1 1
2, 1 2, 2, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +
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( )
( )

( )

2, 2, 1 2, 2, 1

1, 2 1, 1 1, 1, 1 1, 2

1 1 1
1, 1 1, 1, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +

 

( )
( )

( )

3, 3, 1 3, 3, 1

4, 2 4, 1 4, 4, 1 4, 2

1 1 1
4, 1 4, 4, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +

 

( )
( )

( )

4, 4, 1 4, 4, 1

3, 2 3, 1 3, 3, 1 3, 2

1 1 1
3, 1 3, 3, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +

 

( )
( )

( )

5, 5, 1 5, 5, 1

6, 2 6, 1 6, 6, 1 6, 2

1 1 1
6, 1 6, 6, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +

 

( )
( )

( )

6, 6, 1 6, 6, 1

5, 2 5, 1 5, 5, 1 5, 2

1 1 1
5, 1 5, 5, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n n n
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +

 

The present method is of second order accuracy in time and sixth order in 
space, it is unconditionally stable, see Ismail [11]. The resulting system is a block 
nonlinear penta-diagonal system which can be solved by fixed point method and 
this will be discussed next. 

3. Fixed Point Method 

Since the compact finite difference scheme (40) is nonlinear and implicit, an 
iterative method is needed to solve it. The fixed point for solving the resulting 
system can be given in a matrix vector form as follows [6] [14]. 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
,1 ,1

1
,2 ,2

1
,3 ,3

1
, 3 , 3

1
, 2 , 2

1
, 1

0 0

0

0

0

0

0

0

0 0

s s
i i

s s
i i

s s
i i

s s
i M i M

s s
i M i M

s
i M

C D E U G

B C D E U G

A B C D E U G

A B C D E U G

A B C D U G

A B C U

+

+

+

+
− −

+
− −

+
−

  
  
  
  
  
  
   =  
  
  
  
  
  
     

  





      
 

      
 





  

( )
, 1
s

i MG −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (41) 

where 1, 2,3i =  then 
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( )
( )

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

1, 1 1, 1 1, 1
1, 3, 5,1 1 1

1, 2, 3,1, 1 1, 1 1, 1
2, 4, 6,

1, 3, 5,
1, 2, 3,

2, 4, 6,

, ,

, ,

n s n s n s
m m ms s s

m m mn s n s n s
m m m

s s s
m m ms

m m ms s s
m m m

U U U
U U U

U U U

f f f
G G G

f f f

+ + + + + +
+ + +

+ + + + + +

     
     = = =
          

     
     = = =
            

( )
( )

( ) ( ) ( )( )

1, 1, 1 1, 1, 1

2, 2 2, 1 2, 2, 1 2, 2

1, 1, 1,
2, 1 2, 2, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +
 

( )
( )

( ) ( ) ( )( )

2, 2, 1 2, 2, 1

1, 2 1, 1 1, 1, 1 1, 2

1, 1, 1,
1, 1 1, 1, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +
 

( )
( )

( ) ( ) ( )( )

3, 3, 1 3, 3, 1

4, 2 4, 1 4, 4, 1 4, 2

1, 1, 1,
4, 1 4, 4, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +
 

( )
( )

( ) ( ) ( )( )

4, 4, 1 4, 4, 1

3, 2 3, 1 3, 3, 1 3, 2

1, 1, 1,
3, 1 3, 3, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +
 

( )
( )

( ) ( ) ( )( )

5, 5, 1 5, 5, 1

6, 2 6, 1 6, 6, 1 6, 2

1, 1, 1,
6, 1 6, 6, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

− + − + +

− + +
 

( )
( )

( ) ( ) ( )( )

