

HB-Continuous Mappings in *L*-Topological Space

Najah A. AlSaedi 💿

Department of Mathematics, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia, Email: dr-Najah2008@hotmail.com, nasadi@uqu.edu.sa

How to cite this paper: Alharbi, N.A. (2024) *HB*-Continuous Mappings in *L*-Topological Space. *Advances in Pure Mathematics*, **14**, 333-353. https://doi.org/10.4236/apm.2024.145019

Received: March 27, 2024 **Accepted:** May 18, 2024 **Published:** May 21, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

CC () BY Open Access

Abstract

In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.

Keywords

L-Topological Space, *HB*-Closed Set, *H*-Bounded Set, *HB*-Continuous Mappings, *HB*-Convergence, *L*-Molecular Nets, *L*-Ideals

1. Introduction

Continuity and its weaker forms constitute an important and intensely investigated area in the field of general topological spaces. In 1975 Long and Hamlett [2] introduced the notion of *H*-continuity and it has been further investigated by many authors including Noiri [3]. In 1993 Moony [4] studied the notion of *H*-bounded sets and some new characterizations and properties of *H*-bounded sets are examined. In 1995 Dang and Behers [1] extended the notion of *H*-continuity to fuzzy topology, and introduced the notion of fuzzy *H*-continuous functions using the fuzzy compactness given by Mukherjee and Sinha [5]. However, the fuzzy compactness has some shortcomings, such as the Tychonoff product theorem does not hold, and it contradicts some kinds of separation axioms. Hence, the notion of fuzzy *H*-continuous functions in [1] is unsatisfactory. In this paper, we first define the concept of *HB*-closed sets by means of the concept of almost *N*-boundedness (*H*-bounded *L*-subsets). Then by making use of *HB*-closed sets we introduce and study the *HB*-convergence theory of *L*-molecular nets and *L*-ideals. Finally, we give a new definition of fuzzy *H*-continuous [1] which calls *HB*-continuity on the basis of the notions of *HB*-closedness in *L*-topological space. In section 3, we introduce the concepts of *HB*-closure (*HB*-interior) operator and *HB*-closed (*HB*-open) sets in *L*-topological spaces and their various properties are given. And with the help of these notions we introduce and study the concept of *HB*-limit point of *L*-molecular nets and *L*-ideals. In section 4, we introduce and study the concept *HB*-continuous by means of *HB*-closed set and we present its properties and study the relationship between it and *L*-continuous, *H*-continuous mappings. Finally, in section 5, some new interesting characterizations of *HB*-closeds are established.

2. Preliminaries

This paper $L = L(\leq, \lor, \land, ')$ denotes a completely distributive lattice with the smallest element 0 and the largest element 1 ($0 \neq 1$) and with an order reversing involution on it. An $\alpha \in L$ is called a molecule of L if $\alpha \neq 0$ and $\alpha \leq v \lor \gamma$ implies $\alpha \leq v$ or $\alpha \leq \gamma$ for all $v, \gamma \in L$. The set of all molecules of L is denoted by M(L). Let X be a nonempty set. L^X denotes the family of all mappings from X to L. The elements of L^X are called L-subsets on X. L^X can be made into a lattice by inducing the order and involution from L. We denote the smallest element and the largest element of L^X by 0_X and 1_X , respectively. If $\alpha \in L$, then the constant mapping $\underline{\alpha} : X \to \{\alpha\}$ is L-subset [6]. An L-point (or molecule on L^X), denoted by x_α , $\alpha \in M(L)$ is a L-subset which is defined by $x_\alpha(y) = \begin{cases} \alpha : x = y \\ 0 : x \neq y \end{cases}$.

The family of all molecules L^X is denoted by $M(L^X)$ [7]. For $\Psi \subset L^X$, we define $2^{(\Psi)}$ by the set $\{\omega \subset \Psi : \omega$ is finite subfamily of $\Psi\}$. An *L*-topology on *X* is a subfamily τ of L^X closed under arbitrary unions and finite intersections. The pair (L^X, τ) is called an *L*-topological space (or *L*-ts, for short) [8]. If (L^X, τ) is an *L*-ts, then for each $\eta \in L^X$, $cl(\eta)$, $int(\eta)$ and η' will denote the closure, interior and complement of η . A mapping $f: L^X \to L^Y$ is said to be an *L*-valued Zadeh function induced by a mapping $f: X \to Y$, iff $f(\mu)(y) = \vee \{\mu(x) : f(x) = y\}$ for every $\mu \in L^X$ and every $y \in Y$ [7]. An *L*-ts (L^X, τ) is called fully stratified if for each $\alpha \in L$, $\underline{\alpha} \in \tau$ [9]. If (L^X, τ) is an *L*-ts, then the family of all crisp open sets in τ is denoted by $[\tau]$ *i.e.*, $(X, [\tau])$ is a crisp topological space [10].

Definition 2.1 [11]: If (L^{X}, τ) is *L*-ts, then $\mu \in L^{X}$ is called regular open set iff $\mu = int(cl(\mu))$. The family of all regular open sets is denoted by $RO(L^{X}, \tau)$. The complement of the regular open set is called the regular closed set and satisfy $\mu = cl(int(\mu))$. The family of all regular closed sets is denoted by $RC(L^{X}, \tau)$.

Definition 2.2 [11]: The *L*-valued Zadeh mapping $f_L: (L^X, \tau) \rightarrow (L^Y, \Delta)$

is called:

(i) Almost *L*-continuous iff $f_L^{-1}(\eta) \in \tau'$ for each $\eta \in RC(L^{Y}, \Delta)$.

(ii) Weakly *L*-continuous iff $f_L^{-1}(\eta) \leq \inf(f_L^{-1}(cl(\eta)))$ for each $\eta \in \Delta$.

Definition 2.3 [12]: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-valued Zadeh mapping and $A \subseteq X$, then $f_L|_A: L^A \to L^Y$ is defined as follows:

 $(f_L|_A)(\mu) = f(\mu) \wedge 1_A = f(\mu^*)$, for each $\mu \in L^A$ and call $f_L|_A$ the restriction of f on A. Where μ^* denote the extension of μ in L^X , that is for each $x \in X$,

$$\mu^*(x) = \begin{cases} \mu(x) & : x \in A \\ 0 & : x \notin A \end{cases}$$

Definition 2.4 [13]: Let (L^X, τ) be an *L*-ts and $x_{\alpha} \in M(L^X)$. Then:

(i) $\eta \in \tau'$ is called a remote neighborhood (*R*-nbd, for short) of x_{α} if $x_{\alpha} \notin \eta$. The set of all *R*-nbds of x_{α} is called remoted neighborhood system and is denoted by $R_{x_{\alpha}}$.

(ii) $\lambda \in L^{X}$ is called an *-remoted neighborhood (R^{*} -nbd, for short) of x_{α} if there exists $\mu \in R_{x_{\alpha}}$ such that $\lambda \leq \mu$. The set of all R^{*} -nbds of x_{α} is called *-remoted neighborhood system and is denoted by $R_{x_{\alpha}}^{*}$.

Definition 2.5 [14]: Let (L^{χ}, τ) be an *L*-ts, $\mu \in L^{\chi}$ and $\alpha \in M(L)$. Then $\Psi \subset \tau'$ is called an:

(i) α -remoted neighborhood family of μ , briefly α -RF of μ , if for each *L*-point $x_{\alpha} \in \mu$ there is $\lambda \in \Psi$ such that $\lambda \in R_{x_{\alpha}}$.

(ii) $\overline{\alpha}$ -remoted neighborhood family of μ , briefly $\overline{\alpha}$ -RF of μ , if there exists $\gamma \in \beta^*(\alpha)$ such that Ψ is an γ -RF of μ , where

 $\beta^*(\alpha) = \beta(\alpha) \cap M(L)$, and $\beta(\alpha)$ denotes the union of all the minimal sets relative to α .

Definition 2.6 [11]: Let (L^{χ}, τ) be an *L*-ts, $\mu \in L^{\chi}$ and $\alpha \in M(L)$. Then $\Psi \subset \tau'$ is called an:

(i) Almost α -*-remoted neighborhood family of μ , (or briefly, almost α - R^*F) of μ , if for each *L*-point $x_{\alpha} \in \mu$ there is $\lambda \in \Psi$ such that $\operatorname{int}(\lambda) \in R^*_{x_{\alpha}}$.

(ii) Almost $\overline{\alpha}$ - * -remoted neighborhood family of μ , (or briefly almost $\overline{\alpha}$ - R^*F) of μ , if there exists $\gamma \in \beta^*(\alpha)$ such that Ψ is an almost $\gamma - R^*F$ of μ .

Definition 2.7 [15]: Let (L^{X}, τ) be an *L*-ts, $\mu \in L^{X}$ and $\alpha \in M(L)$. Then $\Psi \subset RC(L^{X}, \tau)$ is called an α -regular closed remoted neighborhood family of μ , briefly α -RCRF of μ , if for each *L*-point $x_{\alpha} \in \mu$ there is $\lambda \in \Psi$ such that $\lambda \in R_{x_{\alpha}}$.

Definition 2.8 [16]: Let (L^{χ}, τ) be an *L*-ts and $\mu \in L^{\chi}$. Then $x_{\alpha} \in M(L^{\chi})$ is called θ -adherent point of μ and write $x_{\alpha} \in \theta.cl(\mu)$ iff $\mu \not\leq int(\lambda)$ for each $\lambda \in R_{x_{\alpha}}$. If $\mu = \theta.cl(\mu)$, then μ is called θ -closed *L*-subset. The family

of all θ -closed *L*-subset of *X* is denoted by $\theta C(L^X, \tau)$ and its complement is called the family of all θ -open *L*-subset and denoted by $\theta O(L^X, \tau)$.

Definition 2.9 [11]: Let (L^X, τ) be an *L*-ts, $\mu \in L^X$. Then μ is called almost *N*-compact (or *H*-compact) set in (L^X, τ) if for each $\alpha \in M(L)$ and every α -RF Ψ of μ there is $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of μ .

If 1_x is *H*-compact set, then (L^x, τ) is called *H*-compact space.

Theorem 2.10 [11]: Suppose that $f_L:(L^X,\tau) \to (L^Y,\Delta)$ is an *L*-almost continuous and $\mu \in L^X$ is an *H*-compact *L*-subset in (L^X,τ) , then $f_L(\mu)$ is an *H*-compact *L*-subset in (L^Y,Δ) .

Definition 2.11 [17]: An *L*-ts (L^X, τ) is said to be:

(i) LT_1 -space iff for any $x_{\alpha}, y_{\gamma} \in M(L^{\chi})$, $x \neq y$ there is $\lambda \in R_{x_{\alpha}}$ such that $y_{\gamma} \in \lambda$.

(ii) LT_2 -space iff for any $x_{\alpha}, y_{\gamma} \in M(L^X)$, $x \neq y$ there is $\lambda \in R_{x_{\alpha}}$, $\eta \in R_{y_{\gamma}}$ such that $\lambda \lor \eta = 1_X$.

(iii) $LT_{2\frac{1}{2}}$ -space iff for any $x_{\alpha}, y_{\gamma} \in M(L^{X})$, $x \neq y$ there is $\lambda \in R_{x_{\alpha}}$,

 $\eta \in R_{y_{\gamma}}$ such that $\operatorname{int}(\lambda) \lor \operatorname{int}(\eta) = 1_{X}$.

