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Abstract

In any completely close complex field C, generalized transcendental mero-
morphic functions may have some new properties. It is well known that a
meromorphic function of characteristic zero is a rational function. This paper
introduced some mathematical properties of the transcendental meromor-
phic function, which is generalized to the meromorphic function by multip-
lying and differentiating the generalized meromorphic function. The analysis
shows that the difference between any non-zero constant and the derivative
of the general meromorphic function has an infinite zero. In addition, for any
natural number n, there are no practically exceptional values for the multip-
lication of the general meromorphic function and its derivative to the power
of n.
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1. Introduction

Suppose that K is a complete closed field of characteristic 0 and f; is a tran-
scendental general meromorphic function in K. Let A(K) be the set of power
series with coefficients converging in all K; and let M (K) be a general mero-
morphic function in K, and if a€K,&>0 we denote by d(0,1+¢&) the disk
{xz ek: |x2 —a| < 1+£} . For meromorphic function in a first order system and
factorization of p-adic meromorphic functions, see [1] [2] [3].

Definition 1. Given a meromorphic function in K, we call exceptional value
of f(or Picard value of /) a value b€ K such that f—b hasno zero. And, if £
is transcendental, we call quasi-exceptional value a value beK such that
f —b has finitely many zeros (see [4]). Also see [5] [6] [7] for meromorphic
function with doubly periodic phase and with the uniqueness sharing a value.

Let Ad (0,(1-‘1-28)7) be the set of power series in x* —a with coefficient in
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K whose radius of convergence is >1+2¢ and Md(a,(1+25)7) be the field
of fraction of Ad(a,(1+25)7) for more details (see [4] [8] [9] [10]). So, the

function f; isan entire function admitting as zeros the distinct zeros of f;, all

with order 1. We can then set f; = fj ]N"j where the function fj is an entire
function admitting for zeros the multiple zeros of f;, each with order ¢-1

when it is a zero of f; of order ¢. Particularly, if f, is constant, we set f, =1
and f/ =/

According to the p-adic Hayman conjecture, for every neN', ff" takes
every non-zero value infinitely many times (see [8] [9] [10] [11] [12]).

Now, fj

classical notation [13], we set |fj|(1 +¢&)=sup {‘f/ (xz)
We know that |f}|(1 +&)=sup,la,|(1+&) =lim

(x) isa power series of infinite radius of convergence. According to
||x2| <1+ 8} .

f/(xz)‘.

an

‘xz‘—>l+£,\x\¢l+g
That notation defines an absolute value on A(K) and has continuation to
7 (r)= |fj|(1+8)
g |gj | (1+¢)

Theorem 1 is proven. In this paper, we use information from related literature

M(K) as with f,g, eA(K). In the paper [11], the

and formulate the method of Bezivin, J., Boussaf, K. and Escassut, A. [4] by us-
ing a general meromorphic function to show that for every beK,b#0,f;~b

has infinitely many zeros and f/f' has no practically exceptional value.

2. Theorems and Lemmas

Theorem 1. Let f; be a transcendental general meromorphic function on
K having finitely many multiple poles. Then f; takes every value infinitely
many times.

That has suggested the following conjecture:

Conjecture 1. Let f, be a general meromorphic function on K such that
Jf; has finitely many zeros. Then f; is a rational function.

Now we will define new expressions:

Let f, € M(K). For each &> 0, we denote by yy, (1+¢) the number of
multiple zeros of f, in d (0,1+5) , each counted with its multiplicity and we
set

b5, (1+8)=l//L(1+8).
X/
Similarly, we denote by 6y, (1+&) the number of zeros of f; in

d(0,1+¢), taking multiplicity into accountand set 7y, (1+¢)=0 , (1+¢).

Wy

We need several lemmas:
Lemma 1. Let U,V € A(K) have no common zero and let f; =%. If f
has finitely many zeros, there exists a polynomial PeK[x] such that

uv-uyv'=pv.

