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Abstract 
This paper mainly investigates the semicontinuity of solution mappings for 
set optimization problems under a partial order set relation instead of upper 
and lower set less order relations. To this end, we propose two types of mo-
notonicity definition for the set-valued mapping introduced by two nonlinear 
scalarization functions which are presented by these partial order relations. 
Then, we give some sufficient conditions for the semicontinuity and closed-
ness of solution mappings for parametric set optimization problems. The re-
sults presented in this paper are new and extend the main results given by 
some authors in the literature. 
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1. Introduction 

Set-valued optimization which is a generalization of vector optimization has 
been studied and applied in many fields, such as engineering, mathematical 
finance, medicine, robust and fuzzy optimization; see [1] [2] [3] [4] and the ref-
erences therein. 

As we know, for set-valued optimization problems, there are two types of cri-
teria which are vector optimization criterion and set optimization criterion. 
Based on the vector optimization criterion, discussing the continuity of solution 
set mapping for set-valued vector optimization problems is very similar to dis-
cuss vector variational inequalities or vector equilibrium problems [5]. However, 
this criterion is not always suitable for all types of set-valued optimization prob-
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lems. To surmount the shortcoming, Kuroiwa [6] [7] introduced and discussed 
the set optimization criterion which is based on a comparison among the values 
of objective set-valued mapping. The method seems to be more natural than 
classical methods, whenever one needs to consider preferences over sets. Many 
research results have been studied for parametric set optimization problems un-
der different kinds of set order relations, such as the optimality conditions, con-
vexity, well-posedness, existence, duality theory and algorithms; see [8]-[15] and 
the references therein. 

It is well-known that stability analysis plays a key role in optimization theories 
and related applications [16] [17] [18] [19]. Especially, the continuity of solution 
mappings to perturbed optimization problem is one of the important contents. 
The semicontinuity of solution mappings for parametric set optimization prob-
lems was firstly investigated by Xu and Li in [20]. They obtained the continuity 
of the weak minimal solution set mapping and the minimal solution set mapping 
to a parametric u-set optimization problem under strong assumption conditions. 
Subsequently, Xu and Li [21] studied the continuity of the minimal solution set 
mappings to parametric set optimization problems by the semicontinuity of the 
u-lower level mappings. In terms of the continuity of the level mappings, 
Khoshkhabar-amiranloo [16] discussed the stability of the minimal solutions of 
set optimization problems by using the C-Hausdorff continuity instead of the 
continuity in the sense of Berge. Recently, Chen et al. [22] used another proof 
method to get the semicontinuity of parametric set optimization problems with 
lower set less order relation under some strong assumption conditions. Through 
the above papers, we can find that they all need the continuity assumptions of 
set-valued objective mappings when they proved the semicontinuity of solution 
mappings for parametric set optimization problems. 

Recently, Karaman [23] introduced two new order relations on family of sets 
called m1 and m2 set order relations which are partial order relations and are 
smaller than the vector order relations introduced in [24]. Preechasilp and 
Wangkeeree [25] gave some sufficient conditions for the semicontinuity of the 
solution mapping to a parametric set optimization problem with (converse) 
m1-property assumptions under m1 set order relation. Since it is difficult to 
check the (converse) m1-property assumptions, this limits the applications of 
stability of set optimization problems (See Example 5.1 and 5.2). To the best of 
our knowledge, there are few stability results on the solution mapping to para-
metric set optimization problems in terms of nonlinear scalarization methods. 

From what has been mentioned above, the first aim of our paper is to get the 
semicontinuity of solution mappings to parametric set optimization problems 
when the set-valued objective mapping is not continuous. The second aim of the 
paper is to obtain the semicontinuity of solution mappings to parametric set op-
timization problems via nonlinear scalarization methods. Hence, we define two 
types of new monotonicity of the set-valued mapping by using two nonlinear 
scalarization functions under partial order relation. The third aim of this paper 
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is to investigate the semicontinuity of solution mapping of parametric set opti-
mization problems under weaker and simpler assumptions. We give some suffi-
cient conditions for the semicontinuity and closedness of solution mappings for 
parametric set optimization problems. In our results, we have no (converse) 
m1-property assumptions for objective mappings and the assumption (iv) of 
Theorem 4.2 in [21] and [26]. Moreover, the continuity of the objective mapping 
is replaced by some monotonicity assumptions. So, our results do not need any 
additional assumptions to get the lower semicontinuity of solution mapping of 
parametric set optimization problems. Our results extend and improve the cor-
responding ones of [21] [25] [26]. 