(iv) LR_2 -space (regular space) iff for all $\alpha \in M(L)$, $x \in X$ and for each $\lambda \in R_{x_{\alpha}}$ there is $\eta \in R_{x_{\alpha}}$, $\rho \in \tau'$ such that $\eta \lor \rho = 1_X$ and $\lambda \land \rho = 0_X$.

(v) LT_3 -space iff it is LR_2 -space and LT_1 -space.

Theorem 2.12 [14]: Let (L^{X}, τ) be an *L*-ts and every *H*-compact set in fully stratified and $LT_{2^{-1}}$ -space, then it is θ -closed *L*-subset.

Theorem 2.13 [11]: An *L*-ts (L^X, τ) is LR_2 -space iff for any $\mu \in L^X$, $cl(\mu) = \theta.cl(\mu)$.

Proof. Let (L^{x}, τ) be an LR_{2} -space. For any $\mu \in L^{x}$ it is always true that $cl(\mu) \leq \theta.cl(\mu)$. Now, let $x_{\alpha} \in M(L^{x})$ such that $x_{\alpha} \notin cl(\mu)$ and let $\lambda \in R_{x_{\alpha}}$, since (L^{x}, τ) is LR_{2} -space, there is $\eta \in R_{x_{\alpha}}$ such that $\lambda \leq int(\eta)$. Now $x_{\alpha} \notin cl(\mu)$ implies that $\mu \leq \lambda$ for each $\lambda \in R_{x_{\alpha}}$ which implies that $\mu \leq int(\eta)$ which implies that $x_{\alpha} \notin \theta.cl(\mu)$. Thus $\theta.cl(\mu) \leq cl(\mu)$. Hence $cl(\mu) = \theta.cl(\mu)$. Conversely, let $x_{\alpha} \in M(L^{x})$ and $\lambda \in R_{x_{\alpha}}$. Then $cl(\lambda) \in R_{x_{\alpha}}$ and so $x_{\alpha} \notin cl(\lambda) = \theta.cl(\lambda)$. Hence there is $\eta \in R_{x_{\alpha}}$ such that $\lambda \leq int(\eta)$. Thus (L^{x}, τ) is LR_{2} -space.

Corollary 2.14 [11]: If (L^{X}, τ) is LR_{2} -space, then closed *L*-subset is θ -closed *L*-subset and hence $\theta.cl(\mu)$ is θ -closed for any $\mu \in L^{X}$.

Definition 2.15 [13]: Let (D, \leq) be a directed set. Then the mapping $S: D \to L^X$ and denoted by $S = \{\mu_n : n \in D\}$ is called a net of *L*-subsets in *X*. Specially, the mapping $S: D \to M(L^X)$ is said to be a molecular net in L^X . If $\mu \in L^X$ and for each $n \in D$, $S \in \mu$ then *S* is called a net in μ .

Definition 2.16 [13]: Let (L^X, τ) be an *L*-ts and $S = \{S(n) : n \in D\}$ be a

molecular net in L^{X} . *S* is called a molecular α -net ($\alpha \in M(L)$), if for each $\gamma \in \beta^{*}(\alpha)$ there exists $n \in D$ such that $\vee (S(m)) \geq \gamma$ whenever $m \geq n$, where $\vee (S(m))$ is the height of the molecular S(m).

Definition 2.17 [13]: Let $S = \{S(n) : n \in D\}$ and $T = \{T(m) : m \in E\}$ be a be molecular nets in (L^X, τ) . Then *T* is said to be a molecular subnet of *S* if there is a mapping $f : E \to D$ that satisfies the following conditions:

(i) $T = S \circ f$

(ii) For each $n \in D$ there is $m \in E$ such that $f(l) \ge n$ for each $l \in E$, $l \ge m$.

Definition 2.18 [7]: Let (L^X, τ) be an *L*-ts and *S* be a molecular net in (L^X, τ) . Then $x_{\alpha} \in M(L^X)$ is called:

(i) a θ -limit point of *S*, (or *S* θ -converges to x_{α}) in symbols $S \xrightarrow{\theta} x_{\alpha}$ if for each $\mu \in R_{x_{\alpha}}$ there is a $n \in D$ such for each $m \in D$ and $m \ge n$ we have $S(m) \notin \operatorname{int}(\mu)$. The union of all θ -limit points of *S* are denoted by θ .lim(*S*).

(ii) a θ -cluster (θ -adherent) point of S, in symbols $S \propto x_{\alpha}$ if for each $\mu \in R_{x_{\alpha}}$ and for each $n \in D$ there is a $m \in D$ such that $m \ge n$ and

 $S(m) \notin int(\mu)$. The union of all θ -cluster points of S is denoted by $\theta.adh(S)$.

Theorem 2.19 [13]: Let (L^X, τ) be an *L*-ts, $\mu \in L^X$ and $x_\alpha \in M(L^X)$. Then $x_\alpha \in \theta...cl(\mu)$ iff there exists a molecular net *S* in μ such that *S* is θ -converges to x_α .

Theorem 2.20 [15]: Assume that $S = \{S(n) : n \in D\}$ is a molecular net in an *L*-ts (L^{X}, τ) and $x_{\alpha} \in M(L^{X})$. Then $S \propto x_{\alpha}$ iff there exists a subnet *T* of *S* such that $T \xrightarrow{\theta} x_{\alpha}$.

Theorem 2.21 [14]: Let (L^x, τ) be an *L*-ts and $\mu \in L^x$. Then μ is *H*-compact set iff each α -net *S* contained in μ has a θ -cluster point in μ with height α for any $\alpha \in M(L)$.

Definition 2.22 [18]: The nonempty family $I \subset L^X$ is called an ideal if the following conditions are satisfied, for each $\mu_1, \mu_2 \in L^X$

- (i) $1_X \notin I$
- (ii) If $\mu_1 \leq \mu_2$ and $\mu_2 \in I$, then $\mu_1 \in I$.
- (iii) If $\mu_1, \mu_2 \in I$, then $\mu_1 \lor \mu_2 \in I$.

Theorem 2.23 [19]: Let (L^X, τ) be an *L*-ts, $\mu \in L^X$ and $x_\alpha \in M(L^X)$. Then $x_\alpha \in \theta...cl(\mu)$ iff there exists an ideal *I* in L^X such that *I* is θ -converges to x_α and $\mu \notin I$.

Definition 2.24 [20]: An *L*-mapping $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is called *H*-continuous if $f_L^{-1}(\eta) \in \tau'$ for each $\eta \in L^Y$ is closed and almost *N*-compact.

3. *H*-Closure and *H*-Interior Operators in *L*-Topological Space

In this section, we introduce the concepts of *H*-Closure operator and *H*-interior operator by using an almost *N*-bounded (or *H*-bounded) set and discuss their properties.

Definition 3.1: Let (L^X, τ) be an *L*-ts, $\mu \in L^X$. Then μ is called almost *N*-bounded (or *H*-bounded) set in (L^X, τ) if for each $\alpha \in M(L)$ and every α -RF Ψ of 1_X , there is $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of μ .

If 1_x is *H*-bounded set, then (L^x, τ) is called *H*-bounded space.

Theorem 3.2: Suppose that $f_L:(L^X,\tau) \to (L^Y,\Delta)$ is an *L*-almost continuous and $\mu \in L^X$ is an *H*-bounded *L*-subset in (L^X,τ) , then $f_L(\mu)$ is an *H*-bounded *L*-subset in (L^Y,Δ) .

Proof. Let μ be an *H*-bounded in L^{χ} and let $\Psi \subseteq \Delta'$ be an α -RF of 1_{γ} $(\alpha \in M(L))$, then $\{cl(\operatorname{int}(\lambda)): \lambda \in \Psi\} \subset RC(L^{\gamma}, \Delta)$ is an α -RCRF of 1_{γ} . We now will show that $Q = \{f_{L}^{-1}(cl(\operatorname{int}(\lambda))): \lambda \in \Psi\}$ is an α -RF of 1_{χ} . In fact, since f_{L} is an *L*-almost continuous and $cl(\operatorname{int}(\lambda)) \in RC(L^{\gamma}, \Delta)$ then $f_{L}^{-1}(cl(\operatorname{int}(\lambda))) \in \tau'$. According to the definition, Ψ there exists $\lambda \in \Psi$

such that $cl(int(\lambda)) \in R_{f_{L}(x_{\alpha})}$, *i.e.*, $f_{L}(x_{\alpha}) \notin cl(int(\lambda))$ hence

 $x_{\alpha} \notin f_{L}^{-1}(cl(int(\lambda)))$ for every $x \in X$. This means that Q is an α -RF of 1_{X} . Since μ is an H-bounded set, there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that

 $\left\{f_{L}^{-1}(cl(\operatorname{int}(\lambda))): \lambda \in \Psi_{\circ}\right\} \in 2^{(\Psi)}$ is an almost $\overline{\alpha} - R^{*}F$ of μ . Thus for some $\gamma \in \beta^{*}(\alpha)$ and for each $x_{\gamma} \in \mu$ there exists $\lambda \in \Psi_{\circ}$ such that

 $\operatorname{int}\left(f_{L}^{-1}\left(cl\left(\operatorname{int}\left(\lambda\right)\right)\right)\right) \in R_{x_{\gamma}}^{*}$. Since f_{L} is an *L*-almost continuous then it is *L*-weakly continuous and since $\operatorname{int}\left(\lambda\right) \in \Delta$ then

 $f_L^{-1}(\operatorname{int}(\lambda)) \leq \operatorname{int}(f_L^{-1}(cl(\operatorname{int}(\lambda))))$ and so $x_{\alpha} \notin f_L^{-1}(\operatorname{int}(\lambda))$. Consequently, there exists $x_{\gamma} \in \mu$ and $\lambda \in \Psi_{\circ}$ satisfying $\operatorname{int}(\lambda) \in R_{f_L(x_{\gamma})}^*$ and $y_{\gamma} = f_L(x_{\gamma})$ for each $y_{\gamma} \in f_L(\mu)$. Thus, $\Psi_{\circ} \in 2^{(\Psi)}$ is an almost $\overline{\alpha} - R^*F$ of $f_L(\mu)$. By Definition 3.1, we have $f_L(\mu)$ an *H*-bounded *L*-subset in (L^{γ}, Δ) .

Theorem 3.3: Let (L^X, τ) be an *L*-ts and let $\mu \in L^X$. Then the following statements are true:

- (i) If μ is *H*-compact set, then μ is *H*-bounded set.
- (ii) If μ is *H*-bounded set and $\eta \leq \mu$, then η is *H*-bounded set.
- (iii) If μ is *H*-compact set and $\eta \leq \mu$, then η is *H*-bounded set.

Proof. (i) Let μ be an *H*-compact set and let $\Psi = \{\rho_i : i \in I\} \subset \tau'$ be an α -RF of 1_X and so Ψ is α -RF of μ . Since μ is *H*-compact set, then there exists $\Psi_{\circ} = \{\rho_i : i = 1, 2, \dots, m\} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of μ . Thus μ is *H*-bounded set.