Proof. If V'is a constant, the statement is obvious. So, we assume that V'is not

DOI: 10.4236/apm.2021.112009

139 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2021.112009

E. E. E. Dalam, A. M. Ibrahim

a constant. Now ¥ divides V' and hence V' factorizes in the way V'=VY
with Y € A(K). Then no zero of ¥ can be a zero of V. Consequently, we have

r')-

The two functions U’V —UY and V*V have no common zero since neither
have U and V. Consequently, the zeros of f' are those of U'V —UY which

therefore has finitely many zeros and consequently is a polynomial. O

uv-uv' UV -UY
v’ Vv

Lemma 2 is known as the p-adic Schwarz Lemma (Lemma 23.12 [14]). Lem-
mas 3 and 4 are immediate corollaries:

Lemma 2. Let r,R e (0,+00) be such that ¥ <R and let f e M(K) ad-
mits zeros and zpolesin d(0,7) and no zero and no polein I'(0,7,R). Then

|f|(R) — (Rr)sft .
/1(r)
Lemma 3. Let r,R €(0,4) be such that r<R andlet f e A(K) have ¢

q
VIR (5] ,
71(r)
Lemma 4. Let f, € A(K).Then f, isa polynomial of degree ¢ if and only

if there exists a constant csuch that Z|f1|(1 +e)<c(l+e)’,1<e<w.

Let d(a,(1+5)7) be the disc {xzeK||x2—a|<l+5}. We denote by

zeros in (O,R) . Then

A(d(a,(l +2¢) )) the K -algebra of analytic functions in d (a,(l + 26)7> , Le

. . 2 . . . .
the set of power series in x° —a with coefficients in K whose radius of con-

vergence is >1+2¢ and we denote by M(d(a,(l+25)_ )) the field of gen-

eral meromorphic functions in d(a,(1+25)7), ie. the field of fraction of

a(d(a,(1+26) ).
Lemma 5. Let [ € M(d(O,R" )) Foreach neN,and Vre (O,R) , we have

) <|n'||f|

Proof. Suppose first fbelongs to A(d (O,Rf )) andset f(x)=)" ax'

w k
Then f(")(x)zzk_ (n!)( Jakxk_n .
- n—k
The statement then is immediate. Consider now the general case and set

f =% with U,V e A(d (O,Rf )) The stated inequality is obvious when n=1.

So, we assume it holds for ¢<n—1 and consider /. Writing U = V(%J,

by Leibniz Theorem we have
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and hence
V(Ej(n) _y® —S[njV(n_q) (KJ(q)_
V —o\d U
Now, |[U" (R)S|n!||U|(nR) and for each ¢ <n-1, we have
e V(R
o))< (- A2)
and
(9)
U |UI(R)
— R) <\l
() |0 =btpae

Therefore, we can derive that terms on the right hand side are upper bounded
R
VI(R)R
Lemma 6. Let U,V € A(K) and let r,Re(0,+). For all x,y e K with
|x| <R and | y| <r, we have the inequality:

and hence the conclusion holds for g=n. o

(R)uv ~Uv'|(R)

( R)
e| log—
-

|U(x+y)V(x)—U(x)V(x+y)| <

Proof. By Taylor’s formula at the point x, we have

U™ (x)V (x)- U(x)V(") (x)

U(x+y)V(x)—U(x)V(x+y)=z pr "
n>0 .
(") _ (") "y ' R
Now, U (x)V(x) 'U(x)V (x) v<a uv ifjf ( )r”
n! r

But we have 4, <n,hence

U (x)V (x) U (x)V" (%)

| n!

n

| < n(R)|U'V—UV'|(R)(%jn .

n—+0

B =max,, [ (%} J and we have

|U(x+y)V(x)—U(x)V(x+y)|

<B(R)| UV -UV'|(R),Vxed(0,R), yed(0,r)

And we notice that lim n(%j =0 . Consequently, we can define

We can check that the function 4 defined in (0,+0) as h(t):t(%j

1
10g(Rj
,

reaches it maximum at the point u =
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Consequently, B < ;R and therefore
e(log J
-

|U(x+y)V(x)—U(x)V(x+y)| < (R)|U'V_UV'|(R).