The rest of this paper is organized as follows. In Section 2, some basic con-
cepts and preliminary results about the semicontinuity of set-valued mappings 
are introduced. In Section 3, by using the nonlinear scalarization functions, two 
types of new monotonicity of the set-valued mapping are defined. In Section 4, 
the semicontinuity and closedness of the solution mappings for the parametric 
set optimization problems are discussed without any continuities of the 
set-valued objective mapping. In Section 5, we give the comparisons between our 
results in Section 4 and ones in [16] [21] [22] [25] [26]. In Section 6, we give 
some concluding remarks. 

2. Preliminaries 

Throughout this paper, let X, Y and Z be real normed linear spaces, and let Λ  
be a nonempty subset of Z, C Y⊆  and K X⊆  are closed, convex and 
pointed cones. Let ( )0 Y℘  be the family of all nonempty subsets of Y, and 

( )*
0 Y℘  be the family of all nonempty bounded subsets of Y. Let *X  be the to-

pological dual space of X and *K  be the dual cone of K, defined by 

( ){ }* *: : 0, .K k X k x x K= ∈ ≥ ∀ ∈
 

Denote the quasi-interior of *K  by #K , i.e., 

( ) { }{ }# *: : 0, \ 0 .K k X k x x K= ∈ > ∀ ∈
 

Proposition 2.1. [24] 
(i) If K is a closed convex cone in a real locally convex linear space X, then 

( ){ }*: 0 for allK x K k x k K= ∈ ≥ ∈ . 
(ii) Let #k K∈ . If ( ) 0k z ≥ , then { }\ 0z K∉− . 
We now recall some order relations on ( )0 Y℘ . The first one is lower set less 

( l
C ) and upper set less ( u

C ) order relations on ( )0 Y℘ . 
Definition 2.1. [24] Let ( )0,A B Y∈℘  be arbitrarily closen sets. 
(i) The upper set less order relations ( u

C ) is defined by u
CA B A B C⇔ ⊆ − , 

(ii) The lower set less order relations ( l
C ) is defined by l

CA B B A C⇔ ⊆ + . 
( u

C ) and ( l
C ) order relations have been extensively studied in many litera-

ture. Recently, by using properties of Minkowski difference, Karaman et al. es-
tablished the following new order relations on a family of sets. 

Definition 2.2. [23] Let ( )0, ,A B C Y∈℘ . 
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( )1 ,m
CA B B A C⇔ − ≠ ∅



  

( ) ( )2 .m
CA B A B C⇔ − − ≠ ∅



  
The set { } ( ): a AB A x X x A B B a∈− = ∈ + ⊆ = −



 is called Minkowski (Pon-
tryagin) difference of B and A. 

Moreover, when int C ≠ ∅ , the strictly version of 1m
CA B  and 2m

CA B  
are defined by 

( )1 int ,m
CA B B A C⇔ − ≠ ∅ 

  

( ) ( )2 int .m
CA B A B C⇔ − − ≠ ∅ 

  
Remark 2.1. It is easily seen that, for ( )0,A B Y∈℘ , 1m

CA B  implies 
u
CA B  and 2m

CA B  implies l
CA B . However, the converse is not true. 

The detailed counter-example sees in [23]. 
Let M be a nonempty set of X and :F M Y  be a set-valued mapping. The 

set optimization problem is defined as follows: 

( ) ( )SOP min subject to .F x x M∈  
Definition 2.3. [23] An element 0x M∈  is said to be 
(i) a m1-minimal solution of (SOP) if there does not exist any x M∈  with 
( ) ( )0F x F x≠  such that ( ) ( )1

0
m
CF x F x , that is, either ( ) ( )1

0
m
CF x F x  or 

( ) ( )0F x F x=  for any x M∈ ; 
(ii) a m2-minimal solution of (SOP) if there does not exist any x M∈  with 
( ) ( )0F x F x≠  such that ( ) ( )2

0
m
CF x F x , that is, either ( ) ( )2

0
m
CF x F x  or 

( ) ( )0F x F x=  for any x M∈ ; 
If the set M and the mapping F are perturbed by a parameter λ  which varies 

over a set ZΛ ⊆ , we definite the following parametric set optimization prob-
lem (PSOP): 

( ) ( ) ( )PSOP min , subject to ,F x x Mλ λ∈  
where :F B X Z Y×Λ ⊆ ×  , :M XΛ , F and M are set-valued mappings, 

( ) ( )M M B
λ

λ
∈Λ

Λ = ⊆


. For each λ ∈Λ , we denote ( )
1mS λ  and ( )

