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Abstract 
As a new dimension reduction method, the two-dimensional principal com-
ponent (2DPCA) can be well applied in face recognition, but it is susceptible 
to outliers. Therefore, this paper proposes a new 2DPCA algorithm based on 
angel-2DPCA. To reduce the reconstruction error and maximize the variance 
simultaneously, we choose F norm as the measure and propose the Fp-2DPCA 
algorithm. Considering that the image has two dimensions, we offer the 
Fp-2DPCA algorithm based on bilateral. Experiments show that, compared 
with other algorithms, the Fp-2DPCA algorithm has a better dimensionality 
reduction effect and better robustness to outliers. 
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1. Introduction 

Principal component analysis (PCA) [1] is extensively used in dimension reduc-
tion, pattern recognition, and computer vision; however, when a principal com-
ponent analysis is applied to face image representation and recognition. It is ne-
cessary to transform each image in the form of a matrix into a one-dimensional 
vector column by column or row by row, which can’t make full use of the spatial 
structure information of image pixels and their neighborhood. The concatenation 
of a two-dimensional matrix into a one-dimensional vector often leads to a too 
high vector space dimension. Because the covariance matrix size is too large and 
training samples are relatively small, it is difficult to calculate the covariance ma-
trix accurately. To solve this problem, Yang et al. [2] proposed a two-dimensional 
principal component analysis method based on two-dimensional images rather than 
a one-dimensional vector. It has successfully been applied in computer vision and 
signal processing [3] [4]. 
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PCA only works in the image’s row direction for dimensionality reduction, 
and the compression ratio is meager. To solve this problem, some methods 
based on bilateral compression are proposed. Kong et al. [5] presented 2DPCA, 
which constructs two subspaces to encode the row vector and the column vector 
of the image matrix, respectively. Zhang et al. [6] proposed a (2D) 2DPCA with 
both row and column directions. Xu et al. [7] constructed two projection trans-
formation matrices by defining two image covariance matrices. Kim et al. [8] 
proposed calculating the linear transformation matrix using two covariance ma-
trices in 2DPCA. 

PCA and 2DPCA are both based on the sum of the least square F-norm, 
equivalent to the least square loss or the square L2 norm. As we all know, the 
least direct loss is not robust because the edge data points can easily make the 
solution deviate from the expected answer. Compared with square F-norm, the 
L1 norm is more vital to outliers. Kwak [9] used the L1 model to measure va-
riance and developed PCA-l1. Then, to better use the spatial structure embedded 
in the image, 2DPCA-l1 is proposed [10]. One disadvantage of the L1 norm is 
that it has no rotation invariance, emphasizing learning algorithms [11]. Rota-
tion invariance helps avoid performance degradation. On this basis, due to the 
rotation invariance of F-norm, some methods based on F-norm are proposed. 
For the F-norm-based form, minimizing the reconstruction error is not equal to 
maximizing the variance. Therefore, the above way does not consider the rela-
tionship between reconstruction error and disagreement. 

In recent years, to overcome this defect, Gao et al. [12] proposed an an-
gel-2DPCA, which takes F-norm as the distance measure and obtains the optim-
al projection matrix by minimizing the ratio of reconstruction error variance. 
Angel-2DPCA [12] [13] is not only robust to outliers but also rotation invariant. 
The experimental results of reference show that angel-2DPCA has high efficiency. 
However, this method only reduces the column direction dimension and limits the 
degree of F norm to 1. In this case, we extend angel-2DPCA to Fp-2DPCA. We 
can prove that the new algorithm can converge to the optimal local solution. Be-
sides, we propose a bilateral Fp-2DPCA to solve the problem of bilateral dimen-
sionality reduction. 