[os7]
e| log—
r

Theorem 2. Let fbe a meromorphic function on K such that, for some
c,d €(0,400)¢, satisfies ¢, (r)< cr’ in (L+e). If f' has finitely many ze-

ros, then fis a rational function.

Proof. Suppose f' has finitely many zeros. If V'is a constant, the statement
is immediate. So, we suppose V'is not a constant and hence it admits at least one ze-
ro a. By Lemmal there exists a polynomial P € K[x] suchthat UV -UV'=PV .
Next, we take 0<g& <o such that |a| <r and xe d(O,r),y € d(O,r) . By

Lemma 6 we have

(RIUV -vV|(R)

( Rj
el log—
’

Notice that U (a) # 0 because Uand Vhave no common zero. Now set

l= max(l,|a|) and take r>/. Setting ¢, = 1 , we have

e|U(a)|
(RPI(R)|(R)

=g

Then taking the supremum of |V(a + y)| inside the disc d(O, r) , we can de-

U(x+y)V(x)—U(x)V(x+y)S

V(a+y)£c]

rive

(R)|PIR]7|(R)

=0

1
Let us apply Lemma 3, by taking R =r+—, after noticing that the number
r

|V|(r)$c1 (1)

of zeros of ¥V (R) isbounded by w, (R). So, we have

~ 1 Yi(R)
|V|(R)s(1+rd+lj 7(r)- )

Now, due to the hypothesis: w, (r)=¢, (r)< e’ in [1,+), we have

d
1w 1 H“%M
(HWT] S(HWJ
1Y 1
=exp| C|1+—| log| 1+— ||
r r

d
The function 4 (r)= c(r +Ldj log (1+%j is continuous on (/,+0) and
r r

3)
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c
equivalent to — when rtendsto +oo. Consequently, it is bounded on [l,+00).
r

Therefore, by (2) and (3) there exists a constant M >0 such that, for all
r,Re[l,+0),r <R by (3) we obtain

(o < Ml (@

d+1
%

1
On the other hand, log(r+—d j—log(r) = log( j clearly satisfies an
r

inequality of the form log(1+ ! ]> & in [l, +oo) with ¢, > 0. Moreover,

d+l | = _d+1
r r

we can obviously find positive constants c;,c, such that

(r +ridJ|P|[r +ridj <eyr

Consequently, by (1) and (4) we can find positive constants c¢;,c, such that

|V|(r) <egr

r),Vre[l, 4o . Thus, writing again ¥ =FF , we have

|I7|(r)|17|(r) < <¢,;r,0 < & <o, consequently, by

) and hence |I7 ()

Lemma 4, ¥ is a polynomial of degree <c, and hence it has finitely many

zeros and so does. And then, by Theorem 1, fmust be a rational function.

3. Main Results

The main generalized meromorphic results are the following corollaries and

theorem.

Corollary 1. Let fjeM(d(O,(l—i-Zg)_)). For each neN , and

|f|l+g
+e)

V(1+8) ed(0,1+26),we have Z’/n

1|+ e)<ln X,

Proof. Suppose first f; belongsto 4 (d (O,(l +2¢) )) and set

then

The statement then is immediate. Consider now the general case and set

2

Z/ g = z/ 1—’ with U7, 1} GA(d(O,(l-f—Zé‘)_)). The stated inequality is

obvious when n—l. So, we assume it holds for ¢<n-1 and consider

>

UZ
Writing U; 2 V2 [ 2 ] by Leibniz Theorem we have
J
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and hence
2\(1) _ 2\(9)
p: ﬂ] e W ﬂ] |
J ij J = q J ij
" U3](1+2¢)
Now, [U;" ‘(1-{—26‘) < |n'|— and for each g <n—1, we have