2mS λ  
by the m1-minimal solution mapping and m2-minimal solution mapping to 
(PSOP), respectively. That is, ( )1 2

:m mS S XΛ  is defined as follows: 

( ) ( ) ( ) ( ) ( ) { }{
( ) ( )}

1
1

: : , , for all \

and , , ;

m
m CS x M F x F x x M x

F x F x

λ λ λ λ λ

λ λ

= ∈ ∈

≠



 

( ) ( ) ( ) ( ) ( ) { }{
( ) ( )}

2
2

: : , , for all \

and , , .

m
m CS x M F x F x x M x

F x F x

λ λ λ λ λ

λ λ

= ∈ ∈

≠



 
In this paper, we assume that ( )

imS λ ≠ ∅  for each λ ∈Λ , { }1,2i = . Next, 
we will discuss the upper and lower semicontinuities of ( )

imS ⋅  at a point 

0λ ∈Λ . Now, let us recall some basic definitions and their properties. 
Definition 2.4. [27] Suppose that : Xϕ Λ  is a set-valued mapping, and 

λ ∈Λ  is given. 
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(i) ϕ  is called lower semicontinuous (l.s.c) at λ  iff for any open set 
V X⊆  with ( )V ϕ λ ≠ ∅ , there exists a neighborhood ( )N λ  of λ  such 
that ( ) Vϕ λ ≠ ∅ , for all ( )Nλ λ∈ . 

(ii) ϕ  is called upper semicontinuous (u.s.c) at λ  iff for any open set 
V X⊆  with ( ) Vϕ λ ⊆ , there exists a neighborhood ( )N λ  of λ  such that 
( ) Vϕ λ ⊆ , for all ( )Nλ λ∈ . 
(iii) ϕ  is called closed at λ  iff for each sequence  

( ) ( ) ( ){ }, graph : , :n nx x xλ ϕ λ ϕ λ∈ = ∈ , ( ) ( ), ,n nx xλ λ→ , it follows that  
( ), graphxλ ϕ∈ . 

( )ϕ ⋅  is said to be l.s.c (resp. u.s.c) on Λ , if and only if it is l.s.c (resp. u.s.c) 
at each λ ∈Λ . ( )ϕ ⋅  is said to be continuous on Λ  if and only if it is both 
l.s.c and u.s.c on Λ . 

Proposition 2.2. [27] [28] 
(i) ϕ  is l.s.c at λ  if and only if for any sequence { }nλ ⊆ Λ  with nλ λ→  

and any ( )x ϕ λ∈ , there exists ( )n nx ϕ λ∈  such that nx x→ . 
(ii) If ϕ  has compact values at λ  (i.e., ( )ϕ λ  is a compact set), then ϕ  

is u.s.c at λ  if and only if for any sequence { }nλ ⊆ Λ  with nλ λ→  and any 
( )n nx ϕ λ∈ , there exist ( )x ϕ λ∈  and a subsequence { }knx  of { }nx , such 

that 
knx x→ . 

3. Monotonicity via Scalarization 

In this section, new monotonicity definitions will be introduced by the scalariza-
tion method. When we want to obtain the semicontinuity results of solution 
mappings of (SOP), we always use some assumptions that include the continuity 
of the objective mapping F (see [16] [21] [22]). In this paper, we will get the se-
micontinuity results of solution mappings of (PSOP) without the continuity of 
the objective mapping F by using a new monotonicity condition. Firstly, we recall 
two nonlinear scalarization functions and some properties of these functions. 

Definition 3.1. [23] Let the functions ( ) ( )1
0 0:m

eI Y Y℘ ×℘ →   and  
( ) ( )2

0 0:m
eI Y Y℘ ×℘ →   as 

( ) { }1 1, : inf : ,m m
e CI A B t A te B= ∈ + 

 

( ) { }2 2, : inf : .m m
e CI A B t A te B= ∈ + 

 
for all ( )0,A B Y∈℘ , where inte C∈ . 

Proposition 3.1. [23] Let ( )0,A B Y∈℘  and ( )1 ,m
eI A B  be finite. Then, the 

following conditions are satisfied: 
(i) when B A−



 is compact and C is closed, 

( )1 1 , 0,m m
C eA B I A B⇔ ≤  

(ii) ( )1 1 , 0.m m
C eA B I A B⇔ <  

Next, two types of new monotonicity of the set-valued mapping will be de-
fined by the above nonlinear scalarization functions. 