6, 6, 1 6, 6, 1

5, 2 5, 1 5, 5, 1 5, 2

1, 1, 1,
5, 1 5, 5, 1

2 11 2

16 34 16

2 11 2

n n n
m m m m

n n n n n
m m m m m

n s n s n s
m m m

f U U U

p U U U U U

F F F

− +

− − + +

+ + +
− +

= + +

+ + − + +

+ + +
 

( ) ( ) ( )( )
3 2 21, 1, 1,

, , , ,
1

, 1, 2,3
2

n s n s n sn n
j m i i m j m j m

L

kF q q U U j+ + +

=

 = + + = 
 ∑

 
where the superscript s denotes the sth iterate for solving the nonlinear system of 
equations for each iteration. The system in (41) can be solved by Crout’s me-
thod, where we need only one LU factorization for the block-pentadiagonal ma-
trix at the beginning of the calculation, and the solutions of lower and upper 
pentadiagonal block systems at each iteration are required only. The initial ite-
rate ( )1, 0n

m
+U  can be chosen as ( )1, 0n n

m m
+ =U U . We apply the iterative schemes till 

the following condition 
( ) ( )1, 1 1, 610n s n s

m m
+ + + −

∞
− ≤U U

 
is satisfied. 
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4. Stability 

To study the stability of the scheme (2)-(4) we use the Von Neumann method, 
we do the following. 

As we know Von Neumann method can be applied only for linear schemes, so 
we must study the linear version of (2)-(4) by freezing the nonlinear terms by 
assuming 

3 2

1
constant

2 j
j

k m qω
=

= =∑
 

where 1,2,3j = . 
The linear version of imposing the approximation given on the spatial direc-

tion (26) and the Crank-Nicolson discretization on the temporal direction of the 
Equations (2)-(4) can be displayed as follows: 

( ) ( )
( )

( ) ( )

1 1 1 1 1 1
, 1 , , 1 2 , 1 , , 1

1 1 1 1 1
1 , 2 , 1 , , 1 , 2

, 1 , , 1 2 , 1 , , 1

1 , 2 , 1

2 11 2 2 11 2

16 34 16

2 11 2 2 11 2

16

n n n n n n
j m j m j m j m j m j m

n n n n n
j m j m j m j m j m

n n n n n n
j m j m j m j m j m j m

n n
j m j m

i q q q p q q q

p q q q q q

i q q q p q q q

p q q

ω

ω

+ + + + + +
− + − +

+ + + + +
− − + +

− + − +

− −

+ + + + +

+ + − + +

= + + − + +

− + −( ), , 1 , 234 16n n n
j m j m j mq q q+ ++ +

     (42) 

where 1 2

3
8

kp p
h

= =  and 2 2
kp = . 

We assume 

, e e , 1, 2,3.n nk i mh
j mq jα β= =                    (43) 

By using (43) we can deduce the following relations 

2
, 1 , , 12 4sin e

2
n n n n i mh
j m j m j m j

hq q q q ββ
− +

 − + = −  
 

            (44) 

By substituting (43) and (44) into (42), we can get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

1 1
2

1
1

2

1

11 4cos e 11 4cos e

2 cos 16cos 17 e

11 4cos e 11 4cos

2 cos 16cos 17 e

n k n k

n k

nk nk

nk

i h p h

p h h

i h p h e

p h h

α α

α

α α

α

β ω β

β β

β ω β

β β

+ +

+

+ + +      

+ + −  
+ − +      

− + −  

=
       (45) 

We can write equations (45) as 

( ) ( )2 1 1 2 1 2 1 1 2 12 e 2kp p i p p iαω γ γ γ ω γ γ γ+ + = − + +    
where 

( )1 11 4cos hγ β= +  and ( ) ( )2 12 cos 16cos 17p h hγ β β= + −    

then 

( )
( )

2 1 1 2 1

2 1 1 2 1

2
e

2
k p p i

p p i
α ω γ γ γ

ω γ γ γ
− + +

=
+ +  

( )
( )

2 2
2 2 1 1 2 1

2 2
2 1 1 2 1

2
e 1

2
k p p

p p
α ω γ γ γ

ω γ γ γ

+ +
= =

+ +
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So, the necessary condition for stability using Von Neumann is the absolute 
maximum of e kα  is less than or equal 1 and it is clearly satisfied then the scheme 
is unconditionally stable according to Von Neumann stability analysis. 

5. Numerical Results 

In this section we conduct some typical numerical examples to verify the accu-
racy, conservation laws, computational efficiency and some physical interaction 
phenomena described by 3-coupled nonlinear Schrödinger equations. 

