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Abstract

The most interesting and famous problem that puzzled the mathematicians
all around the world is much likely to be the Fermat’s Last Theorem. Howev-
er, since the Theorem was proposed, people can’t find a way to solve the
problem until Andrew Wiles proved the Fermat’s Last Theorem through a
very difficult method called Modular elliptic curves in 1995. In this paper, I
firstly constructed a geometric method to prove Fermat’s Last Theorem, and
in this way we can easily get the conclusion below: If a and b are integer
and a b, neQ and n>1, the value of ¢ satisfies the function

a"+b" =c" that can never be integer; if a, band care integer and a=b,
nisinteger and n> 2, the function a"+b" =c" cannot be established.
Keywords

Pythagoras Theorem, Fermat’s Last Theorem, Geometric Method, Equation
of Degree nwith One Unknown

1. Introduction

The Fermat’s Last Theorem was proposed by French famous mathematician
Pierre de Fermat in 1637, it was called the last theorem because it was the theo-
rem of Fermat that can be proved at last, which means to prove the theorem is
very difficult. The Fermat’s Last Theorem states: there is no positive integer a, b
and cto satisfy the function a" +b" =c" (1) when nis integerand n>2 [1].
Many mathematicians paid attention to this theorem, and they found it not as
easy as it looks like. In 1753, the famous Swiss mathematician Euler said in a let-
ter to Goldbach that he proved the Fermat conjecture at n = 3, and his proof was
published in the book Algebra Guide in 1770 [2]. Fermat himself proved the
Fermat conjecture at n = 4 [3]. In 1825, the German mathematician Dirichlet
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and the French mathematician Legendre independently proved that Fermat’s
theorem was established at n = 5, using the extension of the method used by Eu-
lerasin [2]. In 1844, Kummer proposed the concept of “ideal number”, he proved
that for all prime indices n less than 100, Fermat’s theorem was established, and
this study came to a stage [4]. But the mathematicians still struggled with Fer-
mat’s theorem in the first two hundred years of the conjecture with little
progress. What’s more, many theorem were proposed in order to prove the
Fermat’s Last Theorem, such as Modell conjecture, Taniyama-Shimura theorem.
After proving the Taniyama-Shimura theorem, Andrew Wiles finally got a way
to prove the Fermat’s Last Theorem in 1995 [5].

At first, people wanted to prove that the Fermat’s Last Theorem was estab-
lished at different indices z, but the indices n is infinite, this method is meant to
be failed. Then, people tried to propose another theorem to indirectly prove the
Fermat’s Last Theorem, but the relationship between two theorems is not very
clear, thus the proof is hard to be verified.

To prove the Fermat’s Last Theorem, I got inspiration from the Pythagoras
Theorem. As we all know the Pythagoras Theorem: the sum of the squares of the
two right-angled sides of a right-angled triangle is equal to the square of the hy-
potenuse, let the length of two right-angled sides be a and b, and the length of
hypotenuse is ¢ then a?+b?=c? (2) [6]. What’s more, if a, band c satisfy the

function (2), the angle (6) between a and b must be g If a, band csatisfy the

function a" +b"=c" (1), what is the relationship between nand & This paper
discusses the relationship between n and 6, and in this geometric method, we

can easily prove the Fermat’s Last Theorem.

2. Proof

2.1. Geometric Construction

A triangle has three sides, a, b and ¢ respectively. Firstly, let us discuss an easy
condition: a = b.

As we can see in Figure 1, the point O is the center of circle, the radius of the
circle is r, the point A and B are on the circle, and A is fixed, B can move to B’ (B’
is B1, B2, ..., shown on the circle), connect point O, A and B to form a triangle
AOAB. The length of each side of AOAB is: OA = a, OB = b, AB = ¢ and
a=Db=r,theangleof ZBOB'=6.

If /BOB'=0=0 (B’=B), then AB=Cc=a+b=2r, a, b and c satisfy the
function a" +b" =¢" (2), in this condition, n= 1.

If /BOB'=6 :g (B’= B3), according to Pythagoras Theorem:

AB? =c? =a’ +b?, a, b and c satisfy the function a" +b" =c" (1), in this con-
dition, n= 2.

In general condition: ZBOB'= 0, because of BB' L AB’, then Cc= 2rcosg ,

if a, band csatisfy the function a" +b"=c" (1), then
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Figure 1. The Geometric construction to prove Fermat’s Last

Theorem (a = b).
n
2r" = [Zrcosgj
2

1
2" :2cos€
2

1 o
Hz Iog{ZcosEj = Iogz(%j 3)

The function (3) shows the relationship between n and &, function (3) is the
necessary and sufficient conditions of function (1). We can draw the function (3)
as Figure 2. (6 €[0,7]).

1) When 9=2—;—e,(e>0 and ¢—0),

o0 T € b8 € . M . €
2C0S— = 2€0S| ——— |=2| C0OS— *COS— + Sin— *Sin—
2 3 2 3 2 3

, then
¢ e 3
=C0S—++/3sin——>1+—¢
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2) When 3  ,(e>0 and €e—0),
Zcos§=2003 A P cosE*cosi—sinE*sinE
2 3 2 3 2

B3

€ . €
= 05— —~/3sin— —>1- =
2 2 2

1 0 3 ) o1
—=log,2cos——>log,|1-—¢ |, ——
L_og, 2005 gz( 2][

, then

—0,and l<O,n—>—oo
n
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Figure 2. The relationship between 1, fand c(a= b).

3) When @d=n—¢,(e>0 and ¢—>0),

0 T € T € . T . €

2C0S— =2C0S| ——— | = 2| COS—* COS— +SIiN—*Sin —
2 2 2 2

, then

=0+sins > +<
2
1 0 €
2 =log,2c0s—~ - log,| < | > -0, N0
SN

If a=b=r isinteger, NeQ, then n:§>l, (p,a)=1, pand g are posi-

tive integer.