The rest of this paper is organized as follows. The second section introduces 
the theory of 2DPCA, including 2DPCA and 2DPCA-L1. The third section pro-
poses the Fp-2DPCA algorithm and the bilateral Fp-2DPCA algorithm and 
proves the algorithm’s convergence. We also discuss the rotation invariance of 
the algorithm. In Section 4, we perform numerical experiments to evaluate the 
performance of our algorithm. Finally, the conclusion of this paper is given in 
the fifth section. 

2. Related Theories of 2DPCA 
2.1. 2DPCA 

2DPCA is the result of expanding to two-dimensional space based on PCA. Still, 
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its basic idea is the same as PCA: to maximize the variance sum of the original 
data projected to the main components to maintaining the maximum amount of 
information of the original data as far as possible [14]. For image data, let

{ }, 1, 2, ,m n
iA A R i M×= ∈ =   be the training data set, where M is the number 

of training samples, m and n are the dimensions of a row and column pixels, re-
spectively, and the feature matrix [ ]1 2, , , n d

dW w w w ×= ∈  , where d is the 
number of main projection vectors after transformation, then the objective func-
tion of 2DPCA is expressed as follows: 

( )
T T

T 2T T

1 1
max max

k k

M M

i i i FW W I W W Ii i
tr W A AW AW

= == =

  = 
 
∑ ∑            (1) 

( )tr   is the trace of the matrix; if there is a n dimensional matrix A, then the 
trace of the matrix A is equal to the sum of the eigenvalues of A, that is, the sum 
of the main diagonal elements of the matrix A. Since the F-norm is used in (1), 
the following equation is satisfied: 

2 2 2

1 1 1

M M M

i i iF F F
i i i

E AW A
= = =

+ =∑ ∑ ∑                  (2) 

So (1) is equivalent to: 

T

2

1
min

M

i FW W I i
E

= =
∑                           (3) 

where d
k

dI R ×∈  is a k dimensional identity matrix, 
F⋅  is the F norm of the 

matrix, T
i i iE A AWW= − . Objective functions Equation (1) and Equation (3) 

show that 2DPCA mainly considers the reconstruction error or variance contri-
bution of image data. 

As shown in the objective function Equation (1), the square F norm is used as 
the distance measure. Still, the square F norm is not robust because the edge’s 
observation value will quickly make the solution deviate from the expected an-
swer. There is 2DPCA based on L1 norm to solve this problem, which can reduce 
this influence to a certain extent. 

2.2. 2DPCA-L1 

The objective function of 2DPCA-L1 is as follows： 

T 1

2

1
max

M

i LW W I i
AW

= =
∑                         (4) 

1L⋅  is the L1 norm of the matrix. Compared with the traditional 2DPCA, 
2DPCA-L1 is more robust to the data with outliers, but it also has some defects. 
Firstly, it does not satisfy the rotation invariance: 

1 1 11 1 1

M M M

i i iL L L
i i i

E AW A
= = =

+ ≠∑ ∑ ∑                  (5) 

Obviously, the solution of Equation (4) is not the solution of Equation (6); 
that is to say, it does not consider the reconstruction error. As a result, their ro-
bustness has not been greatly improved. It still thinks that every image has the 
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same contribution. The outliers or noises make the samples have sparse distribu-
tion, which also affects the robustness of the model. Secondly, it is very difficult 
to solve the objective function Equation (6). In order to solve these problems, a 
new robust 2DPCA model is proposed in the third part. 

T 1

2

1
min

M

i LW W I i
E

= =
∑                        (6) 

3. Fp-2DPCA 
3.1. Objective Function 

It can be seen from the above analysis that the square F norm exaggerates the 
role of some data (mainly noise) in solving the 2DPCA model. This reduces the 
robustness of 2DPCA to noise. Therefore, to overcome the limitations of the 
above methods, we should adopt an appropriate distance measure, which can 
reduce the influence of outliers in the objective function and characterize the 
geometric structure of the objective function. F norm and square f norms have 
the same position in characterizing data dispersion and geometric design in the 
normative sense. The main difference between them is that, compared with the 
square F norm, the f norm can make the influence difference of different data 
smaller. Therefore, if F-norm is selected as the distance measure in 2DPCA, it 
will have the following two advantages: 

