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Abstract 
In this paper we prove in a new way, the well known result, that Fermat’s 
equation a4 + b4 = c4, is not solvable in  , when 0abc ≠ . To show this 

result, it suffices to prove that: ( ) ( )44 4
0 1 1 1: 2sF a b c+ = , is not solvable in  ,  

(where 1 1 1, , 2 1a b c ∈ + , pairwise primes, with necessarly 2 s≤ ∈ ). The 
key idea of our proof is to show that if (F0) holds, then there exist  

2 2 2, , 2 1α β γ ∈ + , such that ( ) ( )44 1 4
1 2 2 2: 2sF α β γ−+ = , holds too. From where, 

one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as 
minimal in value among all the solutions of ( )0F , then ( )1

2 2 2,2 ,sα β γ−  is 

also a solution of Fermat’s type, but with 2 1s s≤ − < , witch is absurd. To 
reach such a result, we suppose first that (F0) is solvable in ( )1 1 1,2 ,sa b c , s ≥ 2 

like above; afterwards, proceeding with “Pythagorician divisors”, we creat the 
notions of “Fermat’s b-absolute divisors”: ( ),b bd d ′  which it uses hereafter. 

Then to conclude our proof, we establish the following main theorem: there is 

an equivalence between (i) and (ii): (i) (F0): ( )44 4
1 1 12sa b c+ = , is solvable in 

 , with 2 s≤ ∈ , ( ) ( )3
1 1 1, , 2 1a b c ∈ + , coprime in pairs. (ii)  

( ) ( )3
1 1 1, , 2 1a b c∃ ∈ + , coprime in pairs, for wich: ( ) ( )3

2 2 2, , 2 1b b b′ ′′∃ ∈ +  

coprime in pairs, and 2 s≤ ∈ , checking 1 2 2 2b b b b′ ′′= , and such that for 

notations: ( )1S s sλ= − − , with { }0,1λ∈  defined by ( )1 1 mod 2
2

c a
λ

−
≡ ,  
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( )1 1 1 22 , 2s S
bd gcd b c a b= − =  and 2

2
22

s
s S

b
b

Bd b
d

−′ ′= = , where  

( ) ( )2 2 2 2
2 1 1 12 ,s B gcd b c a= − , the following system is checked:  

( )

( )

4 42 1
1 1 22

41 4 1
1 1 2

2 2 4
1 1 2

2 2
2

2 2 2

2

Sb

s S
b

dc a b

c a d b

c a b

λ
λ

λ λ

− −
+

+ + −


− = =


 ′ ′+ = =
 ′′+ =

; and this system implies:  

( ) ( ) ( )2 2 24 4 3 4 2
1 ,2 ,2 22 sb b bλ λ

−
− ′′+ = ; where: ( ) ( )

( )
2 2 2

1 ,2 ,2 2
2 2 2

, , if 0
, ,

, , if 1
b b b

b b b
b b bλ λ

λ
λ−

′ ′′ =′′ =  ′ ′′ =
; 

From where, it is quite easy to conclude, following the method explained 
above, and which thus closes, part I, of this article. 
 

Keywords 
Factorisation in  , Greatest Common Divisor, Pythagoras Equation, 
Pythagorician Triplets, Fermat’s Equations, Pythagorician Divisors, Fermat’s 
Divisors, Diophantine Equations of Degree 2, 4-Integral Closure of   in   

 

1. Introduction 
1.1. Some Historical Reminders about Fermat’s Theorem 

In this paper, we are interested in some works of the french mathematician 
Pierre de Fermat (1601 - 1665), specially his well-known “solution” or problem 
of solving the equation: an + bn = cn, problem written by himself in the margin of 
his edition of Diophantus cf. [1], some day between 1621 and 1665, and called 
his Last Theorem, and who became world famous after his death. 

From a historical point of view, to solve this problem, Fermat took advantage 
of, and promoted worldwide the so-called “infinite descent” method, which 
already existed in [1], that is a posthumous publication in 1670, 5 years after his 
death, by his son Samuel de Fermat. This method was originally used by Fermat 
himself, when solving the 20th Diophantus problem cf [1], i.e. “In  :  

( )2 2uv u v−  can’t be a square with ( )2 2 0uv u v− ≠ ” i.e. to show the impossibility 
of squaring the area of entire right-angled triangles, and which is an effective 
means of proof. The usual and easy way to solve this problem is the one proposed 
in [2], which consist to proove that the equation X4 + Y4 = Z2 obtained from a4 + 
b4 = c4, is not solvable. The method used, is infinite descent . Following Fermat, 
many equally famous authors, ranging from Euler 1738 to Carmichael 1913, via 
Vranceanu 1966 (cf. [3] p. 15), proposed demonstrations all based on finality on 
this same method of infinite descent (except for certain demonstrations using 
the ring of integers of Gauss).  