(1+2)'

vel(1+2¢)

‘V;@"” (1+28)SI("‘q)’||(1+2s)”

and
U3](1+2¢)
7| (1+2¢)(1+26)"

(1+2¢) <|q]]

Therefore, we can derive that terms on the right hand side are upper bounded
20+ 2¢)
72 |(1+22)(1+ 22"

by |n !| and hence the conclusion holds for g=n. o

Corollary 2. Let U V*e A(K) and let £>0. For all x*,x’+¢ceK with

|x2| <1+2¢ and |x2 + g| <1+¢, we have the inequality:

U’ (2x2 +$)V2 (xz)—U2 (XZ)VZ (2x2 +8)
(1+2e)|(U) 2 =02 (v
< ( 1+2gj
el log
I+¢
Proof. By Taylor’s formula at the point x”, we have

U’ <2x2 +$)V2 (xz)—U2 ()cz)V2 (2x2 +8)

(1+2¢)

Uz(n) (xz )Vz (xz ) _ Uz (xz ) Vz(n) (x)

2, p (2x2 +€)”.
UZ(n) (xz)Vz (xz)_Uz (xz)Vz(n) (xz) .
‘ o (sz +8)
Now,
<, (U v -ur(r'y (1+2¢) (1+e)

(1+2¢)""

But we have A <n,hence

(q)
" (n U?
U?(”) _ V_Q(’Hi) I
J ZZ‘J q J ij

< n((Zx2 +£>)‘(U’)2 y:-U? (V’)2

(1+25)(1+5 j

1+2¢
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1+¢
1+2¢

1 n
B=max,,, | n e and we have
B 1+2¢

‘UZ (222 +&)72 (&%) - U2 ()72 (24° +g)‘

And we notice that lim,,, » ( ) =0. Consequently, we can define

<B(1+20)|(U") 12 =U (V)| (1+22),

We can check that the function A defined in

vx’ ed(0,1+2¢),(2x* +¢£) e d(0,1+¢).
(0.40)

(l+.s
h(l+&)=(l+¢) (1+25j

reaches it maximum at the point u =

1+2g
lo
1+¢

1
Consequently, B<—————— and therefore
1+2¢
e| log
I+¢&

U (2 +2)1? (22)-U? (¥ )77 (247 + ¢)

(1+2¢)|(U) U2 (V')
<
[ 1+2gj
el log
I+¢
Theorem 3. Let f; be a general meromorphic function on K such that, for

some £>0, ¢Z/‘,~ satisfies ¢fo (1+g)(l+g)(1+£)(1+25) in (L+w). If f]

(1+2¢) O

has finitely many zeros, then f; is a rational function.
Proof. Suppose f/ has finitely many zeros. If V? is a constant, the statement

is immediate. So, we suppose ¥ is not a constant and hence it admits at least

one zero a. By Lemma 4, there exists a polynomial PeK[xQJ such that

(U')2 VZ—UZ(V')ZZP(I;)z. Next, we take 0<e& <o such that |a|<1+8
and x* ea’(O,(1+6)),y2 ed(O,(1+5)). By Lemma 6 we have

U? (x2 +y2)V2 (xz)—U2 (xz)V2 (xz +y2)
) (1+26)|(U) 72 =02 (1) |1+ 2)
- 1+2¢

e(log Iie j

Notice that U? (a);t 0 because U? and ¥’ have no common zero. Now

set /= max(1,|a|) and take £2>0. Setting ¢, = , we have

-
e|U2 (a)
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(1+2¢)|P|(1+2¢) (17)2‘(1+2g)

(1+25j
log
l+¢

Then taking the supremum of ‘Vz (a +y )‘ inside the disc d(O,(l+s)), we

V2<a+y2)Sc1

can derive

(1+2¢)|P|(1+2¢) (17)2‘(1+2g)