1) It can capture the geometry structure well and has rotation invariance. 
2) It can reduce the role of outliers in solving the optimal projection direction. 
3) It helps to enhance the part of some adjacent data points with different la-

bels. 
Since the relationship between variance and reconstruction error is nonlinear, 

the maximum variation does not guarantee the minimum reconstruction error. 
According to the above analysis, we propose a new dimension reduction method, 
namely Fp-2DPCA. Fp-2DPCA uses F-norm to represent the low dimensional 
representation and reconstruction errors and integrates them into the criterion 
function. Specifically, our goal is to find the projection direction, minimize the 
angle between the projection directions, and reconstruct each data’s error. The 
objective function of Fp-2DPCA is as follows. 

( )
T

1
min 0 2

|k

p
M

i F
pW W I i i F

E
p

AW= =

< <∑                    (7) 

3.2. Algorithm 
3.2.1. Unilateral Fp-2DPCA 
Through the simple algebraic operation, we can get the following results: 

( ) ( ) ( )

2 2
22 T

1 1 1 1

T T T T

1 1

p p
M M M M

i i iF F F
i i i i ip p F Fi i i ii iF F

M M

i i i i i
i i

E E E
E d A AWW d

AW AW

tr A A W A AW d tr G tr W GW

−

= = = =

= =

= = ∗ = − ∗

= − ∗ = −

∑ ∑ ∑ ∑

∑ ∑
   (8) 
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Among them, 

( )
22 T

T

1
,

pp
M i ii F F

i i i i p p
i i iF F

A AWWE
G tr A A d d

AW AW

−−

=

−
= = =∑          (9) 

According to Equation (8) and Equation (9), the objective function Equation 
(7) becomes: 

( ) ( )Ttr G tr W GW−                       (10) 

Several theorems are introduced before solving the objective function Equa-
tion (10). 

Lemma 1 Cauchy Schwarz inequality: for all sequences of real numbers ia  
and ib , we have 

2
2 2

1 1 1

n n n

i i i i
i i i

a b a b
= = =

    ≥    
    
∑ ∑ ∑                   (11) 

Equality holds if and only if i ia kb=  for a non-zero constant k ∈ . 
Theorem 1 For matrices P, Q of the same order as any two, we can get:  

( )T
F Ftr P Q P Q≤                      (12) 

If and only if P lQ= , the equal sign holds, and l  is any real number. 
Proof of Theorem 1: 
According to the definition of matrix trace, we can get the following results 

( ) ( )( ) ( )TTtr P Q vec P vec Q=                   (13) 

According to Cauchy Schwarz inequality (Equation (11)), there is a 

( )( ) ( ) ( ) ( )
( ) ( )

T

2 2

F F

vec P vec Q vec P vec Q

vec P vec Q

≤

=
             (14) 

( )vec ⋅  is the vectorization of the matrix; that is, let ( )1 2, , ,m n nA a a a× = ⋅⋅ ⋅  de-
fine the vector (Equation (15)) of 1mn× , which is the vector that arranges the 
matrix A in column vectors. 

( )

1

2

n

a
a

vec A

a

 
 
 =
 
 
 



                      (15) 

Therefore, according to Equation (13) and Equation (14), it can be obtained that: 

( )T
F Ftr P Q P Q≤                    (16) 

And if and only if P lQ=  ( l  is any real number), the equal sign holds. 
Theorem 2 Let the SVD of m nH R ×∈  be decomposed into TH U V= Σ , 

where T T
kU U V V I= = , k kR ×Σ∈  is a nonsingular diagonal matrix, and its di-

agonal element ( )1, ,j j kλ = 
 is the singular value of H, ( )k rank H= . Then 

TW UV=  is the solution of: 
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( )T
Tmax

kW W I
tr W H

=
                     (17) 