But in the end, the proof done in 1994 for the general case ap + bp = cp, by the 
British mathematician Andrew Wiles cf. [4], somehow closed the problem of 
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resolution. 
This proof is due to the culmination of new methods developed in the 20th 

century, located at the common frontiers of algebraic number theory, arithmetic, 
algebraic geometry and complex analysis, focused on the properties of certain 
types of analytic functions called modular forms, dealing with certain conjectures 
about elliptic curves and modular forms (these conjectures were all fully proven, 
in 1986, 1994 and 1999). 

It was in 1955 that Tanyama and Shimura announced their conjecture 
(rediscovered by Weil in 1967): which says that “Any elliptic curve is modular”. 
In 1984, Hellegouarch and Frey, notice that it was possible to associate an elliptic 
curve with an eventual solution of Fermat, in this way: 

 ( ) ( )( )2
12

pp sy x x a x b= − + , where ( )12
pp s pa b c+ = ; 1, , 2 1a b c∈ +  with  

( )3 mod 4a ≡ . This Hellegouarch-Frey elliptic curve with strange discriminant 
 ( )2

4 p p pa b c∆ = − , is “semi-stable”, and does not seem to be modular; indeed, this 
last hypothesis was proven by Ribet in 1986 cf. [5], using his proof for some cases of 
Serre’s ε-conjecture; And it was finally in 1994 that the Tanyama-Shimura-Weil 
conjecture was proved by Wiles in 1994 cf. [4] [6], (for cases of semi-stable elliptic 
curves) which meant that Fermat’s last theorem was totally proven.  

1.2. The Case of Fermat’s Theorem, for n = 4 

In this article, we particularly focus on the case n=4, that is to say, in the 
resolution of the equation a4 + b4 = c4, which as we know, only admits the 
solutions generated by the trivial solution ( )1,0,1 , and its associates (cf. Pro- 
position 2.1.). 

The question that still arises for solving this equation is the following: 
Is there a Diophantine demonstration other than that: complex one? Wiles’ 

type? or of the classic infinite descent using equation X4 + Y4 = Z2 ? (This last 
one being closely linked to the resolution of many famous Diophantine equations 
of order 4, as for example, those related to the old problem of the impossibility 
of squaring the area of a right angled triangle). 

The answer somewhere is yes, like for example in [7], where one can find 
infinite descent using only equations like 4 4 4α β γ+ = . But the calculations 
remain difficult, and no method is extracted from [7], which could serve as a 
tool to progress on other cases of Fermat’s equations. 

Conversely, one of the main objectives of our article is precisely to propose a 
standard resolution method, usable for n = 4, but also for n = 2p or p, where p is 
prime. This method is based on some very particular divisors of a and b. 

2. Utilities for the Proof of Fermat’s Theorem for n = 4  

2.1. Key Idea of the Proof for the Resolution of a4 + b4 = c4 

The goal of our article is to prove Theorem 3.1., i.e. Fermat’s Theorem when n = 4, 
in the way that we are looking for a practical proof, using arithmetic invariants, that 
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we will define, and known as valuable arithmetic tools, to have been used in our 
other works. 

So we consider in ∗ , an eventual solution: 

( )44 4
1 1 12sa b c+ = , pairwise prime, 1 1 1a b c  odd, and 2s ≥ , being minimal in value. (2.1) 

From there, as a consequence of the Pythagorician divisors Theorem, cf. 
Theorem 2.1. & Lemma 2.1., see also [8], and through our main result on Fermat’s 
b-absolute divisors, and expressed in Theorem 2.2., it was possible for us to obtain 
a contradictory result, which is: There is another solution ( )1

1 1 1, 2 ,sα β β γ−= , 
pairwise prime, 1 1 1α β γ  odd, such that: ( )44 1 4

1 1 12sα β γ−+ = ; But this is impossible, 
because of the minimality condition of s, defined in (2.1). 

Furthermore, we note that: In the case 2s = , we have: ( )44 4
1 1 12α β γ+ = , 

which necessarily implies that ( )12 0 mod 4β ≡ , cf. Proposition 2.3.(i), which is 
impossible. 

Roadmap and Articulations of the Proof 
How to prove Theorem 3.1.? Consider a solution ( )1 1 1,2 ,sa b c  of equation 
(2.1.), and take a look at the even term 12s b , then necessarily 1a  and 1c  are  

odd, and therefore we can define { }0,1λ∈  such that ( )mod 2
2

c a λ−
≡ ; as well 

as the quantity ( )
, if 0

1
1, if 1
s

S s s
λ

λ
λ
=

= − − =  =
. 