(ii) Let μ be an *H*-bounded set and $\eta \leq \mu$. let $\Psi = \{\rho_i : i \in I\} \subset \tau'$ be an α -RF of 1_{χ} . Since μ is *H*-bounded set, then there exists

 $\Psi_{\circ} = \{ \rho_i : i = 1, 2, \dots, m \} \in 2^{(\Psi)} \text{ such that } \Psi_{\circ} \text{ is an almost } \overline{\alpha} - R^*F \text{ of } \mu \text{, thus there exists } \gamma \in \beta^*(\alpha) \text{ such that } \Psi_{\circ} \text{ is an almost } \gamma - R^*F \text{ of } \mu \text{. Hence } \forall x_{\gamma} \in \mu \text{, } \exists \lambda \in \Psi_{\circ} \text{ such that } \operatorname{int}(\lambda) \in R^*_{x_{\gamma}} \text{. Since } \eta \leq \mu \text{, then } \forall x_{\gamma} \in \eta \leq \mu \text{,} \\ \exists \lambda \in \Psi_{\circ} \text{ such that } \operatorname{int}(\lambda) \in R^*_{x_{\gamma}} \text{. Hence } \Psi_{\circ} \text{ is an almost } \gamma - R^*F \text{ of } \eta \text{ and } \end{bmatrix}$

so Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of η . Thus η is *H*-bounded set.

(iii) Let μ be an *H*-compact set and $\eta \leq \mu$. let $\Psi \subset \tau'$ be an α -RF of 1_x and so α -RF of μ . Since μ is *H*-compact set, then there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of μ , since $\eta \leq \mu$, then Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of η . Thus η is *H*-bounded set.

Theorem 3.4: Let (L^{X}, τ) be an *L*-ts, $\alpha \in M(L)$ and $\mu \in L^{X}$. Then μ is *H*-bounded iff for each molecular α -net *S* contained in μ has θ -cluster point in 1_{X} with height α .

Proof. Let μ be an *H*-bounded set and $S = \{S(n): n \in D\}$ be an molecular α -net in μ . If *S* does not have any θ -cluster point in 1_X with height α . Then for all $x_{\alpha} \in M(L^X)$, x_{α} is not θ -cluster point of *S* and so there exists $\lambda_x \in R_{x_{\alpha}}$ and $n_x \in D$ such that $S(n) \in int(\lambda_x)$ for every $n \in D$ and $n \ge n_x$. Put $\Psi = \{\lambda_x : x \in X \text{ and } \alpha \in M(L)\}$, then Ψ is an α -RF of 1_X . According to the hypothesis, Ψ has a finite family $\Psi_{\circ} = \{\lambda_x : i = 1, 2, \dots, k\} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha} - R^*F$ of μ , that is for some $\gamma \in \beta^*(\alpha)$ and each

 $y_{\gamma} \in \mu$ there exists $\lambda_{x_i} \in \Psi_{\circ}$ $(i \le k)$ such that $\operatorname{int}(\lambda_{x_i}) \in R_{y_{\gamma}}^*$. Put $\lambda = \bigwedge_{i=1}^k \lambda_{x_i}$,

for each $y_{\gamma} \in \mu$, we have $\bigwedge_{i=1}^{k} \operatorname{int}(\lambda_{x_{i}}) = \operatorname{int}\left(\bigwedge_{i=1}^{k} \lambda_{x_{i}}\right) = \operatorname{int}(\lambda)$, thus $\operatorname{int}(\lambda) \in R_{y_{\gamma}}^{*}$. Since D is a directed set, then there is $n_{\circ} \in D$ such that $n_{\circ} \ge n_{x_{i}}$, $i = 1, 2, \dots, k$ and $S(n) \in \operatorname{int}(\lambda_{x_{i}})$, $i = 1, 2, \dots, k$ whenever $n \ge n_{\circ}$ and so $S(n) \in \operatorname{int}(\lambda)$. This shows that for each $y_{\gamma} \in \mu$, $\vee (S(n)) \ge \gamma$ whenever $n \ge n_{\circ}$. This contradicts the hypothesis that S is a molecular α -net. Therefore, S has at least a θ -cluster point in 1_{χ} with height α .

Conversely, assume that each molecular α -net S contained in μ has an θ -cluster point in 1_X with height α and Ψ is an α -RF of 1_X . If for each $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is not almost $\overline{\alpha} - R^*F$ of μ , that is, for each $\gamma \in \beta^*(\alpha)$ there exists $(\gamma, \Psi_{\circ}) \in \beta^*(\alpha) \times 2^{(\Psi)}$ there exists molecule $x_{(\gamma, \Psi_{\circ})} \in \mu$ such that for each $\lambda \in \Psi_{\circ}$, $\operatorname{int}(\lambda) \notin R_{x_{(\gamma, \Psi_{\circ})}}$. Put $D = \beta^*(\alpha) \times 2^{(\Psi)}$ and defined the order as follows: $(\gamma_1, \Psi_{\circ}^1) \ge (\gamma_2, \Psi_{\circ}^2)$ iff $\gamma_1 \ge \gamma_2$ and $\Psi_{\circ}^1 \supset \Psi_{\circ}^2$. Then $S = \left\{ S_{(\gamma, \Psi_{\circ})} = x_{(\gamma, \Psi_{\circ})} \in \mu : (\gamma, \Psi_{\circ}) \in D \right\}$ is an molecular α -net in μ . Since Ψ is an α -RF of 1_X , then there exists $\rho \in \Psi$ such that $\rho \in R_{y_{\alpha}}$ and hence $\operatorname{int}(\rho) \in R_{x_{\alpha}}^*$. Because $\{\rho\} \in 2^{(\Psi)}$. We take any $\gamma_1 \in \beta^*(\alpha)$, $x_{(\gamma, \Psi_{\circ})} \in \operatorname{int}(\rho)$ whenever $(\gamma, \Psi_{\circ}) \ge (\gamma_1, \rho)$. Therefore $S_{(\gamma, \Psi_{\circ})} \in \operatorname{int}(\rho)$, which contradicts to the hypothesis. Therefore there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is almost $\overline{\alpha} - R^*F$ of μ and hence μ is H-bounded.

Theorem 3.5: If (L^{X}, τ) fully stratified and $LT_{2^{\frac{1}{2}}}$ -space, then $\mu \in L^{X}$ is *H*-compact set iff μ is θ -closed and *H*-bounded set.²

Proof. If $\mu \in L^{X}$ is *H*-compact set, then by Theorem 2.12 we have μ is θ -closed and by Theorem 3.3 (i) we have μ is *H*-bounded. Conversely, let μ be an θ -closed and *H*-bounded set and let *S* be an α -net in μ . Since μ is

H-bounded, then by Theorem 3.4 we have *S* has θ -cluster point, say x_{α} in 1_x with height α . By Theorem 2.20, then there is a subnet *T* of *S* such that *T* θ -converges to x_{α} and so $x_{\alpha} \in \theta.cl(\mu)$ by Theorem 2.19. Since μ is θ -closed, then $\mu = \theta.cl(\mu)$ and so $x_{\alpha} \in \mu$, then by Theorem 2.21 we have μ is *H*-compact set.

Theorem 3.6: If (L^{X}, τ) is LR_{2} -space, then $\mu \in L^{X}$ is *H*-bounded set iff $\theta.cl(\mu)$ is *H*-bounded set.

Proof. If $\theta.cl(\mu)$ is *H*-bounded set, then μ is *H*-bounded set by Theorem 3.3 (ii). Conversely, suppose that μ is *H*-bounded and $\Psi = \left\{ \eta_{x_j} : j \in J \right\}$ is an α -RF of 1_X . Then for each $x \in X$ there is $\eta_{x_j} \in \Psi$ such that $\eta_{x_j} \in R_{x_\alpha}$. Since (L^X, τ) is LR_2 -space, then there is $\lambda \in R_{x_\alpha}$ there is $\lambda_{x_j} \in R_{x_\alpha}$ and there is $\rho_{x_j} \in \tau'$ such that $\lambda_{x_j} \lor \rho_{x_j} = 1_X$ and. $\rho_{x_j} \land \eta_{x_j} = 0_X$. Then the family $\left\{ \lambda_{x_j} : x_\alpha \in M(L^X) \right\}$ is an α -RF of 1_X . Since μ is *H*-bounded, then exists finite subset J_{\circ} of J such that $\left\{ \lambda_{x_j} : j \in J_{\circ} \right\}$ is an almost $\overline{\alpha} - R^*F$ of μ . Since $\lambda_{x_j} \lor \rho_{x_j} = 1_X$, $x_\alpha \notin \lambda_{x_j}$, then $x_\alpha \in \rho_{x_j}$. Since $\rho_{x_j} \land \eta_{x_j} = 0_X$, then $\left\{ \eta_{x_j} : j \in J_{\circ} \right\}$ is an almost $\overline{\alpha} - R^*F$ of $\mu \in Cl(\rho_{x_j}) = \theta.cl(\rho_{x_j})$ and so $\left\{ \eta_{x_j} : j \in J_{\circ} \right\}$ is an almost $\overline{\alpha} - R^*F$ of $\theta.cl(\rho_{x_j})$, then $\left\{ \eta_{x_j} : j \in J_{\circ} \right\}$ is an almost $\overline{\alpha} - R^*F$ of $\theta.cl(\rho_{x_j})$, then $\left\{ \eta_{x_j} : j \in J_{\circ} \right\}$ is an almost $\overline{\alpha} - R^*F$ of $\theta.cl(\rho_{x_j})$.

Theorem 3.7: If (L^{χ}, τ) is LT_3 -space, then $\mu \in L^{\chi}$ is *H*-bounded set iff μ is *L*-subset of *H*-compact set.

Proof. If μ is *H*-bounded, then by Theorem 3.6 and corollary 2.14, we have $\theta.cl(\mu)$ is θ -closed and *H*-bounded set, hence by Theorem 3.5, we have $\theta.cl(\mu)$ is *H*-compact set. Conversely, If μ is *L*-subset of *H*-compact set, then by Theorem 3.3 (iii), we have μ is *H*-bounded set.

Definition 3.8: Let (L^X, τ) be an *L*-ts and $x_{\alpha} \in M(L^X)$. If $\mu \in L^X$ is closed and *H*-bounded set, then μ is called *HB*-remoted neighborhood of x_{α} (*HBR*-nbd, for short) of x_{α} if $x_{\alpha} \notin \mu$. The set of all *HBR*-nbds of x_{α} is denoted by *HBR*_{x_{\alpha}}

We note that $HBR_{x_{\alpha}} \subseteq R_{x_{\alpha}}, \forall x_{\alpha} \in M(L^X)$

The following example shows that the converse is not true in general

Example 3.9: Let $X = \{x\}$, L = [0,1], and let $\tau = \{0_X, x_3, x_7, 1_X\}$. Then (L^X, τ) is *L*-ts. We have $R_{x_1} = \{0_X, x_3, x_7\}$. Now, we show that $x_7 \in L^X$ is not *H*-bounded set.

Let $\Psi = \{x_7, 1_x\} \subseteq \tau'$, then Ψ is .8-RF of 1_x . But for each

 $\gamma \in \beta^*(.8) = (0,2]$, any finite subfamily $\Psi_{\circ} \in 2^{(\Psi)}$ is not almost $\gamma - R^*F$ of x_{γ} . Thus Ψ_{\circ} is not almost $\overline{.8} - R^*F$ of x_{γ} . Thus x_{γ} is not *H*-bounded set

and so $x_7 \notin HBR_{x_{\alpha}}$. Hence $R_{x_7} \not\subseteq HBR_{x_7}$.