The proof of theorem 2: 
According to the SVD decomposition of H, we can get: 

( ) ( )
( )

T T T

1 2 1 2 T T

tr W H tr W U V

tr U V W

= Σ

= Σ Σ
                (18) 

According to theorem 1, we can get: 

( ) TT 1 2 1 2 T

1 2 1 2

F F

F F

tr W H U V W≤ Σ Σ

= Σ Σ
               (19) 

The equation holds if and only if: 
1 2 T 1 2 T TU V WΣ = Σ                      (20) 

holds, so the solution is:  
TW UV=                          (21) 

We consider how to solve the objective function Equation (10), where there 
are unknown variables id  related to V. Therefore, it has no closed-form solu-
tion. We can develop an algorithm to alternately update V (fixed id ) and id  
(fixed V). Specifically, we have two steps to solve the objective function Equation 
(10). First, update V while revising id . In this case, the objective function (10) is 
constant. Therefore, the objective function Equation (10) becomes: 

( )T
Tmax

kW W I
tr W H

=
                     (22) 

where H GW=  and G are the weighted covariance matrix of the image data. 
Let SVD of H be decomposed into TH U V= Σ , where TH U V= Σ  and 

k kR ×Σ∈  are nonsingular diagonal matrices, and ( )1, ,j j kλ = 
 is the singu-

lar value of H. According to theorem 2, the optimal solution of the objective 
function Equation (22) is as follows: 

TW UV=                          (23) 

Secondly, id  is calculated with the updated V. Algorithm CC lists the pseu-
do-code to solve the objective function (10) namely Fp-2DPCA algorithm 
(Table 1). 

3.2.2. Bilateral Fp-2DPCA 
As discussed in Section 3, compared with the traditional 2DPCA, angel-2DPCA 
is more robust to outliers. However, angel-2DPCA only reduces dimensions in 
the row direction of the image. In other words, angel-2DPCA learns the projec-
tion matrix through a set of training images, which only reflects the information 
between image rows and does not consider the information embedded in image 
columns. Therefore, it needs more dimensions to represent images, so it needs 
more storage space to store large-scale data sets. Inspired by reference [15], we 
use projection matrix R on the right and L on the left to overcome the short-
comings of angel-2DPCA. 
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Table 1. Algorithm 1 Fp-2DPCA.  

Algorithm 1 Fp-2DPCA 

Input: ( ) ( )( )
1 1

1, , , , 0,
p

M M
t im n F

pi i
i i i F

E
A R i N k A J W

AW
×

= =

∈ = = =∑ ∑  

Initialize: ( ) ( ) ( )( ) ( )( )T 1, , 1,t t tm k t t
kW R W W I t J W J Wδ −×∈ = = = −  

While: δ ε≥  
1. Calculate ( )t

id  for each iA  according to Equation (9), 

Calculate T:W W UV=  according to the conclusion of Equation (23), 

2. Calculate ( )tH  according to Equation (9) and Equation (23), 

3. SVD decomposition of ( )tH : ( ) TtH U V= Σ , 

4. Calculate T:W W UV=  according to the conclusion of Equation (23), 

5. Update δ , 

6. Update : 1t t t= + . 

Output: 1t n dW R+ ×∈  

 
Specifically, firstly, the dimension of training sample ( )1,2, ,m n

iA R i N× =∈   is 
reduced to get the right projection matrix n rR ×∈ . The image iA  is projected 
onto R to reach m r

i iY A R ×= ∈ , called the suitable feature matrix of iA . Then, we 
use Fp-2DPCA to reduce the training sample ( )T 1,2, ,r m

iY i N×∈ =   dimen-
sion and map it to the feature matrix T T

i iB Y L=  with size r l× . Through the 
above two processes, the training sample iA  is projected to a smaller feature 
matrix iB : 

T , 1, 2, ,i iB L A R i N= = 
                   (24) 

We call R right projection matrix, L left the projection matrix, and the cor-
responding algorithm is called bilateral Fp-2DPCA. Because l r×  is much 
smaller than m n× , bilateral Fp-2DPCA can use fewer dimensions to represent 
the input image. Experimental results show that, compared with 2DPCA, (2D) 
2DPCA, and angle-2DPCA, bilateral Fp-2DPCA can achieve higher performance 
with fewer dimensions. Algorithm 2 (Table 2) gives the specific algorithm steps 
of bilateral Fp-2DPCA. 