5.1. Single Soliton 

In this test, we choose the initial condition as 

( ) ( )1 1 1,0 exp sech
2j j R I R
Rq x A k ik x k x = + 

 
             (46) 

( )

( )
( )

2 3 221
12* 1

1 1

, e , , 1, 2,3
j

jR
j

j
A j

k k

α
α

=

∆
= = ∆ = =

∆ +
∑

 

The following set of parameters are used 

( ) ( ) ( )1 2 3
1 1 1 1

0.1, 0.001, 30, 0,2, ,10

1 , 0.8 0.8 , 0.5 0.5 , 1 0.5
lh k x t

i i i k iα α α

= = = − =

= + = + = + = +



 

The conserved quantities and the error for our scheme are displayed in Table 
1. We have noticed that the method is conserved the conserved quantities exact-
ly and highly accurate results are obtained. The profile of 1 2,q q  and 3q  at 
different times are displayed in Figure 1, Figure 2 and Figure 3 respectively. 

To test the convergent rate in space and time of the proposed schemes. We 
define the L∞  error norm by 

( ) 1 1, 1,maxn n n
m m M m mL h E u U∞ ≤ ≤= = −

 

where 1.
n

mu  and 1,
n

mU  are respectively the exact and the numerical solution at 
the grid point ( ),m nx t . In this experiment, we take 10T = . 

The convergent rate “order” is calculated by the formula 
 

Table 1. Errors & conserved quantities of single solitons. 

T L∞  2L
 ( )1 1I q

 ( )2 2I q
 ( )3 3I q

 4I
 

0 0.000000 0.000000 1.058201 0.677249 0.264550 0.086748 

2 0.193006E−06 0.218633E−06 1.058201 0.677249 0.264550 0.086748 

4 0.570301E−06 0.645860E−06 1.058201 0.677249 0.264550 0.086748 

6 0.114841E−05 0.132794E−05 1.058201 0.677249 0.264550 0.086748 

8 0.170164E−05 0.187596E−05 1.058201 0.677249 0.264550 0.086748 

10 0.153080E−05 0.180273E−05 1.058201 0.677249 0.264550 0.086748 
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Figure 1. Simulation of single soliton 
2

1q . 

 

 

Figure 2. Simulation of single soliton 
2

2q . 

 

 

Figure 3. Simulation of single soliton 
2

3q . 
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order (rate of convergent in space) 

( )
( )

1

2

1

2

ln

ln

L h
L h

h
h

∞

∞

 
  
 =
 
 
 

 

order (rate of convergent in time) 

( )
( )

1

2

1

2

ln

ln

L k
L k

k
k

∞

∞

 
  
 =
 
 
 

 

To calculate the convergent rate in space, we take the time step k sufficiently 
small and the error from temporal truncation is relatively small 0.0001k = . 
From Table 2, we can easily see that the rate of convergent is 6 as we claim in 
this work. 

To check the temporal convergent rate, we fix the spatial step h small enough 
so that the truncation from space is negligible such as 0.01h = . The results are 
given in Table 3 which indicate that the order is 2 as we claim in the text. 

To improve the temporal accuracy of the proposed method, we use Richard-
son Extrapolation on the computed solution to eliminate the lower-order term 
in the truncation error. 

Since our method applied to the scheme is in the form ( ) ( )2 6O k O h+ , we 
use 

( ) ( )4 2
3

n n
m mn

m

U k U k
u

−
≈                     (47) 

to eliminate the term ( )2O k , which makes the final solution fourth-order ac-
curate in time dimension. Although the extrapolation requires two times as  

 
Table 2. Rate of convergence of single solitons ( 0.0001k = ). 

Time ( )( )0.4ER h
∞

=
 

( )( )0.2ER h
∞

=
 

p 

2 0.221724E−3 0.316528E−5 6.130 

4 0.500641E−3 0.710431E−5 6.139 

6 0.961949E−3 0.135720E−4 6.147 

8 0.126746E−2 0.182073E−4 6.121 

10 0.135511E−2 0.195383E−4 6.116 

 
Table 3. Rate of convergence of single solitons ( 0.01h = ). 