Definition 3.10: Let (L^{X}, τ) be an *L*-ts and $\mu \in L^{X}$. Then $x_{\alpha} \in M(L^{X})$ is called an *H*-bounded adherent point of μ and write $x_{\alpha} \in HB.cl(\mu)$ iff

 $\mu \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. If $\mu = HB.cl(\mu)$, then μ is called *HB*-closed *L*-subset. The family of all *HB*-closed *L*-subsets is denoted by $HBC(L^{X}, \tau)$ and its complement is called the family of all *HB*-open *L*-subsets and denoted by

Theorem 3.11: Let (L^X, τ) be an *L*-ts and let $\mu \in L^X$. Then the following statements are true:

(i) $\mu \leq cl(\mu) \leq HB.cl(\mu)$.

 $HBO(L^{X},\tau).$

- (ii) If $\eta \in L^{X}$ and $\mu \leq \eta$ then $HB.cl(\mu) \leq HB.cl(\eta)$.
- (iii) $HB.cl(HB.cl(\mu)) = HB.cl(\mu)$.
- (iv) $HB.cl(\mu) = \wedge \left\{ \eta \in L^X : \eta \in HBC.(L^X, \tau), \mu \leq \eta \right\}.$

Proof. (i) Let $x_{\alpha} \in M(L^{\chi})$ such that $x_{\alpha} \notin HB.cl(\mu)$, then there exists $\lambda \in HBR_{x_{\alpha}}$ such that $\mu \leq \lambda$. Since $HBR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$ and so $\lambda \in R_{x_{\alpha}}$ and hence

$$x_{\alpha} \notin cl(\mu)$$
. Thus $cl(\mu) \leq HB.cl(\mu)$.

(ii) Let $x_{\alpha} \in M(L^{\chi})$ such that $x_{\alpha} \notin HB.cl(\eta)$, then there exists $\lambda \in HBR_{x_{\alpha}}$ such that $\eta \leq \lambda$. Since $\mu \leq \eta$, then $\mu \leq \lambda$ and so $x_{\alpha} \notin HB.cl(\mu)$. Thus $HBcl(\mu) \leq HB.cl(\eta)$.

(iii) Suppose $x_{\alpha} \in M(L^{\chi})$ such that $x_{\alpha} \in HB.cl(HB.cl(\mu))$. According to Definition 3.10, we have $HB.cl(\mu) \not\leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. Hence, there exists $y_{\gamma} \in M(L^{\chi})$ such that $y_{\gamma} \in HB.cl(\mu)$ with $y_{\gamma} \notin \lambda$ and so $\mu \not\leq \lambda$, that is, $x_{\alpha} \in HB.cl(\mu)$. This shows that $HB.cl(HB.cl(\mu)) \leq HB.cl(\mu)$. On the other hand, $\mu \leq HB.cl(\mu)$ follows from (i) and so $HB.cl(\mu) \leq HB.cl(HB.cl(\mu))$. Therefore, $HB.cl(\mu) = HB.cl(\mu)$.

(iv) On account of (i) and (iii). $HB.cl(\mu)$ is an HB-closed set containing μ , and so $HB.cl(\mu) \ge \wedge \{\eta \in L^X : \eta \in HBC.(L^X, \tau), \mu \le \eta\}$. Conversely, in case

 $x_{\alpha} \in M(L^{\chi})$ sand $x_{\alpha} \in HB.cl(\mu)$, then $\mu \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. Hence, if η is an *HB*-closed set containing μ , then $\eta \leq \lambda$, and then $x_{\alpha} \in HB.cl(\eta) = \eta$.

This implies that $HB.cl(\mu) \leq \wedge \{\eta \in L^X : \eta \in HBC.(L^X, \tau), \mu \leq \eta\}$. Hence

$$HB.cl(\mu) = \wedge \left\{ \eta \in L^{X} : \eta \in HBC.(L^{X}, \tau), \mu \leq \eta \right\}$$

From Theorem 3.11, one can see that every *HB*-closed *L*-subset is a closed *L*-subset, but the inverse is not true since every closed *L*-subset is not *H*-bounded set in general as the following example shows.

Example 3.12: By Example 3.9, let $\eta \in L^{X}$ be an *L*-subset, where $\eta = x_{.7}$, then η is closed *L*-subset because $\tau' = \{0_{X}, x_{.7}, x_{.3}, 1_{X}\}$. But $x_{.7} \in L^{X}$ is not *H*-bounded set.

Theorem 3.13: Let (L^X, τ) be an *L*-ts. The following statements hold:

(i) $0_x, 1_x \in HBC(L^x, \tau)$. (ii) If $\mu_1, \mu_2, \dots, \mu_n \in HBC(L^X, \tau)$, then $\bigvee_{i=1}^n \mu_i \in HBC(L^X, \tau)$. (iii) If $\{\mu_i : i \in I\} \subseteq HBC(L^X, \tau)$, then $\wedge \mu_i \in HBC(L^X, \tau)$. (iv) Every H-bounded and closed set is HB-closed. (v) $\mu \in L^{\chi}$ is *HB*-closed iff there exists $\lambda \in HBR_{\chi}$ such that $\mu \leq \lambda$ for each $x_{\alpha} \in M(L^X)$ with $x_{\alpha} \notin \mu$ Proof. (i) Obvious. (ii) Let $\mu_1, \mu_2, \dots, \mu_n \in HBC(L^X, \tau)$ and $x_\alpha \in M(L^X)$ such that $x_{\alpha} \in HB.cl\left(\bigvee_{i=1}^{n} \mu_{i}\right)$, then for each $\lambda \in HBR_{x_{\alpha}}$ we have $\bigvee_{i=1}^{n} \mu_{i} \leq \lambda$ and so $\mu_{i} \leq \lambda$ for some $i = 1, 2, \dots, n$. Hence $x_{\alpha} \in HB.cl(\mu_i)$ for some $i = 1, 2, \dots, n$. Since μ_i is *HB*-closed set, then *HB.cl*(μ_i) $\leq \mu_i$ for some $i = 1, 2, \dots, n$ and so $x_\alpha \in \mu_i$ for some $i = 1, 2, \dots, n$ and hence $x_{\alpha} \in \bigvee_{i=1}^{n} \mu_i$. Thus $HB.cl\left(\bigvee_{i=1}^{n} \mu_i\right) \leq \bigvee_{i=1}^{n} \mu_i$ (*) Conversely, since $\mu_i \leq HB.cl(\mu_i)$ then $\bigvee_{i=1}^n \mu_i \leq HB.cl \left(\bigvee_{i=1}^n \mu_i\right)$ (**). Hence from (*) and (**) we have $HB.cl\left(\bigvee_{i=1}^{n}\mu_{i}\right) = \bigvee_{i=1}^{n}\mu_{i}$. Thus $\bigvee_{i=1}^{n}\mu_{i} \in HBC(L^{X}, \tau)$. (iii) Let $\mu_1, \mu_2, \dots, \mu_n \in HBC(L^X, \tau)$ and $x_\alpha \in M(L^X)$ such that $x_{\alpha} \in HB.cl(\bigwedge_{i \in I} \mu_i)$, then for each $\lambda \in HBR_{x_{\alpha}}$ we have $\bigwedge_{i \in I} \mu_i \leq \lambda$ and so $\mu_i \leq \lambda$ for each $i \in I$. Hence $x_{\alpha} \in HB.cl(\mu_i)$ for each $i \in I$. Since μ_i is HB-closed set, then $HB.cl(\mu_i) \le \mu_i$ for each $i \in I$ and so $x_\alpha \in \mu_i$ for each $i \in I$ and hence $x_{\alpha} \in \bigwedge_{i \in I} \mu_i$. Thus $HB.cl(\bigwedge_{i \in I} \mu_i) \leq \bigwedge_{i \in I} \mu_i$ (*). Conversely, since $\mu_i \leq HB.cl(\mu_i)$ then $\bigwedge_{i \in I} \mu_i \leq HB.cl(\bigwedge_{i \in I} \mu_i)$ (**). Hence from (*) and (**) we have $HB.cl(\bigwedge_{i \in I} \mu_i) = \bigwedge_{i \in I} \mu_i$. Thus $\bigwedge_{i \in I} \mu_i \in HBC(L^X, \tau)$. (iv) Let $\mu \in L^X$ be an *H*-bounded and closed set and let $x_{\alpha} \in M(L^X)$ such that $x_{\alpha} \notin \mu$, since μ is *H*-bounded and closed set, then $\mu \in HBR_{x_{\alpha}}$, since

that $x_{\alpha} \notin \mu$, since μ is *H*-bounded and closed set, then $\mu \in HBR_{x_{\alpha}}$, since $\mu \leq \mu$ then $x_{\alpha} \notin HB.cl(\mu)$ and so $HB.cl(\mu) \leq \mu$. Therefore μ is *HB*-closed set.

(v) Suppose that μ is *HB*-closed set, $x_{\alpha} \in M(L^{X})$ and $x_{\alpha} \notin \mu$. By Definition 3.9, there exists $\lambda \in HBR_{x_{\alpha}}$ with $\mu \leq \lambda$. Conversely, provided that the condition is satisfied. If μ is not *HB*-closed set, then there exists $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \in HB.cl(\mu)$ and $x_{\alpha} \notin \mu$. Hence $\mu \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. It conflicts with the hypothesis, and so μ is *HB*-closed set.

Theorem 3.14: Let (L^{X}, τ) be an *L*-ts and $\mu \in L^{X}$. Then $\mu \in HBC(L^{X}, \tau)$ iff $\mu \in HBR_{x_{\alpha}}$ for each $x_{\alpha} \notin \mu$.

Proof. It follows directly from Theorem 3.13 (v).

Theorem 3.15: Let (L^X, τ) be an *L*-ts and $\mu \in L^X$. Then the mapping $HB.cl: L^X \to L^X$ is called closure operator of *HB*-boundedness iff it satisfies:

(i) $HB.cl(0_x) = 0_x$.

- (ii) $\mu \leq HB.cl(\mu)$.
- (iii) $HB.cl(\mu \lor \eta) = HB.cl(\mu) \lor HB.cl(\eta)$.
- (iv) $HB.cl(HB.cl(\mu)) = HB.cl(\mu)$.

A closure operator of *HB*-boundedness *HB.cl* generates *L*-topology $\tau_{HB.cl}$ on L^{X} as: $\tau_{HB.cl} = \{ \mu \in L^{X} : HB.cl(\mu') = \mu' \}$.

Proof. It follows directly from Theorems 3.11 and 3.13.

Theorem 3.16: Let (L^{X}, τ) be an *L*-ts. Then:

(i) $\tau_{HB} \leq \tau$.

(ii) If (L^{X}, τ) is *H*-bounded space, then $\tau = \tau_{HB}$.

Proof. (i) Let $\mu \in \tau_{HB}$, then $HB.cl(\mu') \le \mu'$. Since $cl(\mu') \le HB.cl(\mu')$, hence

 $cl(\mu') \leq \mu'$ and so $\mu \in \tau$.

(ii) We note that $\tau_{HB} \leq \tau$ from (i). Now, let $\mu \in \tau$ then $\mu' \in \tau'$. Since 1_X is *H*-bounded and $\mu' \leq 1_X$, then μ' is *H*-bounded (By Theorem 3.3 (ii)) and by Theorem 3.13 (iv) we have μ' is *HB*-closed set and so $\mu' \in \tau_{HB}$. Thus $\tau = \tau_{HB}$.

Definition 3.17. Let (L^X, τ) be an *L*-ts, $\mu \in L^X$ and

 $HB.int(\mu) = \bigvee \left\{ \rho \in L^{X} : \rho \in HBO(L^{X}, \tau), \rho \leq \mu \right\}.$ We say that $HB.int(\mu)$ is the HB-interior of μ .