3.3. Theoretical Analysis 
3.3.1. Convergence Analysis 
Theorem 3 in the iteration of algorithm 1, we can get: 

( ) ( )1

1 1

M M
t t

i iF Fi i
AW AW+

= =

≥∑ ∑                   (25) 

Proof: in the 1t +  iteration, according to the fourth step of algorithm 1, the 
following inequality can be obtained:  

( )( ) ( )

( )

( )( ) ( )

( )

T T1 T T

1 1

t t t t
i i i iM M

t t
i ii iF F

tr W A AW tr W A AW

AW AW

+

= =

   
   
   ≥∑ ∑         (26) 
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Table 2. Algorithm 2 Bilateral Fp-2DPCA. 

Algorithm 2 Bilateral Fp-2DPCA 

Input: ( )
1

1, , , 0
M

m n
i i

i

A R i N A×

=

∈ = =∑  

1. Taking ( )1, ,iA i N=   as the input of algorithm 1, the right projection matrix n rR ×∈  is 

obtained, and the characteristic matrix i iY A R=  of iA  is calculated; 

2. Taking ( )T 1, ,iY i N=   as the input of algorithm 1, the left projection matrix m lL ×∈  is  

obtained, and the characteristic matrix T T
i iB Y L=  of T

iY  is calculated; 

Output: Output: output left projection matrix m lL ×∈ , right projection matrix n rR ×∈ , and 
characteristic matrix T , 1, 2, ,l r

i iB L A R i N×= ∈ =  . 

 
Then, we get:  

( )( ) ( )

( )
( )

T1 T

1 1

t t
i iM M

t
it Fi ii F

tr W A AW
AW

AW

+

= =

 
 
  ≥∑ ∑               (27) 

For each ( )1, ,i i M= 
, we can get:  

( )( ) ( ) ( )( ) ( )

( )( )( ) ( )( )

T T1 1T

T
1

t t t t
i i i i

t t
i i

tr W A AW tr AW AW

vec AW vec AW

+ +

+

   =   
   

=
       (28) 

According to Cauchy Schwarz inequality, we can get: 

( )( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

T
1 1

2 2

1

t t t t
i i i i

t t
i iF F

vec AW vec AW vec AW vec AW

AW AW

+ +

+

≤

=
      (29) 

According to Equation (28) and Equation (29), we can get:  

( )( ) ( )

( )

( ) ( )

( )

T1 T 1

1

t t t t
i iM i iF F

t t
i i iF F

tr W A AW AW AW

AW AW

+ +

=

 
 
  ≤∑            (30) 

According to Equation (27) and Equation (30), we can get: 

( ) ( )1

1 1

M M
t t

i iF Fi i
AW AW+

= =

≥∑ ∑                    (31) 

Theorem 4 in the iteration of algorithm 1, we can get:  

( ) ( )( ) ( ) ( )( )T T1 1

1 1

M M
t t t t

i i i i
i F i F

A AW W A AW W+ +

= =

− ≤ −∑ ∑            (32) 

Prove: after calculation, get:  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

2T T1 1 1 1T T

1 1

1T

1

M M
t t t t

i i i i i i
i F i

M
t

i i i Fi

A AW W tr A A tr W A AW

tr A A AW

+ + + +

= =

+

=

 − = −  
 

= −

∑ ∑

∑
 (33) 