Il
N
Il

20052 - ¢ 3)
2 r

1 1a
If ¢ can be a positive integer, 2" must be a rational number. If 2" =2° is
oot t
rational number, then 2P =—, (t,5)=1, rand sare positive integer, 0<—<2.
S S

a\r P

4 \q _

{znj =(£]“=2 )
S

(t)p =21 (S)p (5)
t, s, p, qare positive integer, so 27 is an even number, then ¢is an even number,

let £= 2k (kis positive integer),
(2k)" =27(s)"

2P kP =P (6)
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n =£>l, p>(q, p, gare positive integer, then (p—q)>0 and (p—q) is
q
positive integer, so 2" is even number, and (S)p is also an even number,

then s must be an even number.
Above all, we can prove that #and s are even number, which is contradictory
19

- 5 C
with ('[,S) =1, therefore, 2" =2° == is irrational number, ris integer, then ¢
r

must be irrational number.
In summary, &, b and c are the 3 sides of triangle, if a=b=r is positive
integer, n is rational number (nN=>1), and a, b, c satisfy the function

a"+b"=c" (1), onlyif n=1, ccan be integer, the relationship between nand 6

1 0 c
—=log,| 2cos— |=log,| —
1o 20e 2 -ton 1)

2.2. The Proof of Fermat’s Last Theorem

is:

The Fermat’s Last Theorem is:
a"+b"=c" (1

When nis integer and n > 2, the function (1) has no positive integer solution,
which means a, band ccan’t be positive integer at the same time or when a, b,
and c is positive integer, n is integer and n> 2, the function a"+hb"=c" (1)
cannot be established.

First of all, we have to prove the value of a, b, cin the function (1) can form a
triangle.

If n is integer and n>2, a, band care more than 0, then:

a"+b"=c">a",s0 c>a;y

a"+b"=c">b",s0 c>bh;

a"+b"=c"<(a+b)",s0 c<a+b

Therefore, a, b, and ¢ can certainly form a triangle AOAB [7], and the triangle
AOAB is shown in Figure 3.

In the section of 1.1, we have proved that the value of ¢ in the function (1) is
irrational even if z is rational (n>1) when a=b=r and ris positive integer.
To prove the Fermat’s Last Theorem, we have to prove another condition: if a, b
and c is positive integer, and a=b, the function a"+b"=c" (2) can not be
established when nis integer and n> 2.

Similarly, we can also construct the geometric method as same as the section
of 2.1. The geometric graph is shown in Figure 3. As shown in Figure 3, OA =
a, OB = b, and let a > b, the point of B can move to B’ on the circle which
centered on point O and the radius of the circle is 5. Connect point O, A and B
to form a triangle AOAB, the angle of Z/BOB'=6, AB’=c. a, band care the
length of the 3 sides of AOAB, so their value are more than 0.

So AB?=c?=(a+bcosd)’ +(bsind)’ =a® +b? + 2abcos O
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Figure 3. The Geometric construction to prove Fermat’s Last
Theorem (a#b andlet a>h).
If #=0, c®=a’+b’+2abcosd=a’+b’+2ab=(a+b)’, c=a+b,n=1.
If H:g, c®=a’ +b*+2abcosd =a’ +b?, n = 2, and the value of a, b, ¢
can be integer.
If 6 ;ég and 0#0, a and b are positive integer, a, b and c satisfy the
function (1), then:

a"+b"=¢c" = (a2 +b%+ 2abcos@)E

¢ =+/a? +b? + 2abcosd = Va" +b" (7)

Function (7) shows the relationship between a, b, n and 6, what’s more,

function (7) is the necessary and sufficient conditions of function (1), so:

c=+a? +b? + 2abcosd =+/a? + b + 2ab — 2ab + 2abcos

c:\/(a+b)2—2ab(1—cose) (8)

if cis integer, according to function (8), c<(a+b),let c=(a+t), tis integer
and O<t<b.

c?=(a+t)" =(a+b)" —2ab(1-cosd)
(2a+b+t)(b—t)=2ab(1-cosd) 9)

a, band ris integer, so (2a+b+t)(b—t) is integer, then cOS® must be ra-
tional. Letcos@ = R , and R is rational.

1) When ee(o,gj, Re(1,0)
(a” +b" )2 =a?" +2a"p" +b*" (10)
(c”)2 = (a2 +b%+ 2abcosé’)n > (a2 + bz)n

=g +C1a2(n71)bzx1 +C2a2(n72)bzxz + _“+Cna2(n—n)b2xn

(11)

So a2 +2a"b" +b?" < (a2 + bz)n <c®™, a"+b"<c" (12).
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Therefore, when @ e [0,%} , Re (1,0) , c=+a?+2Rab+b? and ¢ can be

integer, nis integer and n>2, if a, bis positive integer, the relationship between

a, b, cand nmustbe a"+h" <c", no matter cis integer or not.
2) When 6 e (g,n} Re(0,-1)

Because of a"+b"=c", nis integer and n > 2, so that c> a and ¢ > b

However, if B’ = B; (B; is the intersection of the two circles in Figure 3),
0 =/BOB, = g + arcsin2£ (please see Figure 3.), it means
a
AB'=AB;,=A0=c=a, and if §=2/BOB'>/BOB,, AB'=c<a (Accord-

ing to Euclid’s Elements, big angle to big side) [7], so if O € [g+ arcsinzi,n} ,
a

the valueof c< a.

Therefore, if 0 ¢ £,£+arcsin£ ,Re —L,O , then ¢> a, and there is
2 2 2a 2a

possible to make the function a"+b"=c" to be tenable when n > 2. Let
c:(a+t), tisintegerand O<t<b, a>b+1, then

a"+b"=c"=(a+t)" >(a+1)" (13)

(a+1)'=a"+Cla"V +C2"? 4. 11 (14)

So, if the function a"+b" =c" is established when n is integer and n > 2,
a > b, we can get:
a"+b">a"+Cla" +c2a"? 4.+ C"Yal 41 (15)
cta™ +cta™? +...41_Ch(b+ 1)(H) +CZ(b +l)("_2) I
1> D =
b" b"
If b =1, according to function (15), 12Cia(nfl) +Cfa(n72) +---+1 can’t be

established; if 5 > 1, according to function (16), there are two conditions that

(16)

need to be discussed:
1) Nz b+1, then

C,ll(b+l)(nfl) +CZ(b +l)(n72) +o41
brl
g (b+1)(b+1)(n71) +(b+l)(b+1)(n72) +-+(b +l)(b+1)1+b+1+1—b—1

bﬂ
((b+1)" -1 1
—[W‘(b”)]W

(b+1)" ~1-b(b+1)
= bn+1 >

(which is contradictory with function (16))
Therefore, if 5> 1and n>b+1, the relationship between a, b, cand n must

be a" +b" <c", the function (16) can’t be satisfied.