The following Theorem shows the relationships between *HB*-closure operator and *HB*-interior operator.

Theorem 3.18: Let (L^{X}, τ) be an *L*-ts and $\mu \in L^{X}$. Then the following are true:

- (i) μ is *HB*-open iff $\mu = HB.int(\mu)$.
- (ii) $(HB.cl(\mu))' = HB.int(\mu')$ and $(HB.int(\mu))' = HB.cl(\mu')$.
- (iii) $HB.cl(\mu) = (HB.int(\mu'))'$ and $HB.int(\mu) = (HB.cl(\mu'))'$.
- (iv) $HB.int(\mu) \leq int(\mu) \leq \mu$.
- (v) If $\eta \in L^X$ and $\mu \leq \eta$ then $HB.int(\mu) \leq HB.int(\eta)$.
- (vi) $HB.int(HB.int(\mu)) = HB.int(\mu)$.
- **Proof.** (i) Let $\mu \in L^X$ be an *HB*-open set, then

$$HB.\operatorname{int}(\mu) = \bigvee \left\{ \rho \in L^{X} : \rho \in HBO(L^{X}, \tau), \rho \leq \mu \right\} = \mu \text{ and so } \mu = HB.\operatorname{int}(\mu).$$

Conversely, let $\mu = HB.int(\mu)$, since

HB.int $(\mu) = \lor \{ \rho \in L^X : \rho \in HBO(L^X, \tau), \rho \le \mu \}$. Therefore μ is *HB*-open set.

- (ii) It follows directly from Definition 3.17 and Theorem 3.11 (iv).
- (iii) It follows directly from (ii)
- (iv) It follows directly from (ii) and Theorems 3.11 (i)
- (v) It follows directly from (ii) and Theorem 3.11 (ii)
- (vi) It follows directly from (ii) and Theorem 3.11 (iii)

Theorem 3.19: Let (L^X, τ) be an *L*-ts. The following statements hold::

(i) $0_X, 1_X \in HBO(L^X, \tau)$.

- (ii) If $\mu_1, \mu_2, \dots, \mu_n \in HBO(L^X, \tau)$, then $\bigwedge_{i=1}^n \mu_i \in HBO(L^X, \tau)$.
- (iii) If $\{\mu_i : i \in I\} \subseteq HBO(L^X, \tau)$, then $\bigvee_{i \in I} \mu_i \in HBO(L^X, \tau)$.

Definition 3.20: Let (L^X, τ) be an *L*-ts and *S* be a molecular net in L^X . Then $x_{\alpha} \in M(L^X)$ is called

(i) limit point of S [13], (or S converges to x_{α}) in symbol $S \to x_{\alpha}$ if for every $\mu \in R_{x_{\alpha}}$ there is $n \in D$ such for each $m \in D$ and $m \ge n$ we have

 $S(m) \notin \mu$. The union of all limit points of *S* is denoted by $\lim(S)$.

(ii) H-bounded limit point of S, (or S HB-converges to $~x_{\alpha}$) in symbol

 $S \xrightarrow{HB} x_{\alpha}$ if for every $\mu \in HBR_{x_{\alpha}}$ there is an $n \in D$ such that $m \in D$ and

 $m \ge n$, we have $S(m) \notin \mu$. The union of all *HB*-limit points of *S* is denoted by *HB*.lim(*S*).

Theorem 3.21: Suppose that *S* is a molecular net in (L^X, τ) , $\mu \in L^X$ and $x_{\alpha} \in M(L^X)$. Then the following statements hold:

- (i) If $S \to x_{\alpha}$, then $S \xrightarrow{HB} x_{\alpha}$.
- (ii) $x_{\alpha} \in HB.\lim(S)$ iff $S \xrightarrow{HB} x_{\alpha}$.
- (iii) $\lim(S) \leq HB.\lim(S)$.

(iv) $x_{\alpha} \in HB..cl(\mu)$ (resp. $x_{\alpha} \in .cl(\mu)$), iff there exists a molecular net *S* in μ such that *S* is *HB*-converges (resp. converges) to x_{α} .

(v) $HB.\lim(S)$ is HB-closed set in L^X .

Proof. (i) Let $S \to x_{\alpha}$ and let $\lambda \in HBR_{x_{\alpha}}$. Since $HBR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$, then $\lambda \in R_{x_{\alpha}}$ Since $S \to x_{\alpha}$, then for every $\mu \in R_{x_{\alpha}}$ there is $n \in D$ such for each

 $m \in D$ and $m \ge n$, we have $S(m) \notin \lambda$. Thus $S \to x_{\alpha}$.

(ii) Let $x_{\alpha} \in HB.\lim(S)$ and let $\lambda \in HBR_{x_{\alpha}}$. Since $x_{\alpha} \notin \lambda$, then

HB.lim $(S) \notin \lambda$. Therefore there exists $y_{\gamma} \in M(L^X)$ such that

 $y_{\gamma} \in HB.\lim(S)$ and $y_{\gamma} \notin \lambda$. Then $\lambda \in HBR_{y_{\gamma}}$ and so there is $n \in D$ much for each $m \in D$ and $m \ge n$ we have $S(m) \notin \lambda$, but since $\lambda \in HBR_{x_{\alpha}}$ so $S \xrightarrow{HB} x_{\alpha}$. Conversely, let $S \xrightarrow{HB} x_{\alpha}$, then by Definition 3.20 (ii) we have

 $x_{\alpha} \in HB.\lim(S)$

(iii) Let $x_{\alpha} \in \lim(S)$ and let $\eta \in HBR_{x_{\alpha}}$. Since $HBR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$, then $\eta \in R_{x_{\alpha}}$. And since $x_{\alpha} \in \lim(S)$, then for each $\lambda \in R_{x_{\alpha}}$ there is $n \in D$ such for each $m \in D$ and $m \ge n$, we have $S(m) \notin \lambda$ and so $S(m) \notin \eta$. Hence $x_{\alpha} \in HB.\lim(S)$. So $\lim(S) \le HB.\lim(S)$.

(iv) Let $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \in HB.cl(\mu)$, then $\mu \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. Since $\mu \leq \lambda$, then there exists $\alpha(\mu, \lambda) \in M(L)$ such that $x_{\alpha(\mu,\lambda)} \in \mu$ with $x_{\alpha(\mu,\lambda)} \notin \lambda$. Since the pair $(HBR_{x_{\alpha}},\geq)$ is a directed set and so we can define a molecular net $S: HBR_{x_{\alpha}} \to M(L^{X})$ as follows $S(\lambda) = x_{\alpha(\mu,\lambda)}$ for each $\lambda \in HBR_{x_{\alpha}}$ Hence S is a molecular net in μ . Now let $\eta \in HBR_{x_{\alpha}}$

such that $\lambda \leq \eta$, so we have there exists $S(\eta) = x_{\alpha(\mu,\eta)} \notin \eta$ and so $S(\eta) = x_{\alpha(\mu,\eta)} \notin \lambda$. Hence *S* is *HB*-converges to x_{α} .

Conversely, let S be a molecular net in μ such that S is HB-converges to x_{α} then for each $\lambda \in HBR_{x_{\alpha}}$ there is $n \in D$ such for each $m \in D$ and $m \ge n$, we have $S(m) \notin \lambda$. Since $S(n) \in \mu$ for each $n \in D$, $m \in D$. So $S(m) \in \mu$ and $\mu \ge S(m) > \lambda$ hence $\mu \le \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$. This means that $x_{\alpha} \in HB.cl(\mu)$.

(v) Let $x_{\alpha} \in HB.cl(HB.\lim(S))$, then $HB.\lim(S) \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$ and then there exists $y_{\gamma} \in M(L^{X})$ such that $y_{\gamma} \in HB.\lim(S)$ and $y_{\gamma} \notin \lambda$. Then for each $\mu \in HBR_{y_{\gamma}}$, there is $n \in D$ much for each $m \in D$ and $m \geq n$ we have $S(m) \notin \mu$ and so $S(m) \notin \lambda$. Hence $x_{\alpha} \in HB.\lim(S)$. Thus

 $HB.cl(HB.lim(S)) \le HB.lim(S)$ and so HB.lim(S) is HB-closed set.

Definition 3.22: Let (L^X, τ) be an *L*-ts and *I* be an ideal in L^X . Then $x_{\alpha} \in M(L^X)$ is called:

(i) limit point of I [18], (or I converges to x_{α}) in symbol $I \to x_{\alpha}$ if $R_{x_{\alpha}} \subseteq I$. The union of all limit points of I is denoted by $\lim(I)$.

(ii) *H*-bounded limit point of *I*, (or *I HB*-converges to x_{α}) in symbol $I \rightarrow x_{\alpha}$ if $HBR_{x_{\alpha}} \subseteq I$. The union of all *HB*-limit points of *I* is denoted by $HB.\lim(I)$.

Theorem 3.23: Suppose that *I* is an ideal in (L^X, τ) , $\mu \in L^X$ and $x_{\alpha} \in M(L^X)$. Then the following statements hold:

- (i) If $I \to x_{\alpha}$, then $I \to x_{\alpha}$.
- (ii) $x_{\alpha} \in HB.\lim(I)$ iff $I \to x_{\alpha}$.
- (iii) $\lim(I) \leq HB.\lim(I)$.

(iv) $x_{\alpha} \in HB...cl(\mu)$ iff there exists an ideal I in L^{X} such that $I \xrightarrow{HB} x_{\alpha}$ and $\mu \notin I$

(v) HB.lim(I) is HB-closed set in L^X .

Proof. (i) Let $I \to x_{\alpha}$ then $R_{x_{\alpha}} \subseteq I$. Since $HBR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$, then $HBR_{x_{\alpha}} \subseteq I$.

Thus $I \to x_{\alpha}$.

(ii) Let $x_{\alpha} \in HB.\lim(I)$ and let $\lambda \in HBR_{x_{\alpha}}$. Since $x_{\alpha} \notin \lambda$ and

 $x_{\alpha} \in HB.\lim(I)$, then $HB.\lim(I) \notin \lambda$. Therefore there exists $y_{\gamma} \in M(L^{\chi})$ such that $y_{\gamma} \in HB.\lim(I)$ and $y_{\gamma} \notin \lambda$. Then $\lambda \in HBR_{y_{\gamma}}$ and so

 $HBR_{x_{\alpha}} \subseteq HBR_{y_{\gamma}} \subseteq I$ hence $HBR_{x_{\alpha}} \subseteq I$. Thus $I \xrightarrow{HB} x_{\alpha}$. Conversely, let $I \xrightarrow{HB} x_{\alpha}$, then by Definition 3.22 (ii) we have $x_{\alpha} \in HB.\lim(I)$.

(iii) Let $x_{\alpha} \in \lim(I)$ and let $\eta \in HBR_{x_{\alpha}}$. since $x_{\alpha} \in \lim(I)$, so for each $\lambda \in R_{x_{\alpha}}$, $\lambda \in I$ and since $\eta \in HBR_{x_{\alpha}}$ so $\eta \in R_{x_{\alpha}}$. Hence $x_{\alpha} \in HB.\lim(I)$. So $\lim(I) \le HB.\lim(I)$.