Taking into account the Fermat’s equation ( ) ( ) ( )2 2 22 2 2 2
1 1 12 sa b c+ =  as a 

Pythagoras equation, and applying the Pythagorician divisors Theorem, cf. 
Theorem 2.1. & Lemma 2.1.: 

It has been possible to find 2 proper divisors bd  and bd ′  of 12s b , defined by: 

( )1 22 , 2s S
bd gcd b c a b= − =  and 2

2
22

s
s S

b
b

Bd b
d

−′ ′= = , where 
 

( ) ( )2 2 2 2
22 ,s B gcd b c a= − 22s

b bd d B′⇒ = . 

And finally to determine a third odd proper divisor 2b′′  of 12s b  by the equality 

1 2 2 2 22 2s s
b bb d d b b b b′ ′′ ′ ′′= = . 

In particular 1 2 2 2b b b b′ ′′= , where 2 2 2, ,b b b′ ′′  are odd and pairwise prime. 

And in addition: 2 2 2 1

2 2 2 1

if 0 : 1; and 1 is a proper divisor of ;
if 1: 1; and 1 is a proper divisor of .

b b b b
b b b b

λ
λ

′′ ′= ≠ ≠ ⇒
 ′′ ′= ≠ ≠ ⇒

 

We call Fermat’s absolute b-divisor, the following pairs of integers:  

( ) ( ) 22, , ,
s

b b
b

Bd d gcd b c a
d

 
′ = − 

 
. 

These very particular divisors of the even term 12s b , verify the following 
Pythagorean equation: 

( ) ( ) ( )
( )( ) ( ) ( )

2 2 24 3 4 2
2

24 2 21 4 2
2

2 , if 0;

2 2 , if 1.

b b

b b

d d b

d d b

λ

λ

−

−

 ′ ′′+ = =

 ′ ′′+ = =


 

The central element being even, the others odd. 
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From this last Pythagorean equation, it suffices to use a parameterization for 
Pythagorician triplet, of the type: ( )2 2 2 2,2 ,u v uv u v− + , with ( )0 mod 2v ≡ ,  
u v> , and ( ), 1gcd u v = , then we deduce the existence of integers  

2 2 2, , 2 1α β γ ∈ + , and coprime, such that ( )44 1 4
2 2 22sα β γ−+ = , which contradicts 

the minimality of s.  

2.2. Notations and Reminders for Pythagoras and Fermat  
Equations 

Let’s consider: 

a2 + b2 = c2, the Pythagoras equation.                (2.2) 

And: 

a4 + b4 = c4, the Fermat’s equation.                (2.3) 

Remark 2.1 For equation (2.3) we could suppose that positive trivial solution 
exist, for at the end, proove the impossibility, of such solution.  

Then cf. [8] and [9] we have: 
Proposition 2.1 The set of all the solutions of the Pythagoras equation a2 + b2 

= c2 (resp. and eventually these of the Fermat’s equation: a4 + b4 = c4), is formed 
from the solutions generated by all the positive primitive solutions, and their 
associates.  

Remark 2.2 1) Let ( ) 3, 0,a b c ∗≠ ∈  checking (2.2), then  
( ) ( )( ), , 1,0,1 mod 4a b c ≡ ± . 

2) Let ( ) 3, 0,a b c ∗≠ ∈  checking (2.3), then ( ) ( )( ), , 1,0,1 mod 4a b c ≡ ± , with 
2c a≠ ± + , 2sb ≠ , and ka p≠  where p is an odd prime and 0k ≠ . In particular 

12sb b=  with 2s ≥  and necessarily 1 3b ≥  odd. (see Proposition 2.3. for the 
proof).  

This in no way restricts the expression of the generality of the solutions of said 
equations, because ( ), ,b a c  is also a solution called “associated with ( ), ,a b c ”, 
such that ( ) ( )( ), , 0, 1,1 mod 4b a c ≡ ± . 

Definition 2.1 We now define the following sets cf. [8]: 
1) T + : The set of non-trivial, primitive and positive Pythagorician solutions 

of the type ( ) ( )( )1, 2 , 1,0,1 mod 4sa b b c= ≡ ± . This set is exactely the set of non- 
trivial, primitive and positive Pythagorician solutions. 

2)  : The set of Fermat equation’ solutions ( ) 4 4 4:F a b c+ = , which are 
non-trivial, primitive and positives of type ( ) ( )( )1, 2 , 1,0,1 mod 4sa b b c= ≡ ± , with: 

2c a≠ ± + , 2sb ≠ , and ka p≠  where p is any odd prime with 0k ≠ . This set is 
exactely the set of non-trivial, primitive and positive solutions of Fermat equation’ 
solutions. cf. Proposition 2.3.  