2) 2<n<b+1, then
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a"+b"=c"=(a+t)" (17)

a"+b"=a"+Cla" Mt +C2a" I 4t
"+ C"Yalt"™ 4. c2a" P2+ Cla" Mt -b" =0 (18)
If there exists a positive integer c to satisfy the function (17), then ¢ must be a
integer, and the value of ¢ is the solution for the equation of degree n with one
unknown in function (18), and the solution of #in function (18) is also the solu-

tion of ¢in function (17).

Obviously, one of the solution of ¢in function (17) must be:

t=-a=xVa"+b" (if niseven number) (19)
t=—a-+<a" +b" (if nis odd number) (20)

In this paper, we only discuss the condition of 0<t<b, so the value of ¢sa-

tisfies the requirement is:

t=—a+va"+b" (21)

Therefore, we have found a solution for the equation of degree n with one
unknown in function (18), and the solution of ¢is the function (19) and (20).
For example: let @ =2, =1, and n =5, so the function (18) is equal to the

function shows below:
t°+10t* + 40t* + 80t* + 80t —1=10 (22)
According to function (20), we can easily get the solution of ¢in function (22) is

t=—2+32°+1°=-2+%33 (23)

This is a special example of the solution for the equation of degree n with one
unknown. However, how to find the solution for the arbitrarily equation of de-

gree n with one unknown as function (24):
AL+ Ayt e A+ AL-B =0 (24)

Let’s discuss the question in the next Section 2.3.
According to function (18), we can transform it to the function (25):
bn
"+ CYalt" 4 cZa" I 4 Cla Y = = (25)
n n n
t

tis a positive integer, so the left side of the equal sign in function (25) must be a
L b" e
positive integer, therefore, the value of s must be a positive integer.

n
Let the value of e m, and m is a positive integer, then

"+ C"Yatt"? 4. cZa" Pt 4 Cla" Y —m =0 (26)

Therefore, we have to find the value of #in the function (26), and determine if
the value of #can be an integer. If fcan’t be a positive integer when n>3, then

the Fermat’s last Theorem is right.
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1

If n= 1, the function (26) is equal to 1-m =0, then szl, t=b,so

c=a+t=a+b;

bZ
If n =2, the function (26) is equalto t+2a-m=0,then —=t+2a,
t? + 2at =b?, so a2+b2:a2+t2+2at:(a+t)2:cz.

Therefore, if n =1 and n = 2, the function a" +b" =c"

can have integer so-
lution.

If n= 3, the function (26) is equal to t? +3at+3a? —m=0, then
_ —3at+4m-3a’
2 b
The value of # must be integer and 0<t<b, then 4m-3a’=R%’

positive integer, thus, 4m = Ka®?, K-3=R?, K=4,71219,---,
R=12,34,:--, then:

, R? isa

(o -3a++4m-3a° (R-3)a

2 2
b_3:m: Ka? _ (Rz +3)a2
t 4 4
b (R*+3)a’ _(R-3)a (R*+3)(R-3)a’
4 2 8

a 2
b=§3(R +3)(R-3)
Therefore, (R2 +3)(R —3) must be a positive cubic number, so R>3. Let
(R2 + 3)(R -3)=(R-a)’, a is positive integer, then:
R®-3R?+3R-9=R*-3aR*+3a’R-a’
If a=1, R*-3a¢R*+3¢°R-a*=R*-3R*+3R-1>R?
R®-3aR’ +3a’R-a’~(R°~3R* +3R -9)

2
=—3R2+9R+1:A=—3(R—§J L
2) 4

—-3R?+3R-9

If a=2,

Because R is positive integer and R >3,A <0, so,
R®-6R*+12R-8<R*-3R*+3R-9
R’ -3aR’ +3a’R-a’~(R*~3R* +3R -9
If =3, ) , Because R is positive
— —6R? +24R—18:A:—6[(R—2) —1]

integer and R>3,A <0, so, R®-9OR?4+27R-27<R*-3R?+3R-9
If a=a,and « >3, then,

R®-3aR* +3a’R - o’ ~(R®-3R* + 3R - 9)
=—(32-3)R* +(3a” -3)R—(a’ -9)

-(3a-3)[R*~(a+1)R]-(a*-9)
:A:_(ga_‘g){R_(a;lﬂ L0 +30" 30 +33

4
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When a=4, ot 3a4— S0 +33 2 Because R is positive integer and
R>3A<0,s0, R®*-3aR*+3¢’R-a®*<R®*-3R?+3R-9

When a =5, o 3az4_ 30433 =-8, No matter what the value of R is,
R®-3aR* +3a’R-a®<R*-3R*+3R -9

The function f(a)=-a’+3a’—3a+33 is monotonically decreasing func-

tion when a>5, so f (a) < -8 when a>5, therefore, No matter what the
value of Ris, R®-3aR*+3a’R-a’<R°-3R*+3R-9.

Thus, (Rz + 3)(R - 3) = (R - 0:)3 can’t be established when « 1is positive
integer, and (R2 +3)(R —3) can’t be a positive cubic number, therefore, the
value of b can’t be a positive integer.

In conclusion, if n = 3, and the solution of #in function (26) is positive integer,
but the value of b can’t be a positive integer, thus, the Fermat’s Last Theorem is

established when n =3.