(iv) Let $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \in HB.cl(\mu)$. The family

 $I = \left\{ \rho \in L^{x} : \exists \lambda \in HBR_{x_{\alpha}} \ni \rho \leq \lambda \right\} \text{ is an ideal in } L^{x} \text{ . Now we show that } \mu \notin I \text{ .}$ Since $x_{\alpha} \in HB.cl(\mu)$, then for each $\lambda \in HBR_{x_{\alpha}}$, $\mu \leq \lambda$. So By definition of I we have $\mu \notin I$. Finally, we show that $I \xrightarrow{HB} x_{\alpha}$. Let $\lambda \in HBR_{x_{\alpha}}$, since $\lambda \leq \lambda$, then $\lambda \in I$. So $HBR_{x_{\alpha}} \subseteq I$. Thus $I \xrightarrow{HB} x_{\alpha}$.

Conversely, let *I* be an ideal in L^{X} such that $I \to x_{\alpha}$ and $\mu \notin I$. Then for each $\lambda \in HBR_{x_{\alpha}}$, $\lambda \in I$. Since $\lambda \in I$, $\mu \notin I$, then $\mu \leq \lambda$ and so $x_{\alpha} \in HB..cl(\mu)$.

(v) Let $x_{\alpha} \in HB..cl(HB.lim(I))$, then $HB.lim(I) \leq \lambda$ for each $\lambda \in HBR_{x_{\alpha}}$ and then there exists $y_{\gamma} \in M(L^{\chi})$ such that $y_{\gamma} \in HB.lim(I)$ and $y_{\gamma} \notin \lambda$. Since $\lambda \in HBR_{y_{\gamma}}$ and $I \xrightarrow{HB} y_{\gamma}$ then $\eta \in I$ for each $\eta \in HBR_{x_{\alpha}}$. Since $y_{\gamma} \notin \lambda$ then $\lambda \in I$. But $\lambda \in HBR_{x_{\alpha}}$ and so $x_{\alpha} \in HB.lim(I)$. Thus $HB..cl(HB.lim(I)) \leq HB.lim(I)$ and so HB.lim(I) is HB-closed set.

4. HB-Continuous Mappings in L-Topological Space

In this section we first define *HB*-continuous mappings in *L*-topological space and then investigate some of its characterizations,

Definition 4.1: An *L*-mapping $f_L: (L^X, \tau) \rightarrow (L^Y, \Delta)$ is called :

(i) *HB*-continuous at $x_{\alpha} \in M(L^{X})$ if $f_{L}^{-1}(\eta) \in R_{x_{\alpha}}$ for each $\eta \in HBR_{f_{L}(x_{\alpha})}$

(ii) *HB*-continuous if $f_L^{-1}(\eta) \in \tau$ for each $\eta \in L^X$ is closed and *H*-bounded.

Theorem 4.2: Let $f_L: (L^x, \tau) \to (L^y, \Delta)$ be an *L*-continuous mapping. Then the following properties are equivalent :

(i) f_L is *HB*-continuous.

- (ii) f_L is *HB*-continuous at x_α for each $x_\alpha \in M(L^X)$.
- (iii) If $\eta \in \Delta$ and η' is *H*-bounded, then $f_L^{-1}(\eta) \in \tau$.

(iv) If $\eta \in L^{Y}$ is *H*-bounded, then $f_{L}^{-1}(\eta) \in \tau'$.

Proof. (i) \Rightarrow (ii): Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *HB*-continuous and $x_\alpha \in M(L^X)$, $\eta \in HBR_{f_L(x_\alpha)}$ then $f_L^{-1}(\eta) \in \tau'$. Since $f_L(x_\alpha) \notin \eta$, then $x_\alpha \notin f_L^{-1}(\eta)$

And so $f_L^{-1}(\eta) \in R_{x_{\alpha}}$. Thus f_L is *HB*-continuous at x_{α} for each $x_{\alpha} \in M(L^X)$.

(ii) \Rightarrow (i): Let f_L be an *HB*-continuous at x_α for each $x_\alpha \in M(L^X)$. If f_L is not *HB*-continuous, then there is $\eta \in L^Y$ is *H*-bounded and closed such that $f_L^{-1}(\eta) \notin \tau'$, *i.e.*, $cl(f_L^{-1}(\eta)) \notin f_L^{-1}(\eta)$. Then there exists $x_\alpha \in M(L^X)$ such that $x_\alpha \in cl(f_L^{-1}(\eta))$ and $x_\alpha \notin f_L^{-1}(\eta)$ implies that $f_L(x_\alpha) \notin \eta$, since η is closed and *H*-bounded, then $\eta \in HBR_{f_L(x_\alpha)}$. But $f_L^{-1}(\eta) \notin R_{x_\alpha}$, this contradiction. Thus f_L is *HB*-continuous mapping.

(i) \Rightarrow (iii): Let $f_L: (L^x, \tau) \rightarrow (L^y, \Delta)$ be an *HB*-continuous and $\eta \in \Delta$ such that η' is *H*-bounded and so η' is *H*-bounded and closed. By (i), we have

 $f_{L}^{-1}(\eta') \in \tau'$. Since $f_{L}^{-1}(\eta') = (f_{L}^{-1}(\eta))'$, then $f_{L}^{-1}(\eta) \in \tau$.

(iii) \Rightarrow (i): Let $\eta \in L^{\gamma}$ be an *H*-bounded and closed, then $\eta' \in \Delta$. By (iii), we have $f_L^{-1}(\eta') \in \tau$, thus $f_L^{-1}(\eta) = (f_L^{-1}(\eta'))'$, then $f_L^{-1}(\eta) \in \tau'$. Hence f_L is *HB*-continuous mapping.

(iv) \Rightarrow (iii): Let $\eta \in \Delta$ and η' be an *H*-bounded. By (iv), we have $f_L^{-1}(\eta) \in \tau'$. Thus $f_L^{-1}(\eta) = (f_L^{-1}(\eta'))' \in \tau$.

(iv) \Rightarrow (ii): Let $\eta \in HBR_{f_L(x_\alpha)}$ and $x_\alpha \in M(L^X)$. Then η is closed and *H*-bounded set, $f_L(x_\alpha) \notin \eta$ and so $x_\alpha \notin f_L^{-1}(\eta)$. By (iv), we have $f_L^{-1}(\eta) \in \tau'$ and $x_\alpha \notin f_L^{-1}(\eta)$ hence $f_L^{-1}(\eta) \in R_{x_\alpha}$. Thus f_L is *HB*-continuous mapping at x_α for each $x_\alpha \in M(L^X)$.

(iv) \Rightarrow (i): Let $\eta \in L^{Y}$ be a closed and *H*-bounded set. By (iv), we have $f_{L}^{-1}(\eta) \in \tau'$. Thus f_{L} is *HB*-continuous mapping.

Theorem 4.3: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-surjective mapping. Then the following conditions are equivalent:

- (i) f_L is *HB*-continuous mapping.
- (ii) For each $\mu \in L^X$, $f_L(cl(\mu)) \leq HB.cl(f_L(\mu))$,
- (iii) For each $\eta \in L^{Y}$, $cl(f_{L}^{-1}(\eta)) \leq f_{L}^{-1}(HB.cl(\eta))$,
- (iv) For each $\eta \in L^{Y}$, $f_{L}^{-1}(HB.int(\eta)) \leq int(f_{L}^{-1}(\eta))$,

(v) For each *HB*-open *L*-subset ρ in L^{γ} , then $f_{L}^{-1}(\rho)$ is open *L*-subset in L^{χ} ,

(vi) For each *HB*-closed *L*-subset λ in L^{Y} , then $f_{L}^{-1}(\lambda)$ is closed *L*-subset in L^{X} .

Proof. (i) \Rightarrow (ii): Let $\mu \in L^X$ and $x_\alpha \in M(L^X)$ such that $x_\alpha \in cl(\mu)$. Then $f_L(x_\alpha) \in f_L(cl(\mu))$. Let $\eta \in HBR_{f_L(x_\alpha)}$. So by (i) and by Theorem 4.3, we have $f_L^{-1}(\eta) \in R_{x_\alpha}$. Since $x_\alpha \in cl(\mu)$, then $\mu \leq f_L^{-1}(\eta)$. Since f_L is *L*-surjective then $f_L(\mu) \leq \eta$ and $\eta \in HBR_{f_L(x_\alpha)}$ so $f_L(x_\alpha) \in HB.cl(f_L(\mu))$. Hence $f_L(cl(\mu)) \leq HB.cl(f_L(\mu))$.

(ii) \Rightarrow (iii): Let $\eta \in L^{Y}$. Then $f_{L}^{-1}(\eta) \in L^{X}$. By (ii) we have $f_{L}\left(cl\left(f_{L}^{-1}(\eta)\right)\right) \leq HB.cl\left(f_{L}\left(f_{L}^{-1}(\eta)\right)\right) \leq HB.cl\left(\eta\right)$. So

 $f_L\left(cl\left(f_L^{-1}(\eta)\right)\right) \le HB.cl\left(\eta\right). \text{ Thus } f_L^{-1}f_L\left(cl\left(f_L^{-1}(\eta)\right)\right) \le f_L^{-1}\left(HB.cl\left(\eta\right)\right). \text{ Since } cl\left(f_L^{-1}(\eta)\right) \le f_L^{-1}f_L\left(cl\left(f_L^{-1}(\eta)\right)\right), \text{ then } cl\left(f_L^{-1}(\eta)\right) \le f_L^{-1}\left(HB.cl\left(\eta\right)\right).$

(iii) \Rightarrow (iv): Let $\eta \in L^{Y}$. By (iii), we have $cl(f_{L}^{-1}(\eta')) \leq f_{L}^{-1}(HB.cl(\eta'))$

Since $cl(f_L^{-1}(\eta')) = (int(f_L^{-1}(\eta)))'$ and $f_L^{-1}(HB.cl(\eta')) = (f_L^{-1}(HB.int(\eta)))'$. So $(int(f^{-1}(\eta)))' \le (f^{-1}(HB.int(\eta)))'$. Thus $f^{-1}(HB.int(\eta)) \le int(f^{-1}(\eta))$.

So
$$(\operatorname{int}(f_L^{-1}(\eta))) \leq (f_L^{-1}(HB.\operatorname{int}(\eta)))$$
. Thus $f_L^{-1}(HB.\operatorname{int}(\eta)) \leq \operatorname{int}(f_L^{-1}(\eta))$.

(iv) \Rightarrow (v): Let ρ be an *HB*-open *L*-subset in L^{Y} . Then

 $f_L^{-1}(\rho) = f_L^{-1}(HB.int(\rho)) \text{ and by (iv), we have}$ $f_L^{-1}(HB.int(\rho)) \le int(f_L^{-1}(\rho)), \text{ so } f_L^{-1}(\rho) \le int(f_L^{-1}(\rho)). \text{ Thus } f_L^{-1}(\rho) \in \tau.$ (v) \Rightarrow (vi): Let λ be an *HB*-closed *L*-subset in L^{γ} . By (v), we have $f_{L}^{-1}(\lambda') \in \tau$. Then $(f_{L}^{-1}(\lambda))' = f_{L}^{-1}(\lambda') \in \tau$ and so $f_{L}^{-1}(\lambda) \in \tau'$.

(vi) \Rightarrow (i): Let $\eta \in L^{\gamma}$ be an closed and *H*-bounded set, then η is *HB*-closed *L*-subset in L^{γ} . By (vi), we have $f_{L}^{-1}(\eta) \in \tau'$. Thus f_{L} is *HB*-continuous mapping.

Theorem 4.4: If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping, then $f_L: (L^X, \tau) \to (L^{f(X)}, \Delta_{f(X)})$ is *HB*-continuous mapping.