According to theorem 1, there are:  
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( ) ( )1

1 1

M M
t t

i iF Fi i
AW AW+

= =

≥∑ ∑                    (34) 

So, Equation (34) can get:  

( ) ( )( ) ( ) ( )( )T T1 1

1 1

M M
t t t t

i i i i
i F i F

A AW W A AW W+ +

= =

− ≤ −∑ ∑          (35) 

Theorem 5 From Theorem 3 and theorem 4, we can get:  

( ) ( )11 1t t

p p
M M

i iF F
p p

i ii iF FW W W W

E E

AW AW+= =
= =

≤∑ ∑                (36) 

Proof: By Theorem 3 and theorem 4, and 0 2p< < , there are  

( ) ( )1

1 1

M Mp pt t
i iF Fi i

AW AW+

= =

≥∑ ∑                    (37) 

and 

( ) ( )( ) ( ) ( )( )T T1 1

1 1

p pM M
t t t t

i i i i
i F i F

A AW W A AW W+ +

= =

− ≤ −∑ ∑         (38) 

So, it’s easy to get:  

( ) ( )11 1t t

p p
M M

i iF F
p p

i ii iF FW W W W

E E

AW AW+= =
= =

≤∑ ∑                (39) 

According to the conclusion of Theorem 5, algorithm 1 continuously reduces 
the function value of an objective function Equation (7) in iteration, so W will 
continue to approach the optimal solution. Finally, algorithm 1 will converge to 
the optimal local resolution of the objective function Equation (7). Algorithm 2 
is based on Algorithm 1, so algorithm 2 must link to the optimal local solution. 

3.3.2. Analysis of Rotation Invariance 
In this part, we mainly show that Fp-2DPCA has good rotation invariance. Rota-
tion invariance means that the low dimensional representation remains un-
changed under the rotation transformation of the sample space. 

Theorem 6 The solution of Fp-2DPCA is rotationally invariant. 
Proof: given any orthogonal matrix ( )T IΓ Γ Γ = , for each step of algorithm 1 

to get the solution W, there is 

( )

( ) ( )( )

( ) ( )

T TT T

2T T

21

2T T T

21

,: ,:

,: ,:

pp pp
i ii i i ii F F F F

p p p p
i i i iF F F F

p
m

T
i i

j

p
i F

p
m

i i
j

p
i F

A Z WA AWW A Z WE

AW AW Z Z

A j Z j W

Z

A j Z j W

Z

=

=

−− −
= = =

 
−  

 =

 
−  

 =

Γ Γ

Γ Γ Γ

Γ Γ

∑

∑

   (40) 
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( ) ( )
2T

T21
,: ,:

p
m

pi i
j i i F

p p
i iF F

A j Z j W
A Z W
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where , i iW W A A= = ΓΓ  , so T
i i iAW A W AWΓ Γ= =  . Equation (40) shows that 

if W is the solution of the objective function, W  is the solution of the objective 
function under the orthogonal matrix Γ  transformation. 

Besides, compared with the existing 2DPCA method based on L1 norm, this 
method considers the reconstruction error directly and synthesizes the variance 
of low dimensional data in the criterion function. Also, it has strong robustness 
to outliers and is related to the covariance matrix of the image. 

4. Numerical Experiment 

In this part, we use four most advanced algorithms, namely 2DPCA [2], 
2DPCAL1 [10], angel-2DPCA [12] and (2D)2PCA [6] to compare unilateral 
Fp-2DPCA and bilateral Fp-2DPCA. Our experiment uses two famous face da-
tasets, the ORL database [16], and the Extended Yale Face B database [17]. 

Because the feature matrices of different algorithms have different dimensions, 
we use the same feature size for all methods for a fair comparison. For example, 
if the column dimension of one-sided dimensionality reduction methods 
(2DPCA, 2DPCAL1, angel-2DPCA) is r. The row and column dimension reduc-
tion results of two-sided dimensionality reduction methods (2D) 2DPCA and 
Fp-2DPCA) are l′  and r′  respectively to make l r m r′ ′× ≈ × . For simplifica-
tion, set l r′ ′= . For all algorithms, 1-Nearest neighbor classification (1-NN) is 
used for variety. 