2.3. The Solution for the Equation of Degree n with One Unknown
How to find the solution for the arbitrarily equation of degree n with one un-
known as function (24):

t" + ﬁnfl)t("'l) 4+ AP+ At-B=0 (24)

This paper only discusses the real solution of function (24). As we already

known, the solution of ¢#in the function (18) is

t=—a+</a" +b" (if niseven number) (19)
t=—a+</a" +b" (if nis odd number) (20)

So, the function (24) can be deformed as function (27):

A (t” +CIM (" 4y c2a" 2 4 Cla" P — bn)

(n-1) (n-2) 414 (n-2) 2 n 2):2 1 (-1
+B, (t +C )at ~+Cl t°+C 2t b(n_l)) 27
+Bioy) (t(”’2 + C(njz)alt (=3 4 C(anz)a(”"‘)t2 + C(lnfz)a(”’“")t - b(nfz))

+-+B, (t2 +Cja't! —b2)+ B,(t-b)=0
The coefficients in function (27) are shown below:
By =(Any - chgn_l)al)
Bz =| Any ~ ACH 2% - B, ,Cl1 " |
<[ A~ ACT " (A, - ACT )|

B, = [Az - Ahcr?a(niz) - B(nfl)C(znfl)a(niz) - B(nfz)C(znfz)a(n%) T Bacszal}
= |:A1 chl " B(n-1)C(ln-1)a(n71) - B(n—z)C(ln—z)a(nis) T Bzcéal}
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A'|bn + B(n—l)b

o) ¥ Bo-g)Ba_z) + -+ B, + B =B (28)

(n-2)"(n-2)

The solution of tin the function (27) is #( k), and the value #(k) after substitut-

ing the equation coefficient with A, B(n_l), B( -,B, and B, in the function

n—2)"
(27) is zero. According to the function (19) and (20), we can easily get the value
t(k)(k=12,--,n) are:

As O<t<b,so:

t(n)=-a+{a"+b,
t(n-1)=-a+™Ya" ¢ Bina)
t(n-2)=-a+"3a"?+p,

t(2)=-a+3a’*+b,
t(1)=b

If we want the function (27) to be established, then all the value of #(k) must
be equal, and we can find the solution for the equation of degree n with one un-
known. We can set the value of 2 and a#0, so here are n equations and we
have to find the solution of b,,b,,---,b,, and the solution can be found.

1) Part one: let’s find the solution for the random equation of degree 3 with

one unknown, the equation is shown below:
AL+ AP +At-B=0 (29)
The function (29) can be deformed as:

A(t+3at® +3a’t by ) + (A — A;x3a’ )t—(B— Ap,) =0 (30)

and A;x3a=A,, a:%

we can easily get the value t(3) and t(1):

In order to make the function (29) to be established, the value of t(3) and
t(1) must be equal, let t(1)=t(3)=m, then:

(i
b3:—3A3
A
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3 3 3 B—m(Ai—Azzj
) e el
3A; 3A; 3A; A

{ AZT _“‘%(mi}zwm%%—z@

mt—2| =--——3
3A, A, 3A, 2TA
Let m+izw,then:
3
W3+3A1A3_A22W_27A§B+9A1A2A3_2A23:0 (31)

3A? 2TA

According to the Cardano Formula of the General Solution of Cubic Algebraic

Equations [8], the real solution of function (31) is:

S ERHROR R DRCIC
2 \2) "3 2 \\2) "3
_3AA-A

3A;
__2TAJB+9AAA -2A
- 27A

p

A

Therefore, the solution of ¢satisfy the function in (29) is t= —3— +W

For example, Let’s find the solution of t in the function (33) below:

2t +3t° +4t-5=0 (33)
_3AA-A 5
P= e g
_ _2TAB+9AAA-2A 13
- 27A 4

2 3 2 3
we B, (Ej +(ij 18 (Ej +(3J ~1.20393969
s \s) "l12) "\ \ls) "1

so the real solution of ¢in the function (33) is t= —% +w = 0.70393969

If n = 4, the function (26) is equal to the function (34) shows below:

t® + 4a't? + 6a’t! —(m —4a3) =0 (34)
0= 3AA-A _2a°
3AZ 3
__2IKB+9AAA 2K 2088
27A33 27
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The value of uzin the function (35) must be a integer, therefore,

108 m) (2a?) . : :
ETEr) + e must be a positive square integer, otherwise, the value of

wcan’t be a rational number.
Let m=2k a =3s kand sis positive integer, then:

o5 5 o

Obviously, if (1053 - k)2 =K3°%, K?+8=R?, Kand Ris a positive integer,

under this condition, the value of u can be a integer. Then, K?2=18,17,28,-,

R=3456,--,and u=+Rs® However, the value of X must be a positive square
integer, a positive square integer plus 8 is still a square integer, only when
K2=1R?*=9 can satisfy the requirement, then k = 9s® or 11s®, u=+3s°.

p=2—§2=6s2
__ZIABHOAAA 2R 2000 | ono oy -
27R 27
When k =9s°
W=§/S3+(i3s3)+§/53—(i333)=§/ZS+§/—_ZS
When k =11s°

w= 3/—53 +(+35°) +§/—s3 —(#35°) = /25 + ¥-4s

Absolutely, the value of wis irrational, therefore, the solution of  satisfy the
function in (34) is t=-12s+Ww is irrational.

In conclusion, if n = 4, the solution of ¢in function (26) is irrational, thus, the
Fermat’s Last Theorem is established when n = 4.

2) Part two: let’s discuss the solution for the random equation of degree 4
with one unknown, the equation is shown below:

At' + A+ AP+ At-B=0 (32)
The function (32) can be deformed as:

A, (t* +4at’ + 6a°t” +4a’t —b, )+ ( A, — A, x6a°)t’

(33)
+(A - A x4a’)t—(B-Ab,)=0
and A, x4da=A, a=i
4A
DOI: 10.4236/apm.2020.103009 137 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2020.103009

Y. F. Xia

we can easily get the value t(4) and t(2):

t(4)=—%+4[%]4+b4
-1 (S IS VI
{r )

Similarly, in order to make the function (33) to be established, the value of
t(4) and t(2) mustbeequal,let t(4)=t(2)=m, then

B-(‘»-iit%“(ﬂaé’k}m
A,

b, =

4]
4A, 4A,

4 B—[ —3A32]m2—(A1— Agzjm
:[ij . 8A, 16 A’
4A, A,

(m+i] +M[m+ij
4A, BA’ 4A,
_BAAN-SAA-IBAN+A( A
16A} 4A,
128K8 +BAATA, ~L6A A, +6AIA +32A A — A

N 128A¢

A

Let m+—=w, then:
4A,

w+ pw +qw+r=0 (34)

p=8AA3A
84
_BAAN - 3IAA 16AA + A
16A°
128K +8AA A, ~L6AA A +BALA, +2AAA — A
128A;

q:

r =

then the function (34) can be transformed to the function (35):

wt + pW2+qW+r=(W2+kW+u)(W2—kW+V)=O (35)