Proof. Let $\eta \in \Delta_{f(X)}$ such that $1_{f(X)} \setminus \eta$ is *H*-bounded set, then $1_{f(X)} \setminus \eta$ is *H*-bounded and closed in $(L^{f(X)}, \Delta_{f(X)})$. Therefore $\rho = 1_Y \setminus (1_{f(X)} \setminus \eta) \in \Delta$ and ρ' is *H*-bounded in (L^Y, Δ) . Since $f_L : (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping, the by Theorem 4.2 (iii), we have $f_L^{-1}(\rho) \in \tau$, thus

$$\begin{split} f_{L}^{-1}(\rho) &= f_{L}^{-1}\left(\mathbf{1}_{Y} \setminus \left(\mathbf{1}_{f(X)} \setminus \eta\right)\right) = \mathbf{1}_{X} \setminus \left(f_{L}^{-1}\left(\mathbf{1}_{f(X)} \setminus \eta\right)\right) = \mathbf{1}_{X} \setminus \left(\mathbf{1}_{X} \setminus f_{L}^{-1}(\eta)\right) = f_{L}^{-1}(\eta) \,. \\ \text{Hence } f_{L}^{-1}(\eta) &\in \tau \text{ consequently, } f_{L} : \left(L^{X}, \tau\right) \to \left(L^{f(X)}, \Delta_{f(X)}\right) \text{ is } \\ HB\text{-continuous mapping.} \end{split}$$

Theorem 4.5: If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping and $A \subseteq X$ then $f_L|_A: (L^A, \tau_A) \to (L^Y, \Delta)$ is *HB*-continuous mapping.

Proof. Let $\eta \in L^{Y}$ be an *H*-bounded and closed set. Since

 $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping, then $f_L^{-1}(\eta) \in \tau'$ and since $(f_L|_A)^{-1}(\eta) = f_L^{-1}(\eta) \wedge 1_A \in \tau'_A$. Hence $f_L|_A$ is *HB*-continuous mapping.

Theorem 4.6: Every $f_L: (L^X, \tau) \to (L^Y, \Delta)$ *L*-continuous mapping is *HB*-continuous mapping.

Proof. Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-continuous and let $\eta \in L^Y$ be an closed and *H*-bounded set, then $f_L^{-1}(\eta) \in \tau'$. Thus f_L is *HB*-continuous mapping.

The following example shows that the converse is not true in general.

Example 4.7: Let $\{I_j : j \in J\}$ be the usual interval base of the relative *L*-topology on L = I = [0,1] induced by the set of real numbers. Define a *L*-topology τ on [0,1] generated by the base consisting of, 0_X , 1_X and $\{I_{j_k} : j \in J \text{ and } k \in (0,1)\}$ where

$$I_{j_{K}}(x) = \begin{cases} k : x \in I \\ 0 : x \notin I \end{cases}$$

Let Δ be the *L*-topology on *I* such that the complements of any number of Δ is countable *L*-subset in *I*(*i.e.*, the support of the *L*-subset is countable). Let $f_L:(L^x,\tau) \to (L^y,\Delta)$ be a function defined by f(x) = x, for all $x \in I$. Then it can be see that f_L is *HB*-continuous but not *L*-continuous mapping.

Theorem 4.8: A mapping $f_L: (L^X, \tau) \to (L^Y, \Delta_{HB})$ is *L*-continuous mapping iff it is *HB*-continuous mapping.

Proof. Since $\Delta'_{HB} \leq \Delta'$, then necessity is evident. Now, we suppose that f_L is *HB*-continuous and $\eta \in \Delta'_{HB}$. Then by Theorem 4.3 (iii) we have $f_L^{-1}(\eta) = f_L^{-1}(HB.cl(\eta)) \geq cl(f_L^{-1}(\eta))$ and so $f_L^{-1}(\eta) \in \tau'$. Thus f_L is

L-continuous mapping.

Theorem 4.9: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-mapping and (L^Y, Δ) is *H*-bounded space. Then f_L is *L*-continuous mapping iff f_L is *HB*-continuous mapping.

Proof. By Theorem 4.6 we need only to investigate the sufficiency. Let $\eta \in \Delta'$. Since (L^{γ}, Δ) is *H*-bounded space then by Theorem 3.2(ii), we have η is *H*-bounded set and so η is *HB*-closed *L*-subset. By *HB*-continuity of f_L , we have $f_L^{-1}(\eta) \in \tau'$. Hence f_L is *L*-continuous mapping.

Theorem 4.10: If f_L is *HB*-continuous, then f_L is *H*-continuous mapping. **Proof.** Follows from the fact that every *H*-compact set is *H*-bounded set.

Theorem 4.11: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-mapping and (L^Y, Δ) be LT_3 -space. Then f_L is *H*-continuous iff f_L is *HB*-continuous mapping.

Proof. Let f_L be an *HB*-continuous mapping and let $\eta \in L^{\gamma}$ be a closed and *H*-compact, then by Theorem 3.3 (i), we have η is *H*-bounded and closed. Since f_L is *HB*-continuous then $f_L^{-1}(\eta) \in \tau'$. Thus f_L is *H*-continuous.

Conversely, let f_L be an *H*-continuous and let $\eta \in L^Y$ be a closed and *H*-bounded. Then η is *H*-compact and closed. Since f_L is *H*-continuous, then $f_L^{-1}(\eta) \in \tau'$. Thus f_L is *HB*-continuous mapping.

Remark 4.12: For an *L*-mapping $f_L: (L^X, \tau) \to (L^Y, \Delta)$, we obtain the following implications:

L-continuity \Rightarrow *HB*-continuity \Rightarrow *H*-continuity.

None of these implications are reversible. However, if it (L^{Y}, Δ) is *H*-bounded (resp. LT_3 -) space, then Theorem 4.10 (resp. Theorem 4.12) implies that the concepts of *L*-continuity (resp. *HB*-continuity) and *H*-continuity are equivalent.

Theorem 4.13: If $f_L: (L^X, \tau_1) \rightarrow (L^Y, \tau_2)$ is *L*-continuous and

 $g_L: (L^Y, \tau_2) \rightarrow (L^Z, \tau_3)$ is *HB*-continuous, then $g_L \circ f_L: (L^X, \tau_1) \rightarrow (L^Z, \tau_3)$ is *HB*-continuous.

Proof. Let $\eta \in L^{Y}$ be a closed and almost *N*-compact. Since g_{L} is *HB*-continuous, then $g_{L}^{-1}(\eta) \in \tau'_{2}$ and since f_{L} is *L*-continuous, then

 $f_L^{-1}(g_L^{-1}(\eta)) \in \tau'_1$ Hence $g_L \circ f_L$ *HB*-continuous mapping.

Theorem 4.14: If (L^X, τ) and (L^Y, Δ) are *L*-ts's and $1_X = 1_A \vee 1_B$ such that $1_A, 1_B \in \tau'$ and $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *L*-mapping and $f_L|_A, f_L|_B$ are *HB*-continuous mappings, then f_L is *HB*-continuous mapping.

Proof. Let $\eta \in L^{\gamma}$ be an *N*-almost bounded and closed then

$$(f_L|_A)^{-1}(\eta) \vee (f_L|_B)^{-1}(\eta) = (f_L^{-1}(\eta) \wedge 1_A) \vee (f_L^{-1}(\eta) \wedge 1_B)$$

= $(f_L^{-1}(\eta) \wedge (1_A \vee 1_B)) = f_L^{-1}(\eta) \wedge 1_X = f_L^{-1}(\eta)$

Hence $f_L^{-1}(\eta) \in \tau'$. Thus f_L is *HB*-continuous mapping.

Theorem 4.15: If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping, injective, (L^Y, Δ) is *LT*₁-space and *H*-bounded, then (L^X, τ) is *LT*₁-space.

Proof. Let $x_{\alpha}, y_{\gamma} \in M(L^{X})$ such that $x \neq y$. Since f_{L} is injective *L*-mapping, then $f_{L}(x_{\alpha}), f_{L}(y_{\gamma}) \in M(L^{Y})$ and $f(x) \neq f(y)$. Since (L^{Y}, Δ)

is LT_1 -space, then $f_L(x_\alpha), f_L(y_\gamma)$ are closed *L*-subsets in (L^Y, Δ) . Since (L^Y, Δ) is *H*-bounded, then $f_L(x_\alpha), f_L(y_\gamma)$ are *H*-bounded *L*-subsets. Since $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *HB*-continuous mapping, then $f_L^{-1}(f_L(x_\alpha),)=x_\alpha$ and $f_L^{-1}(f_L(y_\gamma)) = y_\gamma$ are closed *L*-subsets in (L^X, τ) . Hence (L^X, τ) is LT_1 -space.

5. Characterizations of *HB*-Continuous Mappings in *L*-Topological Space

Theorem 5.1: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be an *HB*-continuous mapping and be a fully stratified $LT_{\frac{21}{2}}$ -space and LR_2 -space. If $f_L(1_X)$ is contained in

some *H*-compact set of L^{Y} , then f_{L} is *L*-continuous mapping.

Proof. Let $\eta \in L^{Y}$ be an *H*-compact set containing $f_{L}(1_{X})$ and let $\rho \in \Delta'$. Since η is *B*-compact in (L^{Y}, Δ) which is fully stratified $LT_{2\frac{1}{2}}$ -space and

 LR_2 -space, so $\eta \in \Delta'$ and η is *H*-bounded by Theorem 3.3 (ii). Thus $\eta \wedge \rho \in \Delta'$. Hence by Theorem 3.3 (iii), we have $\eta \wedge \rho \in L^{\gamma}$ is *H*-bounded. Thus $\eta \wedge \rho \in L^{\gamma}$ is closed and *H*-bounded. By *HB*-continuity of f_L , then we have $f_L^{-1}(\eta \wedge \rho) \in \tau'$. But,

 $f_{L}^{-1}(\eta \wedge \rho) = f_{L}^{-1}(\eta) \wedge f_{L}^{-1}(\rho) = f_{L}^{-1}(\rho) \wedge 1_{X} = f_{L}^{-1}(\rho)$. So $f_{L}^{-1}(\rho) \in \tau'$. Hence f_{L} is *L*-continuous mapping.

Theorem 5.2: If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is *L*-closed and *L*-almost continuous mapping, then $f_L^{-1}: (L^Y, \Delta) \to (L^X, \tau)$ is *HB*-continuous mapping.

Proof. Let $\eta \in L^X$ be an *H*-bounded and closed. Since f_L is *L*-almost continuous mapping, then by Theorem 3.2 we have is *H*-bounded in L^Y . Since f_L is *L*-closed mapping, then $f_L(\eta) \in \Delta'$. Hence by Theorem 4.3, we have f_L^{-1} is *HB*-continuous mapping.

Theorem 5.3: Let (L^X, τ) be an *L*-ts and (L^Y, Δ) be a fully stratified $LT_{2\frac{1}{2}}$

-space and LR_2 -space. If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is a bijective and *L*-almost continuous mapping, then $f_L^{-1}: (L^Y, \Delta) \to (L^X, \tau)$ is *HB*-continuous mapping.

Proof. Let $\eta \in L^{X}$ be an *H*-compact. Since f_{L} is *L*-almost continuous mapping, then by Theorem 2.10, $f_{L}(\eta)$ is *H*-compact. Since (L^{Y}, Δ) is fully stratified $LT_{2^{\frac{1}{2}}}$ -space and LR_{2} -space, then $f_{L}(\eta) \in \Delta'$ and $f_{L}(\eta)$ is *H*-bounded. Hence by Theorem 4.2, we have f_{L}^{-1} is *HB*-continuous mapping.