Let us recall cf. [3] [10], that (see also [8] for another important parametri- 
zation): 

Proposition 2.2  

( ) ( ) ( ){ }2 2 2 2,2 , ; , , , 1 mod 2 and , 1T u v uv u v u v u v u v gcd u v+ ∗= − + ∈ > + ≡ = . 
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2.3. Pythagorician Divisors Theorem Applied to Fermat’s  
Equation a4 + b4 = c4 

2.3.1. Pythagorician Divisors 
Let’s remind the Pythagorician divisors Theorem cf. [8]: 

Theorem 2.1 Let ( ) ( ) ( )( )11,0,1 , 2 , 1,0,1 mod 4sa b b c≠ = ≡ ± , 2s ≥ , 1b  odd, 
, ,a b c  pairwise prime, then there are equivalences between the following pro- 

positions: 

(1) 2 2 2a b c+ = ; (ii) 
2

2

c b d
c b d
 − =
 ′′+ =

; (iii) 

( )0

0

2
2

2
2 1

2

2 2

2 2 2

S

s S

eec a

bc a e
e

−


 − = =

  ′′+ = =  

 

.  

Where in this Theorem, the notations are:  

Definition 2.2 1) { }0 0,1λ ∈  is defined by: ( )0 mod 2
2

c a λ−
≡ . 

2) ( ) 0
0 0

2, if 0
1

1, otherwise
s

S s s
λ

λ∗ ≥ =
= − − = 


  .  

3) The pythagorician divisors ( ),d d ′′  (resp. ( ),e e′′ ) are defined by: 

( ) ( )

( ) ( ) 0 0 1

, , , , note that ;

, , , 2 , 2 , odd, even, note that .S s S

ad d gcd a c b a dd
d

bbe e gcd b c a e e e b ee
e e

−

  ′′ ′′= − =   


   ′′ ′′= − = =       

 

Remark 2.3 As results: 1) 02Se e= , 0 12s S be
e

−′′ = ; 

2) ( ) 0, 2gcd e e λ′′ = ; ( ), 1gcd d d ′′ =  and 1, 1bgcd e
e

  = 
 

. 

Remark 2.4 Cf. [8], we get the important relations: 

2
2

2
2

ed e d e d e

ed e d e d e

 ′′ ′′ ′′ ′′= − + = − = − +

 ′′ ′′ ′′= + = + = − +


 and 
( )2

2

e d e
ee d

′′ ′′ = −


′′ = +

           (2.4) 

2.3.2. Some Important Results on Fermat’s Equation a4 + b4 = c4 
Let’s now particularly consider the Fermat equation: 4 4 4a b c+ = , 0abc ≠ ; with 
goal to conclude that =∅ ; with 12sb b= , 1 2 1b ∈ + , where 1 1b ≥  odd, and 

( )2 2s v b= ≥  (cf. Proposition 2.3.(i)) put for the 2-adic valuation of b, and 
choosed among all solutions of (2.3) such that s ≥ 2 have minimal value; 
moreover a, b1 and c are odd. 

We have the following Proposition. 
Proposition 2.3 Let ( ) 3

1, 2 0,sa b b c ∗= ≠ ∈ , relatively pairwise prime/ 
( )44 4

12sa b c+ = , then ( ), ,a b c ∈  cf. Definition 2.1.(2), that means that:  
i) ( ) ( )( ), , 1,0,1 mod 4a b c ≡ ± , in particular 2s ≥ . 
ii) 2sb ≠  (i.e. 1 1b ≠ ), and 1 ka p< ≠  where p is an odd prime.  
iii) 2c a≠ ± + .  
Proof 1 (i) Let 4 4 4a b c+ =  took as in Lemma ( )2 2 2, ,a b c T +⇒ ∈ . Let’s put 
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( )2 2 2,d gcd a c b= − , then: 2 2 2c b d− = ( ), ,d b c T +⇒ ∈ ⇒ (cf. Proposition 2.2) 
∃  u v ∗> ∈ , ( )1 mod 2u v+ ≡  such that 2 4b uv b= ⇒  and in addition  

( )2 2 1 mod 4c u v= + ≡ , while ( )2 2 1 mod 4a u v= − ≡ ±  because a is odd.  
In conclusion: ( ) ( )( ), , 1,0,1 mod 4a b c ≡ ± . 
(ii) •  Suppose that 2sb =  and 2s ≥  i.e. 1 1b = .  

Let ( ) ( )
2

2 2 2, , , be e gcd b c a
e

 
′′ = − 

 
. In this case, considering the Pythagoras 

equation: 

( ) ( ) ( )2 2 22 2 2a b c+ = , it comes: ( )
2 2

0 mod 2
2

c a−
≡ , i.e 0 0λ =  cf. Definition  

2.2. (1). So according to [8] or Remark 2.3.(2) gives: ( ) 0, 2 1pgcd e e λ′′ = = , 
therefore, since 2b ee′′=  and that e is even, then e′′  is odd; but then  

2 1sb e′′= ⇒ = . 
But Theorem 2.1 gives: 2 2 22 2 1c a e c a′′+ = = ⇒ = = , which is absurd because 

( ), ,a b c ∈ . So as stated: 2sb ≠ , 2s∀ ≥ . 
 Similarly, for the other result: suppose that ka p= , 1k ≥ , that is to say a 

power of an odd natural prime number p. 