(1 + 25)

log

I+¢&
Let us apply Lemma 3, by taking &(1+ g)(mg) =1, after noticing that the

number of zeros of V* (1 + 28) isbounded by v, (1+2¢). So, we have

,20426)
] ‘(17)2‘(1+8). (6)

(1+2¢)

Now, due to the hypothesis: ¥, (l+5):¢zfj (1+e)<(l+¢)(1+¢) in

[1,+00) , we have

(1+2¢)
v, (1+22) (/+5)[(1+5)+ ‘ HJ
c & (1+¢)
1+ ; <| 1+ ;
(1 + 5) (1 + 5)

(1+2¢)
=exp (1+5)[(1+£)+W] log[l+WJ )

The function h(1+&)=(I+¢)(1+ 25)(”28) d log(l + ﬁ} is continuous
l+¢

2|(1+2) <q (5)

‘(17)2‘(1+2g)g[1+

(1+8)1

(7)

on (0,+00) and equivalent to when (1+8) tends to +oo . Conse-

1+¢
quently, it is bounded on [/,+w). Therefore, by (5) and (6) there exists a con-
stant M >0 such that, forall 0 <& <o by (6) we obtain
\2 I ~\2
‘(V) ‘(1+5)+—)11M‘(V) ‘(1+g). (8)

(1+¢

On the other hand, log (1+.€)+L[7l —log(1+8)=1og 1+—% ;
(1+¢) (1+¢)

&

-1

clearly satisfies an inequality of the form log|1+ d -2
(I+e) ) (1+¢)

[/,+o) with ¢, >0. Moreover, we can obviously find positive constants c;,c¢,

such that

[(l+g)+ ¢ ]|P|((l+g)+

(1+5)Fl (1+g)171

Consequently, by (5) and (6) we can find positive constants c;,c, such that

]03 (1+&)*.
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2|1+ 2) < e (1+2)°

V2|(1+g),0 <g<oo.
Thus, writing again V'~ = (17)2 (17)2 , we have
(7o)

(17)2‘(1 +¢)<¢r,0 <& < o0, consequently, by Lemma 4, (17)2 is a polynomi-

(I1+¢) (I+&)<c(1+6)*

(17)2‘(1 +¢) and hence

al of degree <c¢, and hence it has finitely many zeros and so does. And then, by

Theorem 1, f] must be a rational function. o

Corollary 3. Let f; be a general meromorphic function on K. Suppose that
there exist & >0, such that sy, (8 +1) < (l + 8)(8 + l)d ,Ve>0,
If f/f!—b has finitely many zeros for some beK, with neN then f;
is a rational function. o
Proof. Suppose f; istranscendental. Due to hypothesis, fj"+1 satisfies
0, (s+1)=1 , (s+1)<c(n+1)(s+1)" ve>0
zfjgwl ijnﬂ

hence by Theorem 3, f/f/" has no practically exceptional value. o

Corollary 4. Let f; be a transcendental general meromorphic function on
K such that, for some [+¢&,l+2¢ € (0, +00) , we have
0, (1 + g) < (l+g)(l +5)(M) in [1,+oo) . Then for every beK , beK,
f;—b has infinitely many zeros.

Proof. Suppose [/ admits a practically exceptional value b e K.
Then fj' is of the form % with Pe K[xz J and A a transcendental entire

function.

|P|(1+¢)
|h|(1+¢)
hence |f/’|(1 +&)=|b|,V(1+&)>S. Then by Lemma 3, the numbers of zeros and

Consequently there exists S >0 such that <|p[,v(1+£)>S and

poles of f in disks d(O,r) are equal when (1+£) > §. So, there exists S'S

such that for every (1+&)>S" we have
s, (146) =05, (1+¢). )

On the other hand, of course we have 7y f; (I1+&)< Ty, (1+¢), hence by (9)

)(H—ZS)

and by hypothesis of corollary 4, we have 7y . (I+&)<(l+¢ . Therefore by

Theorem 2, f; has no practically exceptional value, a contradiction. o
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