Corollary 5.4: Let (L^X, τ) be an *H*-compact space and (L^Y, Δ) be a fully stratified $LT_{2\frac{1}{2}}$ -space and LR_2 -space. If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is a bijective

and L-almost continuous mapping, then f_L is a homeomorphism.

Proof. Follows from Theorem 5.1 and 5.3.

Theorem 5.5: Let $f_L: (L^X, \tau) \to (L^Y, \Delta)$ be a surjective *L*-mapping, then the following conditions are equivalent :

- (i) f_L is *HB*-continuous mapping.
- (ii) For each $x_{\alpha} \in M(L^{X})$ and each molecular net S in L^{X} ,

 $f_L(S) \xrightarrow{HB} f_L(x_{\alpha})$ at $S \to x_{\alpha}$.

(iii) $f_L(\lim(S)) \le HB.\lim(f_L(S))$ for each S in L^X .

Proof: (i) \Rightarrow (ii): Let $x_{\alpha} \in M(L^{X})$ and $S = \{S(n) : n \in D\}$ be an molecular net in L^{X} which converges to x_{α} . Let $\eta \in HBR_{f_{L}(x_{\alpha})}$, by (i), we have

$$\begin{split} f_L^{-1}(\eta) &\in R_{x_\alpha} \text{. Since } S \to x_\alpha \text{ then there is an } n \in D \text{ for all } m \in D \text{, } m \geq n \\ \text{such that } S(m) \leq f_L^{-1}(\eta) \text{ and so } f_L(S(m)) \leq f_L f_L^{-1}(\eta) = \eta \text{. Thus} \\ f_L(S(m)) \leq \eta \text{. Hence } f_L(S) \xrightarrow{HB} f_L(x_\alpha) \text{.} \end{split}$$

(ii) \Rightarrow (iii): Let *S* be a molecular net in L^{X} and let $y_{\alpha} \in f_{L}(\lim(S))$, then there exists $x_{\alpha} \in \lim(S)$ such that $y_{\alpha} = f_{L}(x_{\alpha})$. By (ii) we have $f_{L}(x_{\alpha}) \in HB.\lim(f_{L}(S))$. Thus $f_{L}(\lim(S)) \leq HB.\lim(f_{L}(S))$ for each *S* in

(iii) \Rightarrow (i): Let $\eta \in L^{Y}$ be an *HB*-closed and $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \in cl(f_{L}^{-1}(\eta))$. By Theorem 2.19, we have molecular net S in $f_{L}^{-1}(\eta)$ which converges to x_{α} . Thus $x_{\alpha} \in \lim(S)$ and so $f_{L}(x_{\alpha}) \in f_{L}(\lim(S))$. By (iii),

 $f_L(x_{\alpha}) \in f_L(\lim(S)) \leq HB.\lim(f_L(S))$ and so $f_L(S) \xrightarrow{HB} f_L(x_{\alpha})$. On the other hand, since S is molecular net in $f_L^{-1}(\eta)$, then for each $n \in D$, $S(n) \in f_L^{-1}(\eta)$ and so $f_L(S(n)) \leq f_L(f_L^{-1}(\eta)) = \eta$. Hence $f_L(S(n)) \leq \eta$ for each $n \in D$. Thus $f_L(S)$ is molecular net in η . So we have

 $f_L(S) \xrightarrow{HB} f_L(x_\alpha)$ and $f_L(S)$ is molecular net in η and so

 $f_L(x_{\alpha}) \in HB.cl(\eta)$. But since η is *HB*-closed *L*-subset, so $\eta = HB.cl(\eta)$. Thus $f_L(x_{\alpha}) \in \eta$. Hence $x_{\alpha} \in f_L^{-1}(\eta)$. So $cl(f_L^{-1}(\eta)) \leq f_L^{-1}(\eta)$. Hence $f_L^{-1}(\eta) \in \tau'$. Then f_L is *HB*-continuous mapping.

Theorem 5.6: If $f_L: (L^X, \tau) \to (L^Y, \Delta)$ is a surjective *L*-mapping. Then the following conditions are equivalent:

- (i) f_L is *HB*-continuous mapping.
- (ii) For each $x_{\alpha} \in M(L^{X})$ and each *L*-ideal *I* in L^{X} , then

 $f_L(I) \xrightarrow{HB} f_L(x_\alpha)$ if $I \to x_\alpha$.

(iii) $f_L(\lim(I)) \le HB.\lim(f_L(I))$ for each I in L^X .

Proof: (i) \Rightarrow (ii): Let $x_{\alpha} \in M(L^{X})$ and $I \to x_{\alpha}$. Let $\eta \in HBR_{f_{L}(x_{\alpha})}$, by (i),

we have $f_L^{-1}(\eta) \in R_{x_\alpha}$. Since $I \to x_\alpha$ then $f_L^{-1}(\eta) \in I$. Since $x_\alpha \notin f_L^{-1}(\eta)$, then $f_L(x_\alpha) \notin \eta$, so $\eta \in f_L(I)$. Hence $HBR_{f_L(x_\alpha)} \subseteq f_L(I)$. Thus

 $f_L(I) \xrightarrow{HB} f_L(x_\alpha).$

(ii) \Rightarrow (iii): Let *I* be an *L*-ideal in L^X and let $y_{\alpha} \in f_L(\lim(I))$, then there exists $x_{\alpha} \in \lim(I)$ such that $y_{\alpha} = f_L(x_{\alpha})$. By (ii) we have

 $f_L(I) \xrightarrow{HB} f_L(x_\alpha)$. So $y_\alpha = f_L(x_\alpha) \in HB. \lim(f_L(I))$. Hence

 $f_L(\lim(I)) \le HB.\lim(f_L(I))$ for each I in L^X .

(iii) \Rightarrow (i): Let $\eta \in L^{Y}$ be an *HB*-closed set and $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \in cl(f_{L}^{-1}(\eta))$. By Theorem 2.23, there exists *L*-ideal *I* which converges to x_{α} such that $f_{L}^{-1}(\eta) \notin I$. Moreover, $f_{L}(I) \leq \{\rho \in L^{Y} : \eta \leq \rho\}$ if $\lambda \in I$ with

 $\eta \leq \lambda$, then there exists $\mu \in I$ satisfy $x_{\alpha} \notin \mu$ such that $f_L(x_{\alpha}) \notin \lambda$. Since $\eta \leq \lambda$, then $f_L(x_{\alpha}) \notin \eta$. This show that $x_{\alpha} \in \mu$ if $f_L(x_{\alpha}) \in \eta$. Thus $f_L^{-1}(\eta) \leq \mu$. So $f_L^{-1}(\eta) \in I$, a contradiction. Hence $\eta \notin f_L(I)$. On the other hand, by (iii), $f_L(x_{\alpha}) \in f_L(\lim(I)) \leq HB.\lim(f_L(I))$. Thus

 $f_L(I) \xrightarrow{HB} f_L(x_\alpha)$ and so $f_L(x_\alpha) \in HB.cl(\eta)$. But since η is HB-closed *L*-subset, so $\eta = HB.cl(\eta)$. Thus $f_L(x_\alpha) \in \eta$. Hence $x_\alpha \in f_L^{-1}(\eta)$. So $cl(f_L^{-1}(\eta)) \leq f_L^{-1}(\eta)$. Hence $f_L^{-1}(\eta) \in \tau'$. Then f_L is HB-continuous map-

ping.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Dang, S. and Behera, A. (1995) Fuzzy H-Continuous Functions. The Journal of Fuzzy Mathematics, 3, 135-145.
- [2] Long, P.E. and Hamlett, T.R. (1975) *H*-Continuous Functions. *Bollettino dell Unione Matematica Italiana*, **11**, 552-558.
- [3] Noiri, L. (1979) Properties of *H*-Continuous Functions. *Research Reports of Yatsu-shiro National College of Technology*, 1, 85-90.
- [4] Mooney, D.D. (1993) H-Bonded Sets. Topology Proceedings, 18, 195-207.
- [5] Mukherjee, M.N. and Sinha, S.P. (1990) Almost Compact Fuzzy Sets in Fuzzy Topological Spaces. *Fuzzy Sets and Systems*, **38**, 386-396. <u>https://doi.org/10.1016/0165-0114(90)90211-N</u>
- [6] Goguen, J.A. (1967) L-Fuzzy Sets. Journal of Mathematical Analysis and Applications, 18, 145-174. <u>https://doi.org/10.1016/0022-247X(67)90189-8</u>
- [7] Wang, G.J. (1984) Generalized Topological Molecular Lattice. *Scientia Sinica. Series* A, 8, 785-789.
- [8] Wang, G. and Hu, L. (1985) On Induced Fuzzy Topological Spaces. *Journal of Mathematical Analysis and Applications*, 108, 495-506. https://doi.org/10.1016/0022-247X(85)90040-X
- [9] Liu, Y.M. (1987) Completely Distributive Law and Induced Spaces. Second 1FSA Congress, Tokyo, 20-25 July 1987, 460-463.
- [10] Lowen, R. (1976) Fuzzy Topological Space. Journal of Mathematical Analysis and Applications, 56, 621-633. <u>https://doi.org/10.1016/0022-247X(76)90029-9</u>
- [11] Meng, H. and Meng, G. (1997) Almost N-Compact Sets in L-Fuzzy Topological Spaces. *Fuzzy Sets and Systems*, **91**, 115-122. https://doi.org/10.1016/S0165-0114(96)00123-6
- [12] Meng, G. (1993) On the Sum of *L*-Fuzzy Topological Spaces. *Fuzzy Sets and Systems*, 59, 65-77. <u>https://doi.org/10.1016/0165-0114(93)90226-8</u>
- [13] Wang, G.J. (1992) Theory of Topological Molecular Lattices. *Fuzzy Sets and System*, 47, 351-376. <u>https://doi.org/10.1016/0165-0114(92)90301-I</u>
- [14] Zhao, D.S. (1987) The N-Compactness in L-Fuzzy Topological Spaces. Journal of Mathematical Analysis and Applications, 128, 64-79.

https://doi.org/10.1016/0022-247X(87)90214-9

- [15] Chen, S.L. and Chen, S.T. (2000) A New Extension of Fuzzy Convergence. *Fuzzy Sets and Systems*, **109**, 199-204. <u>https://doi.org/10.1016/S0165-0114(98)00048-7</u>
- [16] Georgiou, D.N. and Papadopoulos, B.K. (2000) On Fuzzy θ-Convergences. Fuzzy sets and Systems, 116, 385-399. <u>https://doi.org/10.1016/S0165-0114(98)00237-1</u>
- [17] Fang, J. and Ren, B.L. (1996) A Set of New Separation Axioms in *L*-Fuzzy Topological Spaces. *Fuzzy Sets and Systems*, **93**, 359-366.
- [18] Yang, Z.Q. (1986) Ideal in Topological Molecular Lattices. Acta Mathematica Sinica, 29, 276-279.
- [19] Chen, S.L. (1995) Urysohn-Convergence of Fuzzy Ideals. The Journal of Fuzzy Mathematics, 3, 555-558.
- [20] Nouh, A.A. (2002) *C*-Closed Sets in *L*-Fuzzy Topological Spaces and Some of Its Applications. *Turkish Journal of Mathematics*, **26**, 245-261.