ORL face database consists of 400 frontal images collected from different 
lighting conditions, with ten shots per person. In this database, each print is ad-
justed to 112 × 92 pixels. We randomly selected seven pictures for each person 
and put the noise in the range of 0 - 255 in the chosen images. The noise location 
is random, and the ratio of noise pixels to image pixels is 0.05 - 0.15. Figure 1 
shows some photos of this database and corresponding pictures with increased 
noise. In our experiment, we randomly selected seven images for training, and 
the remaining three ideas were tested 

Figure 2 shows the reconstructed images of 2DPCA, L1-2DPCA, (2D) 2PCA, 
angel-2DPCA, Fp-2DPCA (p = 1) and Fp-2DPCA (p = 0.5) from left to right. 
The reconstructed image of 2DPCA is still very blurred, L1-2DPCAis slightly 
better, and angel-2DPCA and Fp-2DPCA are significantly better than the pre-
vious methods. 

If the dimension reduction is too low, the reconstructed image will be difficult 
to recognize, so we choose to reduce columns’ dimension to 30. For (2D) 
2DPCA, the dimensions of rows and columns are reduced to 50 (50 × 50 < 112 × 
30). Our algorithm selects rows and columns to reduce to 30 (30 × 30 < 50 × 50) 
to compare the effect. In Table 3, we list the average classification accuracy (Acc) 
and standard deviation (std) obtained by the algorithm on the original dataset  
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Figure 1. Some noise images in ORL dataset. 

 

 
Figure 2. Comparison of reconstructed images under various methods. 

 
Table 3. Recognition accuracy. 

Algorithm dim 
Acc ± std% 

(clean) 
Acc ± std% 

(noised) 
Diff% 

2DPCA 112 × 30 66.66 ± 1.18 62.50 ± 1.25 4.16 

2DPCA-L1 112 × 30 67.50 ± 1.14 64.10 ± 1.52 3.40 

（2D) 2PCA 50 × 50 73.33 ± 1.09 70.19 ± 1.50 3.14 

Angel-2DPCA 112 × 30 75.83 ± 1.01 73.22 ± 1.29 2.61 

B-Fp-2DPCA (p = 1) 30 × 30 79.16 ± 1.12 77.45 ± 1.49 1.71 

B-Fp-2DPCA (p = 0.5) 30 × 30 81.66 ± 1.04 79.98 ± 1.35 1.68 

 
(clean) and noisy dataset (noisy). The last column shows the difference of preci-
sion means between the clean data set and noise data set. 

In Table 3, the method based on angel-2DPCA is better than 2DPCA and 
2DPCA-L1 in both clean data sets and noisy data sets. It may be due to the dif-
ference that angel-2DPCA is reduced from square F-norm to F-norm, robust to 
outliers. Besides, the last column’s values show that the performance of all algo-
rithms is degraded by noise. However, the angle type algorithm has a small 
decrement. It again supports the robustness of the angle model. On the other 
hand, among all the comparison algorithms, Fp-2DPCA is the best. It has the 
highest accuracy and the smallest difference. 

5. Conclusion 

In this paper, we propose a new 2DPCA model, which considers the reconstruc-
tion error and considers the maximum variance, and adopts the f norm, which 
has good robustness to outliers. We increase the parameter p to make the model 
have more choices. The experiment shows that the effect of P-value 0.5 is better. 
We also extend it to the bilateral projection model and propose the bilateral 
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FP-2DPCA. The new Fp-2DPCA reduces the dimension of the original image 
matrix from both row and column. Experimental results on face data sets show 
that the proposed method can achieve higher performance with fewer measure-
ments. 
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