Definition 3.2. Let , intX e CΩ ⊆ ∈ . A set-valued mapping :G YΩ  is 
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said to be 
(i) m1-monotonically increasing on Ω  iff { }*

* \ 0
X

k K∀ ∈ , one has that 

( ) ( )( ) ( ) ( )1 , , 0, , with .m
eI G y G x k y k x x y x y− > ∀ ∈Ω ≠

 
(ii) m2-monotonically increasing on Ω  iff { }*

* \ 0
X

k K∀ ∈ , one has that 

( ) ( )( ) ( ) ( )2 , , 0, , with .m
eI G y G x k y k x x y x y− > ∀ ∈Ω ≠

 
Remark 3.1. If G is a single-valued mapping and X Y= =  , K C += =  . 

It is easy to see that *K +=  . Therefore, k and e are all positive real numbers. 
Obviously, ( )k y ky=  and ( )k x kx= , thus 

( ) ( )( ) ( ) ( ){ }
( ) ( )( ){ }

( ) ( ){ }
( ) ( )

1 1, inf :

inf :

inf :

.

m m
e CI G y G x t G y te G x

t G x te G y C

t te G y G x

G y G x
e

= ∈ +

= ∈ + − ≠ ∅

= ∈ ≥ −

−
=



 







 
Then, 

( ) ( )
, 0, , .

G y G x
ky kx x y

e
−

− ≥ ∀ ∈Ω
 

Noting that 0k >  and 0e > , we have that 

( ) ( ) , 0, , .G y G x y x x y− − ≥ ∀ ∈Ω
 

We can see that G is reduced to the well-known monotonically increasing 
function. 

Definition 3.3. Let , intX e CΩ ⊆ ∈ . A set-valued mapping :G YΩ  is 
said to be 

(i) m1-monotonically decreasing on Ω  iff { }*
* \ 0

X
k K∀ ∈ , one has that 

( ) ( )( ) ( ) ( )1 , , 0, , .m
eI G y G x k y k x x y− ≤ ∀ ∈Ω

 

(ii) m2-monotonically decreasing on Ω  iff { }*
* \ 0

X
k K∀ ∈ , one has that 

( ) ( )( ) ( ) ( )2 , , 0, , .m
eI G y G x k y k x x y− ≤ ∀ ∈Ω

 

Similarly, if all the conditions in Remark 2 hold, we also can get that 

( ) ( ) , 0, , .G y G x y x x y− − ≤ ∀ ∈Ω
 

This shows that G is reduced to the well-known monotonically decreasing 
function. Next, we give an example to illustrate Definitions 3.2 and 3.3. 

Example 3.1. Let X =  , 2Y =  , { }1, 1Ω = − , K +=   and 2C +=  . Let 
( )1,1e = . A set-valued mapping :G YΩ  is defined by 

( )
( ) ( ) ( ){ }
( ) ( ) ( ){ }

T 2 2
1 2 1 2

T 2 2
1 2 1 2

, : 1 1 1 , 1,

, : 1, 1 , 1.

y y y y y x
G x

y y y y a y a a x

 = − + − ≤ == 
 = − + − ≤ ≥ = −
  

It follows from a direct computation that 
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( ) ( )( ) ( ){ }1 1 , 1 inf : 1, 1 1 0m
eI G G t t a t a C a− = ∈ + − + − ≠ ∅ = − ≤ 

 
and ( ) ( )( )1 1 , 1 1 0m

eI G G a− = − ≥ . For every *k K +∈ =  , we have that 
( )k x kx= . Then 

( ) ( )( ) ( ) ( )1 1 , 1 , 1 1 0m
eI G G k k− − − ≤

 
and 

( ) ( )( ) ( ) ( )1 1 , 1 , 1 1 0.m
eI G G k k− − − ≤

 
Hence, G is m1-monotonic decreasing on Ω . When 1a ≤ , we can find that 

G is m1-monotonic increasing on Ω . 

4. Semicontinuity of Solution Set Mapping 

In this section, we shall discuss the upper and lower semicontinuities of the 
m1-minimal solution set mappings ( )

imS ⋅  ( 1, 2i = ) of (PSOP) at 0λ ∈Λ . 
Lemma 4.1. Assume that ( ), :F X Yλ⋅   is m1-monotonically decreasing 

and bounded with compact values on ( )M λ  for each λ ∈Λ . Then, 

( ) ( ) ( )1, , , , .m
Cy x K F y F x x y Mλ λ λ− ∈ ⇔ ∀ ∈  

Proof. “Necessity”. It follows from the linearity of k, Proposition 2.1 (i) and 
y x K− ∈  that ( ) ( )k y k x≥  for all *k K∈ . Since ( ),F λ⋅  is m1-monotonically 

decreasing on ( )M λ  for each λ ∈Λ , we have that ( ) ( )( )1 , , , 0m
eI F y F xλ λ ≤ . 