(WZ+kw+u)(w2—kw+v)=w4+(u+v—k2)wz+k(v—u)w+uv
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Then we can get:

p=u+v-k?
q=k(v-u)
r=uv

We can set a value for kand k#0, p, ¢ and rare the known number, there-
fore, we can find the value of uand vare:

3
u=k + pk—q
2k
3
v=k + pk +q
2k
k3+pk—q><k3+pk+q_r
2k 2k
k®+2pk* +(p* —4r)k’ —g* =0 (36)

Let k? = x, then the function (36) can be deformed as :
X +2px* +(p* —4r)x—q° =0 (37)

Now, the problem is transformed to find the solution x for function (37), ac-

cording to the results of Part one, we can get the solution xis:

At CRER SR ORI
2 2 3 2 2 3
o S(P-4r)-4p°  ptator

3 3

2797 +18(p’ - 4r)p-16p°  27¢® —72pr +2p°
B 27 B 27

And the solution X = _Z?p +W

ke =k, =+x = —%p+w

- kg + pko —-q
2k,

0

L _ Kt pko+g
° 2k,

(W2 +k0W+U0)(W2 —kow+v0)=0

Then the solutions win the function (35) are:

W - —k, ++/k —4u,
1,2 - 4
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Therefore, the solution of #in the function (32) are:

t,= _i + Wy,

4A,

L=~ +W;,

4A,

For example, Let’s find the solution of ¢in the function (39) below:

t*+2t3 + 32 +4t-5=0
_8AA-3A7 3
8A 2

BAAK -3NA -16AN+ A
16A

p

q:

r =
128A;

p’+12r
3

279 =72pr+2p° _
27

P=- 25

Q= -30

128K18 + BAAA, ~16AAA, + BAIA, + AAN A

(39)

103

16

W= i/_9+ (9)2 +(ET +§/—9— (gjz +(Ej3 ~1.14063859
2 \\2) "3 2 \2) "3

X= _2p +W = -1+1.14063859 = 0.14063859

3
k,=~/x = /-%p +W ~0.37501813

u =k13+pk1_q

) ~—1.8462185
2k,

v, = ki Pki+0 3 4e685708
2k,

—k. +./k?—4u
- %\/71 ~1.18412432 or —1.5591424

k,=—/x = —%p +W ~-0.37501813

_ k23+ pkz —-q
2k,

~ 3.48685708

2

_ k3t pk,+q
2%,

v, —-1.8462185

—4u
W, , = fz =0.1875091+1.8578744i or 0.1875091—-1.8578744i
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Therefore, the solutions of #in the function (32) are:

t, =3 4w, ~0.68412432 or —2.0591424
d 4A4 i

t, =——2 L, ——0.3124909-+1.8578744i or —0.3124909—1.8578744i
1 4.A4 il

Similarly, if n =5, the function (26) is equal to the function (40) shows below:

t* +5at® +10a’t? + 10a’t* — (m - 5a4) =0 (40)
8 —3A% 5
b= AA : A 5,
8AL 8
q__8A2A3A5—3A33A4—16A1A§+A33 5.
16A° 8

12858+ BAAA, ~16AAA +6AA +2AMA — A o0
_ =——a —Mm

r=

128A; 256
2
p__pi+lor_, 10,
3 3
0 _279°-72pr+2p°  45ma’-25a°
27 27

v 8 )
2 2 3 2 2 3
ST e
2 3 54 54 3 9

The value of uzin the function (41) must be a integer, therefore,
25a°  45ma’ ? NELN 10a*
54 54 3

the value of wcan’t be a rational number.

3
] must be a positive square integer, otherwise,

Let m=ka*, kis positive number, then:

2 3
U= (25—45'(] a12+(12k_10] alz — ’az+,3336
54 9
—g+u:(—a+\/a2+ﬁ3)a6

2
w :i/—a+«/a2+ﬂ3a2+$/—a—w/a2+ﬂ3a2 =(K+S)a’

x=—2—p+W =—£a2+(K+S)a2
3 12

k, = +V/x = +a /(K+S)—%=iya
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Obviously,

(K+S)-—=
—a’-—a
2 16 16y

Ko
QO

5
kZ —4u, :[(K+S)—E}a2—4

(5.5 e
4y 4
aZ
must be a square number, then F[Sy —5y? - 4},4] must be a square number,
4

[57 ~5y% — 474] =6%= (u;/2 - v)2 =v? —2uvy’ +u?y! (42).
Clearly, the function (42) can’t be established, therefore, the value of w is irra-

5
tional, and the solutions of ¢ satisfy the function in (40) is t= —Za +W is irra-

tional.

In conclusion, if n = 5, the solution of ¢in function (26) is irrational, thus, the
Fermat’s Last Theorem is established when n = 5.

3) Part three: let’s discuss the solution for the random equation of degree 5

with one unknown, the equation is shown below:
AP +A + AL+ AP +At-B=0 (43)
The function (43) can be deformed as:

A(t° +5at* +10a°t° +10a°t’ + 5a't —b; ) + ( A, — A x10a° )t°

(44)
+(A, - A x102°)t* + (A - A x5a* )t - (B - Ab;) =0
and A x5a=A,, a:i
oA
The function (44) can also be deformed as:
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A(t° +5at* +10a%"° +10a%" +5a't — by ) + (A — A x10a’ )(t* + 3ct® + 3c’t — by
+[ A - A x5a* - (A - A x10a*)x3¢” [t - B Ab, —(A — A x10a’ )b, | =0
_ A (A= A x10a7)x3c = (A - A x10a%), c—_te=AXI0L

and a_SAs, (A, — A x10a%)x3c = (A, - A x10a°), ¢ 3 A< 10)
We can easily get the value t(5), t(3) and t(1):

t(5)=-a+3a’+b

t(3)=-c+3/c®+b,

(@)= B - Al — (A, — A x10a% )b,

A - A x5a* — (A - A x10a*) x 3¢’