Let us put: ( ) ( )
2

2 2 2, , , ad d gcd a c b
d

 
′′ = − 

 
 according to Definition 2.2., then 

we have: 
2 2na p dd ′′= =  and from Proposition 2.4. (3), saying ( ), 1gcd d d ′′ = . 

We deduce that: either 
2

1

nd p
d
 =
 ′′ =

; either 2

1
n

d
d p
=

 ′′ =
. 

Now the Theorem 2.1. 
2 2 2

2 2 2

;
.

c b d
c b d
 − =

⇒  ′′+ =
 

- In the first case: ( ) ( )2 2 1 , , 1,0,1c b a b c+ = ⇒ = ∉ , which is absdurd. 
- In the second case: 2 2 1 1c b c− = ⇒ =  and 0b = ; which is absurd. 
Thus: ka p≠ , k ∗∀ ∈  where p prime. 
Conclusion: Neither a nor b can be a power of a prime natural number. 
(iii) •  Suppose that 2c a= + . 
Then ∃  u v ∗> ∈ , ( )1 mod 2u v+ ≡  such that ( )2 2 22a u v+ = +  and  

( )2 2 2 22 1a u v a v= − ⇒ + = , but then: ( )22 1 1u a= + + , that is impossible, since 
the difference of two squares cannot be equal to 1. 
 Suppose that 2c a= − + . If 1 1a c= ⇒ = , that is absurd; If 3 0a c≥ ⇒ <  

that is absurd. 
As a consequence as claimed 2c a≠ ± + .  
See also an altenative proof in [9] pages 59-60-61. 
Remark 2.5 Subsequently, as already said, when ( ), ,a b c ∈ , i.e.  
( )44 4

12sa b c+ = , then we have: 2c a≠ ± + ; 1 1b ≠  and ka p≠ , k ∗∀ ∈ , p∀ , 
an odd prime.  

2.3.3. Direct Application of the Pythagorician Divisors Theorem to  
Fermat’s Equation: a4 + b4 = c4 

We now directly apply the results of the Pythagorician divisors Theorem to 
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Fermat’s equation: 4 4 4a b c+ = , because ( )2 2 2, ,a b c T +∈ : 
Proposition 2.4 Consider Fermat’s equation: 4 4 4a b c+ = , and let 

 
( )1, 2 ,sa b b c= ∈ , a non-trivial hypothetical solution, of it.  

Then: ∃  2 2, 2 1A a′′∈ + / ( )2 2, 1gcd A a′′ =  and 2 2, 2 1B b′′∈ + /  
( )2 2, 1gcd B b′′ = , such that: 

(i) 2 2a A a′′=  and ( )2 22sb B b′′= . 

(ii) 

( ) ( )

( ) ( ) ( )

22
2 2 2 2 2

2 2
2

22 22 2 2 21
2 2

2

, , , , ;

, , , 2 , .s

a ad d gcd a c b A a
d A

bbe e gcd b c a B b
e B

       ′′ ′′= − = =          


      ′′ ′′= − = =          

        (2.5) 

Proof 2 Indeed Pythagorician triplet: ( )( )22 2 2
1, 2 ,sa b b c=  is a non-trivial,  

primitive and positive one. Its Pythagorician divisors are in this case (since  

( )
2 2

0 mod 2
2

c a−
≡ , i.e 0 0λ = ): 

( ) ( )

( ) ( )

2
2 2 2

2
2 2 2

, , , ;

, , , .

ad d gcd a c b
d

be e gcd b c a
e

  
′′ = −  

  


  ′′ = −   

 ( )
( )

2

2

, , 1;
, , 1.

a dd gcd d d
b ee gcd e e
 ′′ ′′= =⇒  ′′ ′′= =

 because 

remark 2.3 (2) ⇒  

( ) ( )
2 2

2 2 2 2 2 2
2 2

1 2 22 2 2 2

, 2 1, such that : and ; ;

2 2 ., 2 1, such that : 2 and . s ss

A a d A d a a A a

b b B bB b e B e b

 ′′ ′′ ′′ ′′∃ ∈ + = = = ⇒ ⇒  ′′= =′′ ′′ ′′∃ ∈ + = =  





( ) ( )

( ) ( ) ( )

22
2 2 2 2 2

2 2
2

22 22 2 2 21
2 2

2

, , , , ;

, , , 2 , .s

a ad d gcd a c b A a
d A

bbe e gcd b c a B b
e B

       ′′ ′′= − = =          


      ′′ ′′= − = =          

       (2.6) 

The application of Theorem 2.1. where in addition one takes into account the 
results of Proposition 2.4, gives the following corollary (the notations remaining 
unchanged). 