This together with the compactness of ( ),F x λ  and Proposition 3.1(i) leads to 
( ) ( )1, ,m

CF y F xλ λ . 
“Sufficiency”. By ( ) ( )1, ,m

CF y F xλ λ  and Proposition 3.1 (i), we get that 
( ) ( )( )1 , , , 0m

eI F y F xλ λ ≤ . Since ( ),F λ⋅  is m1-monotonically decreasing on 
( )M λ  for each λ ∈Λ , we have that ( ) ( )k y k x≥  for all *k K∈ . It follows 

from the linearity of *k K∈  and Proposition 2.1 (i) that y x K− ∈ .   
Lemma 4.2. Assume that ( ), :F X Yλ⋅   is m1-monotonically increasing 

with compact values on ( )M λ  for each λ ∈Λ . Then, for any ( ),x y M λ∈ , 
one has 

( ) ( ) { }1, , \ 0 .m
CF y F x y x Kλ λ ⇒ − ∉  

Proof. Since ( ) ( )1, ,m
CF y F xλ λ  and ( ), :F X Yλ⋅   is compact valued 

on ( )M λ  for each λ ∈Λ , we get that ( ) ( )( )1 , , , 0m
eI F y F xλ λ ≤  by Proposi-

tion 3.1 (i). Besides ( ),F λ⋅  is m1-monotonicaly increasing on ( )M λ , so we 
have that ( ) ( )k y k x≤  for all #k K∈ . It follows from Proposition 2.1(ii) that 

{ }\ 0y x K− ∉ .   
Lemma 4.3. Assume that ( ), :F X Yλ⋅   is m1-monotonically increasing 

with compact values on ( )M λ  for each λ ∈Λ . Then, for any ( ),x y M λ∈ , 
one has 

( ) ( )1, , .m
Cy x K F y F xλ λ− ∉ ⇒   

Proof. It follows from the linearity of k, Proposition 2.1 (i) and y x K− ∉  
that ( ) ( )k y k x<  for some *k K∈ . Since ( ),F λ⋅  is m1-monotonically in-
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creasing on ( )M λ  for each λ ∈Λ , we have that ( ) ( )( )1 , , , 0m
eI F y F xλ λ ≤ , 

which implies that ( ) ( )1, ,m
CF y F xλ λ  by the compact values of ( ),F x λ  

and Proposition 3.1 (i).   
Theorem 4.1. Let 0λ ∈Λ . Suppose that the following conditions are satisfied: 
(i) M is continuous at 0λ  and ( )0M λ  is a compact convex set; 
(ii) ( ), :F X Yλ⋅   is m1-monotonically increasing with compact values on 
( )M λ  for each λ ∈Λ . 

Then, ( )
1mS ⋅  is u.s.c and closed at 0λ . 

Proof. Suppose that ( )
1mS ⋅  is not u.s.c at 0λ . Then there exists a neighbor-

hood 0W  of ( )
1 0mS λ , and for any neighborhood V of 0λ , there exists Vλ′∈  

such that ( )
1 0mS Wλ′ ⊆/ . Thus, there exists a sequence { }nλ  with 0nλ λ→  

such that ( )
1 0m nS Wλ ⊆/ , n∀ ∈ . This implies that there exists ( )

1n m nx S λ∈  
such that 

0 , .nx W n∉ ∀ ∈                        (1) 

It follows from ( )
1n m nx S λ∈  that ( )n nx M λ∈ . Since M is u.s.c with com-

pact values at 0λ  and by Proposition 2.2 (ii), there exist ( )0 0x M λ∈  and a 
subsequence { }knx  of { }nx  such that 0knx x→ . Without any loss of general-
ity, we assume that 0nx x→ . 