In order to make the function (43) to be established, the value of t(5), t(3)
and t(1) mustbe equal,let t(5)=t(3)=t(1)=m, then,

i B—AS[(era)s—as]—(As—A5><10a2)[(m+c)3—03}

m A - A x5a’ - (A - A x10a% ) x 3¢? 4
The function (45) can be arranged as:
W+ pW + oWl +rw+s=0 (46)
m+a=w
0= A, - A x10a®
A
(A - A x10a%)x3(c-a)
q‘ A
(A= Ax100%)x3(c—a) +[ A - AxBa’ —(A - A x10a%) x3c’ |
) A
) (A — A x10a%)(c-a)’ —a[Al — Ajx5a’ — (A - A Xlan)X3C2:|— B-Aa’—(A - A x10a%)c®
o A
The function (46) can be deformed as:
W(W4+ pW2+I’)+(qW2+S)=0 (47)
Let w? = x, then the function (47) can be deformed as:
w(x2 +pX+ r)+(qx +8)=w(gx+8)(ax+ )+ (g +s)
=(gx+s)[w(ax+p)+1] (48)
= (qw? +5)(ow’ + pw+1)
If p, 1, a, B satisfies the condition (49) below:
ga =1
sp=r
(49)

5a+qﬁ:sl+q£: p
g s

s’ +q°r = pgs

DOI: 10.4236/apm.2020.103009 143 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2020.103009

Y. F. Xia

Therefore, if p, g, 1, s satisty the function (49), the solution of the function (48)

S
W1,2:—1’_a
2 3 2 3
e 4 (& (0
45 2 2 3s 2 2 3s

But, if those conditions can’t be satisfied, then the function (46) can’t be de-

are easy to be found.

formed as function (47), so we can deform the function (46) to function (50):
(w3+dwz+ew+f)(wz—dw+g)=0 (50)
The unknown number d, ¢, £ g satisfy the relationship (51) below:
e—-d*’+g=p
f-de+dg=q
—df +eg=r
fg=s

(51)

There are four functions in (51), so we can solve each value of the unknown
number d, ¢, £, g then the solution for the random equation of degree 5 with one
unknown (50) was found. However, to solve the function (51) is beyond my
ability, therefore, I leave this puzzle to the clever reader.

For example, Let’s find the solution of function (52):
2t +33 + 42 +5t-6=0 (52)
a2
5A, 5

8
A, — A x10a° 4‘1OXE 4
5

3(A, - A x10a°) 3(3—10><245)

p_AB—ASXlOaZ_Z

A 5
_(A3—A5x10az)x3(c—a)_£
4= A 25
r_(AE—A5x10a2)><3(c—a)2+[A1—A5><5a4—(A3—A5><10a2)><3c2]_E
- A 125
(_(A-Ax102%)(c-a) -a[ A - AxBa’—(A - Ax10a")x8 | -B-Aa’-(A-AXI0YC
A
2 q=1
e—-d°+g= c
42
f —de+dg=2—5
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—df +eg = 357
125
fg = —7.49056 (53)

If we can find the value of d, ¢ £ g; then the solution for the Equation (52) was
found. Obviously, the value of d, ¢ £ g can’t be positive integer, then the solu-
tion ¢ of function (52) can’t be positive integer.

Similarly, if n = 6, the function (26) is equal to the function (54) shows below:

t* +6at’ +15a°t’ + 20a%’ +15a't' —(m - 6a°) = 0 (54)
a’:izga
5A, 5
, 216 _,
o A-AxI0R 202" -10x o a’
- 2\ T
3(A - A x10a"%) 3[15a2—10><36a2) 15
25
p:AS—Asxlofe\’zzga2
A, 5
q:(Aa—A5><10a’2)><3(c’—a’):_Eaa
A 25
(A —Ax10a”)x3(c'~a')" +| A - A x5a" —(A - A x10a”)x3c?| 1047 ,
r= = a
A, 125
(As—ASxlOa’z)(c’—a’)3—a’[Ai—ASXSa"‘—(As—ASxlOa’z)XSC'zJ—B—Asa’5—(A3—A\5x10a’z)c'3

A
= —(9.77472a5 + B) = —(3.77472a5 + m)

a and m are positive integer, if p, g, 1, s are positive integer, then the solution ¢
of function (54) can be a positive integer. Therefore, a =5k, kis positive integ-

€r, SOo:
3 2 2
=—a“ =15k
P 5

q= 58 3 _a3ok?
25

r= 1047 s =5235k*
125

s=—(3.77472a° + m) = —(11796k" + m)
e—d®+g=15k?
f —de +dg =-330k?
—df +eg =5235k*

fg =—(11796k° +m) (55)
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If we can solve the function (51), then we can find the relationship between d,
e 1, g and k through function (55), then we can according to the result in Part
one to judge if the function (54) can have a positive integer solution.

However, the function (26) can be further transformed to the function (26-1)
2 4 Mgt 4oy I a0 v cla Y - Mo (2601)
n n n n
t
Thus, the function (54) can be deformed to function (56):

_ 5
t* + 6at® +15a% + 202’ +152% — t6a -0 (56)

m—6a°

Let =m’, then we can use the result in Part two to prove the value of

t in function (56) cannot be a positive integer. What’s more, the function (56)

can be transformed further to function (57):

m'-15a*

t3 + 6at? +15a°t* + 20a° - 0 (57)

m’'—15a*

Let =m", then we can use the result in Part one to prove the value

of ¢in function (57) cannot be a positive integer.

t® + 6at? +15a2t1—(m"—20a3):0 (57)
_ 2
o= 3AA : A _gg2
3A;
2 _9p3
:_27ASB+9A&.A32A3 2A2 :6a3_m"
27 A3

(T
AT e

The value of uin the function (58) must be a integer, therefore,

” 2
m 3 ipe . .
(3&3 —7j + (az) must be a positive square integer, otherwise, the value of w

can’t be a rational number.