Lemma 2.1 Consider ( )1, 2 ,sa b b c=  a positive triplet. There are equivalences 
between the following 3 propositions: 

(i) ( )1, = 2 ,sa b b c ∈ . 

(ii) 
2 2 2 4

2
2 2 2 4

2

c b d A
c b d a
 − = =
 ′′ ′′+ = =

.  

(iii) 
( )4

2
22 2

2 2 2 4
2

2

2 2
2 2

s Bec a

c a e b


 − = =
 ′′ ′′+ = =

.  

Remark 2.6 1) Note that: 2 2a A a′′= , 1 2 22sb b B b′′= = . 
2) Note that necessarily: 2 1a′′ ≠  and 2 1b′′ ≠  (otherwise ( ) ( ), , 1,0,1a b c =  
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would be trivial, which would be contradictory).  
Proof 3 It suffices to apply Theorem 2.1 to the Pythagorician triplet 

 ( )( )22 2 2
1, 2 ,sa b b c=  taking into account the formulas (2.5).  

 But, let us continue as we are looking through Theorem 2.2., for a new 
proof of our proof. 

We give the following proposition, which we will need in the next paragraph: 
Proposition 2.5 The notations being the same as those of Lemma 2.1., we 

have: ( )21 1 mod 4b′′≠ ≡ .  
Proof 4 From Remark 2.6.: 2 1b′′ ≠ . 
For proving ( )2 1 mod 4b′′ ≡ : Lemma 2.1. (ii) & (iii) implies that: 

( )

2 24 4 2 2 2 2
2 2 2 2 2 2 2

2 22 2 2 2
22 2 2 2 2

2 2

;
2 2 2

.
2 2

a A a A a Ac

a A a Aa A a

    ′′ ′′ ′′+ + − = = +   
    

    ′′ ′′+ −′′= = −   

   

 And: 

( ) ( )

( ) ( )

22
2 22 2

2

22
2 22 2

2

2
;

2

2
.

2

s

s

B
c b

B
a b

  
  ′′= +     

  

  ′′= −      

 

But then : ( )
22 2 22 2 22 2

22 2
2

a Ac a b
 ′′ + ′′+ = = 
 

; from where: 

( )
2 2

2 2 2 22 2 2 2
2 2 2 2 22 1 mod 4

2 2
a A a Aa A b b b
′′ ′′+ −   ′′ ′′ ′′ ′′+ = ⇒ + = ⇒ ≡   

   
.  

2.3.4. Other Classical Demonstrations, Using Well-Known Diophantine 
Equations of Degree 4 

Remark 2.7 Taking account Remarks 2.4. & 2.6., as well as Propositions 2.3.. & 
2.5, it is easy to give all the list of all the famous well-known diophantine equations 
of degree four, connected with the impossible resolution of 4 4 4a b c+ = , equation 
whose these coefficients would be solutions; however, all of them admit only 
trivial solutions (or other are impossible), and if solution are not trivials, this 
would imply that 2 1a′′ =  or 2 1b′′ = , which would be absurd. 

All this would allow us to conclude right now, that =∅ .  
Remark 2.8 As an exemple, because it will be to long to expose all this equations, 

we give the following: Applying Remark 2.4.(i) to ( ) ( ) ( )2 2 22 2 2a b c+ = , in relation 
to Proposition 2.4. above, it comes that Pythagorician triplet 

 ( )2 2 2 2,2 ,u v uv u v T +− + ∈ , is such that (cf. Remark 2.4.):  

2
2u e b′′ ′′= =  and ( )2

22

2 2

s Bev = = , which implies that:  

( ) ( )
22

2 22 2 2 2
2

2

2

s B
u v c b

 
 ′′+ = = +   
 

,  
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But this means that the area of this right-angled triangle is the square:  

( )21
2 22s B b− ′′ ; 

Wich is absurd, because that is the famous impossible squaring of the right- 
angled triangle area problem or 20th Diophantus Problem, proved by Fermat’s 
result (cf. also [11] for a new proof). 

This equation which is also (because 2s ≥ ) of the type: 4 4 24x y z+ =  (i.e. 
an Euler equation) and does not admit solutions in integers, such that all of 
which are different from zero (cf. [12] p. 70, Exercice 1 or else [13] p. 38).  

2.4. Concept of Absolute Fermat Divisors 

We are now going to specify what are the integers ( )2 2 2, ,b b b′ ′′  and ( )2 2 2, ,a a a′ ′′ , 
which appeared naturally, during factorizations. For that, we will introduce the 
notion of: “Absolute Fermat’s divisors”. 