Now, we prove that ( )
10 0mx S λ∈ . Suppose that ( )

10 0mx S λ∉ , then there ex-
ists ( )0 0y M λ∈  with ( ) ( )0 0 0 0, ,F x F yλ λ≠  such that 

( ) ( )1
0 0 0 0, , .m

CF y F xλ λ                     (2) 

As M is l.s.c at 0λ  and by Proposition 2.2 (i), there exists ( )n ny M λ∈  such 
that 0ny y→ . It follows from (2) and Lemma 4.2 that 

{ }0 0 \ 0 ,y x K− ∉  
that is, ( ) { }0 0 \ 0y x X K− ∈  . Noting that 0nx x→  and 0ny y→ , we get that 

0 0n ny x y x− → − . Since 0 0y x≠ , we have that 0 0 \y x X K− ∈ . It follows from 
the closedness of K that n ny x K− ∉  for n large enough. By Lemma 4.3, we can 
get that 

( ) ( )1, , .m
n n C n nF y F xλ λ                     (3) 

On the other hand, from n ny x K− ∉ , we have that there exists { }*
0 \ 0k K∈  

such that ( ) ( )0 0n nk x k y>  by Proposition 2.1 (i). Since ( ),F λ⋅  is strictly 
m1-monotonicaly increasing on ( )M λ  for each λ ∈Λ , we have  

( ) ( )( )1 , , , 0m
e n n n nI F x F yλ λ ≤  and so ( ) ( )1, ,m

n n C n nF x F yλ λ/  by Proposition 
3.1 (i). This implies that ( ) ( )n nF x F y≠ . Combining with (3), we have 

( )
1n m nx S λ∉ , which contradicts ( )

1n m nx S λ∈ . Therefore, ( )
10 0mx S λ∈ . It fol-

lows form ( )
1 0 0mS Wλ ⊆  that 0 0x W∈ . Noting that 0nx x→ , we have 0nx W∈  

for n large enough, which contradicts with (1). Therefore, ( )
1mS ⋅  is u.s.c at 0λ . 

Next, we show that 
1mS  is closed at 0λ . Take ( )

1n m nx S λ∈  with 0nx x→  
and 0nλ λ→ . Since ( )n nx M λ∈  and M is u.s.c with compact values at 0λ , 
we obtain that ( )0 0x M λ∈ . Then by virtue of the same proof as above, we get 
that ( )

10 0mx S λ∈ . Furthermore, ( )
1 0mS λ  is compact by assumption (i) and 
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( ) ( )
1 0 0mS Mλ λ⊆ .   
Now, we give an example to illustrate Theorem 4.1. 
Example 4.1 Let X Z= =  , 2Y =  , [ ]0,1Λ = , ( ) [ ]0,1M Λ =  for each 

λ ∈Λ , K +=   and 2C +=  . Let 0 0λ = , ( )1,1e =  and set-valued mapping 
( ):F M YΛ ×Λ  as follows: 

( )
( ) ( ) ( ){ } ( ]

( ) ( ) ( ){ }
[ ] [ ] [ ]

T 2 2
1 2 1 2

T 2 2
1 2 1 2

, : 1 1 1 , if 0, 0,1 ,

, , : 1 , if 0, 0,

0,1 0,1 , if 0, 0,1 .

y y y y y x

F x y y y y y x

x

λ

λ λ λ λ

λ

 = − + − ≤ ≠ ∈

=  = − + − ≤ ≠ =

 × = ∈  

It is easy to see that the assumptions in Theorem 4.1 are satisfied. It follows 
from a direct computation that ( ) [ ]

1 0 0,1mS λ =  and ( ) { }
1

0mS λ =  when 
0λ ≠ . Hence, ( )

1mS ⋅  is u.s.c and closed at 0λ . 
Theorem 4.2. Let 0λ ∈Λ . Suppose that the following conditions are satisfied: 
(i) M is continuous at 0λ  and ( )0M λ  is a compact convex set; 
(ii) ( ), :F X Yλ⋅   is m1-monotonic decreasing and bounded with compact 

values on ( )M λ  for each λ ∈Λ . 
Then, ( )

1mS ⋅  is l.s.c at 0λ . 
Proof. Suppose that ( )

1mS ⋅  is not l.s.c at 0λ . Then there exist ( )
10 0mx S λ∈  

and a neighborhood 0W  of 0x , for any neighborhood U of 0λ , there exists 
Uλ′∈  such that ( )0W S λ′ = ∅ . Hence, there exists a sequence { }nλ  with 

0nλ λ→  such that 

( )
10 .m nW S λ = ∅                        (4) 

Since ( ) ( )
10 0 0mx S Mλ λ∈ ⊆  and M is l.s.c at 0λ , there exists ( )n nx M λ∈  

such that 0nx x→ . Therefore, 0nx W∈  for n large enough. 
Now, we prove that ( )

1n m nx S λ∈ . Suppose that ( )
1n m nx S λ∉ , then there ex-

ists ( )n ny M λ∈  with ( ) ( ), ,n n n nF x F yλ λ≠  such that 

( ) ( )1, , .m
n n C n nF y F xλ λ                     (5) 

Since M is u.s.c with compact values at 0λ , there exists ( )0 0y M λ∈  and a 
subsequence { }kny  of { }ny  such that 0kny y→ . Without any loss of gene-
rality, we assume that 0ny y→ . It follows from (5) and Lemma 4.1 that 

.n ny x K− ∈  
Noting that 0nx x→ , we get that 0 0 0 0 0 0n n n ny x y y y x x x y x− = − + − + − → − . 