Let m"=2k, kis positive integer, then:

N TR e

2
Obviously, if (3a3 - k) =K?%®, K2+1=R?, Kand R is a positive integer,

under this condition, the value of u can be a integer. Then, K?=0,3,8,15, -,

R=1234,--, and u=+Ra®. However, the value of K must be a positive
square integer, a positive square integerplus 1 is still a square integer, only when
K2=0,R®*=1 can satisfy the requirement, then k= 3%, m"=2k=6a%,
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w=§/0+(ia3)+§/0—(ia3) =0

Therefore, the solution of ¢satisfy the function in (57) is

t= —i +W=-2a+W=-2a. However, the
3A,
r_ 4
m’'—15a ' —6a°
m-6a°
t
bn

According to the 3 equation infunction (59), we can get:
6a’t’ +15a't’ + 6a’t' —b" =0 (60)

Substitute t=-2a into the function (60), then b" =0, thus b=0, this is
contradictory with b >0, therefore, the value of ¢in function (57) can’t be posi-
tive integer, thus, the Fermat’s Last Theorem is established when n = 6.

Through this method, we can prove the Fermat’s Last Theorem is established
when n = 6 even we don’t know the solution of equation of degree 5 with one
unknown, what’s more, we can use the same method to prove the Fermat’s Last
Theorem is established when n > 6, thus the Fermat’s Last Theorem was proved.

Use the way we transform the function (26) to function (26-1), we can finally

transform the function (26) to function (26-2):

£+ Ci"Yalt’ + ¢ Pa’t' - (m" - C"Ja’) =0 (26-2)
m Cla(n—l) Cza(n-z) C(n—4)a4
m"= 4 4 s T T g

The function (26-2) is equal to:

t3+na't? + @aztl - [m” —wfj =0 (26-2)

_A-K n(n-3)

P="3n 6
__27A§B+9A1A2A3—2A23 B n(n—3)(2n—3)a3_m"
- 21N - 27

SR OROR R RO
(- [ ] w

The value of uzin the function (61) must be a integer, therefore,
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A= [wa3 m_"JZ + (n(n_—3

3
- )a2 must be a positive square in-
54 2 18

teger, otherwise, the value of wcan’t be a rational number.

Let a=3s, m”=2ks®, sand kis positive integer, then:

T

n(n-3)(2n-3) n(n-3 , .

- and > are integer when nis integer and n > 3.
n(n-3) . o

Let > =r, and r is a positive integer (r=2,59,14,20,---), then

A=((2n-3)rs* - kss)2 + (rsz)3
Obviously, if ((2n -3)rs® - kss)2 =K?%°, K®+r®=R?, Kand R is integer,
under this condition, the value of u can be a integer.
A j—
==

((2n—3)r—k)2+r3 =RZ=K?%+r°
s

rP=R?-K?=(R+K)(R-K)

2
Let (R+K)=%,then (R—K)=mr,

R, kand rare integer, then meQ
2
m
2
K =[r—mrj/2
m
2
ﬂzi/—ﬂ+u +§/—ﬂ—u =Y-K+R+¥-K-R =¥mr +,3/—r—
S 2 2 m

’ n(n-3
Only if m=—N—,Nisintegerbut N0, r= (n-3)
"

R

, then

N

w|=s

is rational, then

nn-3
t=—atw= —n—N+M S can be integer.
3 2N

3 3

;2 r , n(n—S)J s
r +N — 2| +N

R=m+mr__(N) =_[ 2N

2 2 2
3 -3
Pt 3 R
K:m = =
2 2 2

The value of Nmust be the factor of r, thus the value of R, K could be integer.
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For example, if n=7, r= @ =14
3
B
Ro_ANJ
2
14
IfN=1,2,7, 14, (Wj +N? is an odd number;

3
If Nis integer and N #0, 1, 2,7, and 14, (%j +N? is a fraction number,

3
(l’jj +N?3
therefore, R = —T

3
is a integer. Thus m#—-— and — is irrational, s is integer, the value of w
r S

can not be a integer, which is contradictory with R

is irrational, then the value of ¢in function (26-2) can’t be positive integer when

n=17, so the Fermat’s Last Theorem is established when n=7.

-3
Similarly, if n=8, r= w =20

3
(f\?j +N?3
R=—/

2

3
If N=1,2,4,5, 10, 20, (%} +N? can be a integer, but only N= 2, 10, R

can be a integer.
When N=2 or 10, R = —504, in other condition, R is not a integer.
20

(NT_Na
K :((Zn—3)r—k):(260—k):—T:i496

r* = R? - K? = 20° = (-504)° — (+496)°

Yo N+Llo48
S N
t:—ﬂa+W: —n—N+M S
3 2N

When N=2, t=(-8-2+10)*s=0%s=0
When N=10, t=(-8-10+2)*s=-16*5<0
which is contradictory with ¢is a integer and 0 < ¢ < b. so the Fermat’s Last

Theorem is established when n = 8.
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3
IfN=1,3,9,27, (%) +N? can be even number, and R can be a integer.

N=1,R=-9842, K=-9841, ¥ _26, t=17s
S

N=3 R=-378, K=-351, W _6, t=-3s
S
W
N=9,R=-378, K=351, W _6, t=—15s
S

N=27, R=-9842, K=9841, Y —_26, t=—35s
S

Only if N=1, t=17s satisfies the condition. What’s more, we have to verify

if the value of bis integer or not.

K=((2n-3)r—k)=-9841, k=10246

m” = 2ks® = 20592s°

m Ccla" ¢z c9a*
tn—4_ 4 - "5 il

"

n

bT:m, a=35, n=9, t=17s, then:

o b’ . 9(35): ~ 36(3527 ~ 84(3526 B 126(352)5 _126(3s)" 205925°
@7s)’ (7s)°  (17s)' (17s)°  (17s)’ (17s)

b? =9(3s)” *(175) +36(3s)" *(17s)’ +84(3s)’ *(17s)’
+126(3s)° *(17s)" +126(3s)" *(17s)° + 205925° * (175)°
= 514413737217 *5°

b =3/514413737217s

s is a positive integer, thus b is irrational, which is contradictory with b is a in-

teger. Therefore, the Fermat’s Last Theorem is established when n=9.

n(n-3)

Ifn=10, r= =35

Onlyif N=1, t=24s satisfies the condition.
Use the same way to verify if bis a integer or not when N=1, t=24s,
b =10(3s)’ (24s) +45(3s)’ *(24s)” +120(3s)’ *(24s)’
+210(3s)’ *(24s)" +252(3s)’ *(24s)’
+210(3s)" *(24s)’ +44064s* * (24s)’
= 205891132035600 *5'°
b =*/205891132035600s

sis a positive integer, thus b is irrational, which is contradictory with b is a in-
teger. Therefore, the Fermat’s Last Theorem is established when 2 = 10.