Consider first the following lemma: 
Lemma 2.2 let ( )1, 2 ,sa b b c= ∈ , a non-trivial hypothetical solution of 

Fermat’s equation:  
4 4 4a b c+ = . Recall that ( )2 2 2 2

2,d gcd a c b A= − = , and that 
 

( ) ( )22 2 2
2, 2se gcd b c a B= − = .  

Let’s set ( ),ad gcd a c b= −  and ( ),bd gcd b c a= − , then:  

ad  divides 2A  and bd  divides 22s B , and so we can set: 2
a

a

Ad
d

∗′ = ∈  and 

22s

b
b

Bd
d

∗′ = ∈ .  

Proof 5 We use parts of proof of Theorem 2.2. hereafter, and the fact that   
is algebraically closed. Indeed: 

 2
a

a

Ad
d

′ =  is necessarily an integer because (cf. proof of Theorem 2.2.): 

4
a ac b d d′ ′+ = ⇒ ∈  and ad ′  is a rational root of  

( ) [ ]4
aX c b X d ∗′− + ∈ ⇒ ∈  . 

 Similarly 22s

b
b

Bd
d

′ =  is an integer too (i.e. 22s
bd B ) because: 

Let { }0,1λ∈  such that ( )mod 2
2

c a λ−
≡ , this implies that 

 

( )1 mod 2
2

c a λ+
≡ − , consequently 12

c a
λ

∗
+

+
∈ , but ( cf. proof of Theorem 2.2) 

hereafter, bd ′  is a rational root of [ ]4
12 b

c aX X dλ
∗

+

− ′− ∈ ⇒ ∈  .  

This allows us to define the absolute Fermat divisors. 

2.4.1. Definition of Absolute Fermat Divisors 
Definition 2.3 Consider Fermat’s equation: 4 4 4a b c+ = , and let 

 
( )1, 2 ,sa b b c= ∈ , be a not trivial eventual solution of it. We call Fermat’s  
absolute a-divisor (resp. Fermat’s absolute b-divisor) the following pairs of  
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integers: ( ) ( ) 2, , ,a a
a

Ad d gcd a c b
d

 
′ = − 

 
 (resp. ( ) ( ) 22, , ,

s

b b
b

Bd d gcd b c a
d

 
′ = − 

 
. 

ad ′  is said to be the co-adjunct divisor of ad  and vice versa. We have the 
same notion for bd  with respect to bd ′ .  

Definition 2.4 Let ( )1, 2 ,sa b b c= ∈ , then we set { }0,1λ∈  such that 

( )mod 2
2

c a λ−
≡ , and ( )1S s sλ= − − . Note that ( )1s S sλ− = − .  

Proposition 2.6 Let ( )1, 2 ,sa b b c= ∈ . Then: 

1) There exists 2 2, 2 1b b′ ∈ +  with ( )2 2, 1gcd b b′ = , such that: 22S
bd b=  

and 22s S
bd b−′ ′= . Then: ( )0 mod 2bd ≡  and ( ), 2b bgcd d d λ′ =  and 2 2 2B b b′= . 

2) ∃  1
2

2

2 1bb
B

′′ = ∈ +  (cf. formula (2.5))/ 1 2 2 2b b b b′ ′′= .  

In addition 2 1b′′ ≠ ; and 2 1b′ ≠  if 0λ = , while 2 1b′′ ≠ ; 2 1b ≠  if 1λ = . So 

2b  (resp. 2b′ ) is a proper divisor of 1b .  
Proof 6 See parts of proof of Theorem 2.2., in particular points around formula 

(2.7), and also (2.5) and(2.6).  
Remark 2.9 Then we’ll set ( ) ( )2 2, ,a ad d a a′ ′=  and so 2 2 2a a A′ =  cf. Definition 

2.3. Then (see the proof of Theorem 2.2.):  

( ) ( )2 2, , 1a agcd d d gcd a a′ ′= =  and 2 2 2a a a a′ ′′ = , where 2
2

aa
A

′′ =  cf. Remark 

2.6.(1).  

2.4.2. Fermat’s Absolute Divisors Theorem 
The notations being unchanged, we get “Fermat’s absolute divisors Theorem”: 

Theorem 2.2 ((First form) of Fermat’s absolute divisors). 
There is equivalence between the following propositions: 
(i) ( )1, 2 ,sa b b c= ∈  i.e. ( ) 4 4 4:F a b c+ =  is realized. 