By the closedness of K, we have that 0 0y x K− ∈ . Again from Lemma 4.1, then 
we get that 

( ) ( )1
0 0 0 0, , .m

CF y F xλ λ                     (6) 

Noting that ( )
10 0mx S λ∈ , then 

( ) ( ) ( ) { } ( ) ( )1
0 0 0 0 0 0 0 0 0 0 0, , for all \ and , ,m

CF y F x y M y F x F yλ λ λ λ λ∈ ≠  

which contradicts with (6). Hence, ( )
1 0n m nx S Wλ∈   for n large enough. This 

contradicts with (4). Therefore, ( )
1mS ⋅  is l.s.c at 0λ .   
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Now, we give an example to illustrate Theorem 4.2. 
Example 4.2. Let X Z= =  , 2Y =  , [ ]0,1Λ = , ( ) [ ]0,1M Λ =  for each 

λ ∈Λ , K +=   and 2C +=  . Let 0 0λ = , ( )1,1e =  and set-valued mapping 
( ):F M YΛ ×Λ  as follows: 

( )
( ){ } [ ] ( ]

( ){ } [ ]

T 2 2
1 2 1 2

T

, : 1 , if 0,1 , 0,1 ,
,

1, 1 , if 0,1 , 0.

y y y y y x
F x

x

λ
λ

λ

 = + ≤ ∈ ∈= 
 − − ∈ =
  

It is easy to see that ( ),F x λ  is m1-monotonic decreasing on ( )M λ . It fol-
lows from a direct computation that ( ) { }

1
0mS λ =  for each [ ]0,1λ ∈ . Hence, 

( )
1mS ⋅  is l.s.c at 0λ . 
Based on the similar technique as perviously shown, we also can get the fol-

lowing Corollaries. 
Corollary 4.1. Let 0λ ∈Λ . Suppose that the following conditions are satisfied: 
(i) M is continuous at 0λ  and ( )0M λ  is a compact convex set; 
(ii) ( ), :F X Yλ⋅   is m2-monotonic increasing and bounded with compact 

values on ( )M λ  for each λ ∈Λ . 
Then, ( )

1mS ⋅  is u.s.c and closed at 0λ . 
Corollary 4.2 Let 0λ ∈Λ . Suppose that the following conditions are satisfied: 
(i) M is continuous at 0λ  and ( )0M λ  is a compact convex set; 
(ii) ( ), :F X Yλ⋅   is m2-monotonic decreasing and bounded with compact 

values on ( )M λ  for each λ ∈Λ . 
Then, ( )

2mS ⋅  is l.s.c at 0λ . 

5. Discussion with Other References 

In this section, we shall give the comparisons between the results (Theorem 4.1 
and Theorem 4.2) in Section 4 and ones in [16] [21] [22] [25] [26]. 

Remark 5.1. The proof of Theorem 4.1 is different from one of Theorem 3.4 
of Preechasilp and Wangkeeree [25]. Moreover, in Theorem 4.1, we do not use 
converse m1-property for set-valued objective mapping F, which is applied in 
Theorem 3.4 of Preechasilp and Wangkeeree [25]. And the order relations we 
used are smaller than the set less order relations in [16] [21] [22] [26]. 

The following example is given to show that the converse m1-property in [25] 
is unnecessary in Theorem 4.1 for this paper. 