The values of b satisfy the condition under different 1 is concluded in the Ta-
ble 1.

Table 1 indicated that if 2 < 1 < 21, in order to have a positive integer solution
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Table 1. The value of b under different n.

n r N k t b
3 0 none
4 2 none
5 5 1 97 —s
6 9 1 445 2s {/14896s
7 14 none
2, 756, 0,
8 20
10 -236 -16 s
9 27 1 10,246 17 s /514413737217s
10 35 1 22,032 24 s 3/205891132035600s
11 44 2 6156 9s 3/743008193541s
12 54 none
13 65 1 138,807 51s 1/331985318135314519849415s
14 77 1 230,191 62s 1/461540731532546208768008s
15 90 none
16 104 2, 73,316, 34 s, /123375119142171663192275205
11,772 6s 1/1853020145805120s
17 119 1 846,268 101 s /19479004955562800041143429455772221s

1, 1,234,642, 116, %/23015822943866122205667120134071432s

18 135 3, 50,004, 24 s, 1/58149737003040059302969680s
14,234 4s 1¥16284132104899605
19 152 2, 224,804, 555 %/3199866632452173458088314772999205s
4 32,724 15s ¥/7082353453553365140961655
20 170 none

Note: “none” means there is no integer of Nto make R=—

r 3
(ﬁ] +N?
~—~<—— and K=
2

integer.

of ¢tin function (26-2), the value of b cannot be a integer (Although the value of
b is very close to a integer), which means b and o(c= a + ¢) in function (1) can
not be integer at the same time, thus the Fermat’s Last Theorem is established
when 2 < n< 21.

Use the same way, we can easily prove the Fermat’s Last Theorem is estab-
lished under different indices n.

4) Part four: The conclusion of Section 2.3

In order to prove the value of c satisfies the function (1) can’t be positive in-
teger when a, b, and n are positive integer and n > 2, in this section, we find the
solution for the random equation of degree n with one unknown (when n =3

and 4), and proved that the Fermat’s theorem was established at n = 3, 4 and 5,
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the solution for the random equation of degree 5 with one unknown is hard to
be found, if we find this solution, we can prove that the Fermat’s theorem was
established at n = 6. Therefore, if we want to prove the Fermat’s theorem, we
have to find the solution for the random equation of degree 1 with one unknown,

then we can solve the certain function (26)
"Mt o pc2a" It v Cla™ —m=0 (26)
n n n
has no positive integer solution, thus the Fermat’s theorem was proved.

However, if we can’t find the solution for the random equation of degree n

with one unknown when n > 4, we can transfer the function (26) into (26-2)

£+ Cl"Yalt’ + Cf" Ya’t' - (m" - C{"Ja’) = 0 (26-2)
,_m Ca" cha"? ¢l
- 4 - - - s T t!

thus we proved the Fermat’s Last Theorem is established when n= 3,4, 5, ...... ,
20 in this section, and in this method, we can also prove the Fermat’s Last Theo-

rem is established when n > 20, then the Fermat's theorem was proved.

3. Extension of Fermat’s Last Theorem

Based on the Fermat’s Last Theorem, I put forward another extension theorem:

k
a"

a'+a, +---+a, =h" (E-1)

1]
N

Il
=1

a"

a'+a, +---+a, =b" (E-2)

iR

When 2 is integer and n>2, to satisfy the function (£-1) and (E-2),
a,,a,,-+,a, (k=2,3,---, when k = 2, function (£-1) is equivalent to the Fer-
mat’s Last Theorem)and a;,a,,---,a, (N=3,4,---) and b can’t be positive in-
teger at the same time.

The function &’ +a}+al =b® has positive integer solution, so the key of the
extension theorem is to find: under what conditions, the function (£-1) and (E-2)

have no positive integer solution?

4. Conclusions

In this paper, I proposed an easy way to prove the Fermat’s Last Theorem
through a geometric method, and I found the relationship between

a"+b"=c"=(a+t)" and the solution ¢ for equation of degree n with one un-
known, then I found the solution when n = 3 and 4. If we can’t find the solution

of function (26) when n > 5,

"+ CMYalt"? 4.4 c2a" P+ cla"Y —m =0 (26)
bn
m=—
t

We can transfer function (26) to (26-2)
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2+ C"Yalt? + C"Pat! - (m" - Cﬁ”’3>a3) =0 (26-2)
o m B Cia(n—l) ~ Cfa(n—z) o C[(]n—4)a4
tn—4 tn—4 tn—5 tl

In this way, we can easily prove the Fermat’s Last Theorem is established un-
der different indices n, and the value of b that make ¢ = a + #to be a integer un-
der different n is:

When n=3, b®=2ks®=0

When n > 3,

b" =Bs" =(¢s)"

= (3s)" (1) +c" P (35) " (1)’

ot CH(3s) (1) 4 2k ()"
3
n(n-3
3)(2n-3 £(2N )J+N3
n(n- n-
_n(-3)(21-3)

2 2
( (n- B)Js
)

that can make kand ¢to be a positive integer, s

n 3

Mis the factor of r =

is a positive integer. ¢ = \/_ is irrational that very closing to a integer, thus
b={¢s cannot be a positive integer.
Therefore, the function a"+b" =c" can be established only under the fol-

lowing conditions:
1) When 6=0, a+b=c,n=1

2) When Hzg, a?+b®=c’,n=2

3) When n > 2, a, b, ¢ are more than 0 and a > & 96(0,%),
. b

a"+b"<c", He(§+arcsm2—,n) , a"+b">c", under this condition, the
a

function a" +b" =c" cannot be established. 8 e (g,g+arcsin2£j , there is
a

possible to make a" +b" =c", but the value of a, band c can’t be positive in-
teger at the same time
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