Time ( )0.2ER k
∞

=
 ( )0.1ER k

∞
=

 p 

0.2 0.156290E−2 0.390335E−3 2.001 

0.4 0.326661E−2 0.836156E−3 1.966 

0.6 0.509636E−2 0.128218E−2 1.991 

0.8 0.681457E−2 0.171404E−2 1.991 

1 0.821445E−2 0.208123E−2 1.981 
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much computation as the original scheme plus the application of the formula 
(47). By using the parameters 

( ) ( ) ( )
1

1 2 3
1 1 1

0.1, 0.002,0.001, 1 0.5 ,

1 , 0.8 0.8 , 0.5 0.5

h k k i

i i iα α α

= = = +

= + = + = +  
with the extrapolation formula (47), we obtain results which are displayed in 
Table 4. 

5.2. Interaction of Two Solitons 

To study the interaction of two solitons with different parameters, we choose the 
initial condition as a sum of two single solitons of the form 

( ) ( ) ( ) ( ) ( )1 2, 0 ,0 ,0 , 1, 2,3.j j jq x t q x q x j= = + =             (48) 

where 

( ) ( ) ( ) ( )( ) ( )1 1
1 1 0 1 0,0 exp sech

2j j R I R
Rq x A k ik x x k x x = + + + 

   

( ) ( ) ( ) ( )( ) ( )2 2
1 1 0 1 0,0 exp sech

2j j R I R
Rq x A k ik x x k x x = − − + 

   
For all examples in the case of interaction, we choose the set of parameters 

00.1, 0.01, 50, 50, 25L Rh k x x x= = = − = =  

1 21 0.8 , 1 0.4k i k i= + = −  
together with different values of ( ) ( ){ }1 2, , 1, 2,3j j jα α =  for each test. We will 
study the dynamics of the following cases. 

5.2.1. Case 1 
In this test we choose the set of parameters 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3
1 1 1 2 2 25, 3.5, 1, 10, 7, 2.α α α α α α= = = = = =  

For this test, we have noticed that 
( )

( )

( )

( )

( )

( )

1 2 3
1 1 1

1 2 3
2 2 2

α α α
α α α

= =
 

which gives us elastic interaction. The interaction scenario is displayed in Figure 
4. 

 
Table 4. Richardson extrapolation using L∞  norm. 

T 0.002k =  0.001k =  RE 

2 0.184703E−05 0.473693E−06 0.1929E−06 

4 0.363803E−05 0.930450E−06 0.3385E−06 

6 0.338088E−05 0.822299E−06 0.2485E−06 

8 0.346026E−05 0.872163E−06 0.2183E−06 

10 0.790741E−05 0.203701E−05 0.7636E−06 
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5.2.2. Case 2 
In this test we choose the set of parameters 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3
1 1 1 2 2 25, 3.5, 1, 2, 2.5, 0.4α α α α α α= = = = = =  

For this test, we have noticed that the formula 
( )

( )

( )

( )

( )

( )

1 2 3
1 1 1

1 2 3
2 2 2

α α α
α α α

≠ ≠
 

is unsatisfied which gives us inelastic interaction and it is clear in Figure 5. 
For all cases, the conserved quantities given in Table 5, we have noticed that 

our method is conserved the conserved quantities exactly. 
 

 
Figure 4. Elastic interaction of two solitons. 

 

 
Figure 5. Inelastic interaction of two solitons. 
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Table 5. Conserved quantities of interaction of two solitons. 

T ( )1 1I q
 ( )2 2I q

 ( )3 3I q
 4I

 

0 2.075681 1.841291 0.083027 −0.123487 

2 2.075681 1.841291 0.083027 −0.123487 

4 2.075681 1.841291 0.083027 −0.123487 

6 2.075681 1.841291 0.083027 −0.123487 

8 2.075681 1.841291 0.083027 −0.123487 

10 2.075681 1.841291 0.083027 −0.123487 

6. Conclusion 

In this work, we have derived a highly accurate finite difference scheme for 
solving the 3-coupled nonlinear Schrödinger equation. The scheme is of sixth 
order in space and second order in time, it is unconditionally stable. A fixed 
point is used to solve the nonlinear block penta-diagonal system obtained. Single 
soliton solution and the conserved quantities are used to highlight the robust-
ness of the method. The interaction of two solitons is discussed in detail for dif-
ferent parameters to produce elastic and inelastic interactions. This behavior is 
agreeing with [1] [2] [3] with the highest accuracy. The derived method can be 
used to solve similar nonlinear problems. 
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