Example 5.1. Let X Z= =  , 2Y =  , [ ]0,1Λ = , ( ) [ ]0,1M Λ =  for each 
λ ∈Λ , K +=   and 2C +=  . Let 0 0λ = , ( )1,1e =  and set-valued mapping 

( ):F M YΛ ×Λ  as follows: 

( )

( )( ) ( ) [ ]
( ){ } ( ]

( ){ }

T 2 2
1 2 1 2

T

0,1 0,2 , if 0, 0,1 ,

, , : 1 , if 0, 0,1 ,

0,0 , if 0, 0.

x x x

F x y y y y y x

x

λ λ

λ λ

λ

 + × + ≠ ∈


= = + ≤ ≠ ∈

 = =
  

It is easy to see that the assumptions in Theorem 4.1 are satisfied. It follows from 
a direct computation that ( ) { }

1
0mS λ =  for each λ ∈Λ . Hence, ( )

1mS ⋅  is u.s.c 
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at 0λ . Besides, F does not satisfy the converse m1-property at ( ) ( )0 0, 0,1x λ =   
with respect to 0 0y = . Indeed, we obtain that ( ) ( )1

0 0 0 0, ,m
CF y F xλ λ . How-

ever, for any sequences { } 1 ,1
2nx  ⊆  

 
 with 0nx x→ , { } 10,

2ny  ⊆  
 

 with 

0ny y→  and { } 10,
2nλ

 ⊆  
 

 with 0nλ λ→ , one has 

( ) ( )1, , , .m
n n C n nF y F x nλ λ ∀  

Remark 5.2. It is worth noting that the proof of Theorem 4.2 is very different 
from one in Theorem 3.4 of Preechasilp and Wangkeeree [25]. In Theorem 4.2, 
we do not use m1-property for set-valued objective mapping F, which is applied 
in Theorem 3.8 of Preechasilp and Wangkeeree [25]. Moreover, we do not use 
the assumption (iv) in Theorem 4.2 of Xu and Li [21] and Theorem 4.2 of Liu 
and Wei [26] either. And the order relations we used are smaller than the set less 
order relations in [16] [21] [22] [26]. 

The following example is given to show that the m1-property in [25] and the 
assumption (iv) in Theorem 4.2 of [21] and Theorem 4.2 of [26] are dispensable 
in some cases. 

Example 5.2. Let X Z= =  , 2Y =  , [ ]0,1Λ = , ( ) [ ]0,1M Λ =  for each 
λ ∈Λ , K +=   and 2C +=  . Let 0 0λ = , ( )1,1e =  and set-valued mapping 

( ):F M YΛ ×Λ  as follows: 

( )
[ ] [ ] [ ]

( ) ( ) ( ){ } ( ]

( ){ }

T 2 2
1 2 1 2

T 2 2
1 2 1 2

0, 2 0,1 , if 0, 0,1 ,

, , : 1 1 1 , if 0, 0,1 ,

, : 1 , if 0, 0.

x x

F x y y y y y x

y y y y y x

λ λ

λ λ

λ


+ × ≠ ∈


= = + + + ≤ = ∈

 = + ≤ = =
  

It is easy to see that the assumptions in Theorem 4.2 are satisfied. It follows 
from Example 4.5 of [26] that the assumption (iv) in Theorem 4.2 of [21] and 
Theorem 4.2 of [26] does not hold. Besides, F does not satisfy the m1-property at 
( ) ( )0 0, 0,1x λ =  with respect to 0 0y = . Indeed, we obtain that  

( ) ( )1
0 0 0 0, ,m

CF y F xλ λ . However, for any sequences { } 1 ,1
2nx  ⊆  

 
 with 

0nx x→ , { } 10,
2ny  ⊆  

 
 with 0ny y→  and { } 10,

2nλ
 ⊆  
 

 with 0nλ λ→ , 

one has 

( ) [ ] [ ] [ ] [ ] ( )1, 0, 2 0,1 0,2 0,1 , , .m
n n n n C n n n nF y y x F x nλ λ λ λ= + × + × = ∀  

By a direct computation that ( ) { }
1

0mS λ =  for each [ ]0,1λ ∈ . Hence, 
( )

1mS ⋅  is l.s.c at 0λ . 

6. Conclusions 

By using two scalarizing functions which are proposed by partial order relations, 
some new monotonicity concepts of set-valued mapping are introduced in this 
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paper. The continuity of the solution mapping for a parametric optimization 
problem is obtained under these kinds of monotonicity concepts and some suit-
able assumptions which do not need the continuity of the set-valued objective 
mapping. Especially, when we give the lower semicontinuity of the solution 
mapping, we do not use assumptions presented in [21] [25] [26]. And the order 
relations we used are smaller than the set less order relations in [16] [21] [22] 
[26]. 

The findings of the paper are summarized as follows. 
(i) We put forward some new monotonicity concepts of set-valued mapping. 
(ii) Under new assumptions which are different from ones presented in [21] 

[25] [26], we give the lower semicontinuity and the upper semicontinuity of the 
solution mapping of the problem (PSOP) with partial order relations. 
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