(ii) ∃  ( ) ( )3
1, , 2 1a b c ∈ + , coprime in pairs, for wich: ∃  

( ) ( )3
2 2 2, , 2 1b b b′ ′′ ∈ +  coprime in pairs, and 2 s≤ ∈ , checking 1 2 2 2b b b b′ ′′= ,  

and such that for notations: ( )1S s sλ= − − , with { }0,1λ∈  defined by  

( )mod 2
2

c a λ−
≡ , ( )1 22 , 2s S

bd gcd b c a b= − =  and 2
2

22
s

s S
b

b

Bd b
d

−′ ′= = , where  

( ) ( )2 2 2 2
22 ,s B gcd b c a= − , then the following system is checked: 

( )

( )

4 42 1
22

41 4 1
2

2 2 4
2

2 2 ;
2

2 2 2 ;

2 .

Sb

s S
b

d
c a b

c a d b

c a b

λ
λ

λ λ

− −
+

+ + −


− = =


 ′ ′+ = =
 ′′+ =

 

Remark 2.10 Note that equations (i) and (ii) are equivalent to (iii).  
(iii) ∃  ( ) ( )3

2 2 21, , 1 2 1a a a′ ′′≠ ≠ ∈ +  odds, coprime in pairs, such that:  
2 2 2a a a a′ ′′=  and: 
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4 4
2 2

4 4
2

4 4 4 4
2 2 2

2 2 4
2

8 8 4
2 2 2

2

2
2

a

a

a abc b d a
c b d a a ac
c b a

a a a

 ′ −
= − = =

 ′ ′+ = = ⇔ ′ + 
= ′′+ = 
′ ′′+ =

. 

And that in this case: 2 1a′ ≠  and 2 1a′′ ≠  otherwise 1c =  and 0b = , which 
would be absurd. 

As a result 2 2 2, ,a a a′ ′′  are proper divisors of 2 2 2a a a a′ ′′= . 
Remark 2.11 Note that cf. Remark 2.6. and Propositions 2.3. & 2.5, we get: 

( )2 2 21, , 1b b b′ ′′≠ ≠  when 0λ = , (resp. ( )2 2 21, , 1b b b′ ′′≠ ≠  when 1λ = ) and they 
are all odds, relatively pairwise prime, and are respectively proper divisors of 1b , 
since we have the factorizations: 1 2 2 2b b b b′ ′′= ; as 12sb b= .  

Reminders 2.1 ,a c ∗∀ ∈ , n∀ ∈ , 2n ≥ , consider  
( ) ( ),n n

nc a c a T c a− = − × , where ( ) 1 1
0, n n k k

n kT c a c a− − −
=

= ∑ . Then:  
( )( ) ( ), , ,ngcd c a T c a gcd n c a− = − . 

In particular ( )( ) { }4, , 1,2,4gcd c a T c a− ∈ .  
Let’s now show this theorem. 
Proof 7  

 The equivalences between the systems, within points ii) and iii) are obvious. 
 Moreover, it is clear that (ii)⇒ (i) and (iii)⇒ (i). 
 It therefore remains to show that: (i)⇒ (ii) (and that (i)⇒ (iii) What we 

will not do here, for the sake of simplifying the results).  
Note that from: ( ) ( )4 4 4

4 ,b c a c a T c a= − = − , we get: 

( )( ) ( )
( ) ( )

( ) ( )
4

4, when 0 mod 2 , i.e. 0
2, , 4,

2, when 1 mod 2 , i.e. 1
2

b

c a

gcd c a T c a gcd c a
c a

λ
δ

λ

− ≡ =′ = − = − =  − ≡ =


 

- Let us show that i)⇒ii). We know that { }2,4bδ ′ ∈ . 
  1) Case 1: 4bδ ′ =  i.e 0λ = . 

( ) ( ) ( )4 4 44 1 4 4
1 1

,
2 16 2 16

4 4
s s T c ac ab b b c a−  − = = = − =   

  
. 

From where:  

( ) ( ) 2 24 41
1

,
2

4 4 4 2 2
s T c ac a c a c a c ab−  − − + + = = × ×  

  
         (2.7) 

But: ( )4 4
2

,
, 1

4 4 4
T c ac a c agcd β

 − −
= ⇒ = 

 
 and 

( )4 4
2

,
4

T c a
β ∗=  and 2β  even, 

2β
∗  odd because ( ) ( )

2 2

4 , 1 mod 2
2 2

c a c aT c a + +
= × ≡  

4
24

c a β−
⇒ =  and 

( )4 4
2

,
4

T c a
β ∗= . 

But then: 1
1 2 2 1 2 22 2 2s sb b bβ β β β− ∗ ∗= × ⇒ = = ×  with ( )2 2, 1gcd β β ∗ = , 

but: 4
24c a β− = , therefore: 
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( ) ( )4
2 2 2 2, 2 ,4 2bd gcd b c a gcd β β β β∗= − = × = . We therefore have: 2 2

bd
β = . 

Let’s put ( )41
22

4 2
sc a c a B−− +

× = ⇒  

( )
( )

( )

4
4
2

4 4 4
2 2 42

4

44
2 2 4

22 2
2

4 4
2

2 2 22 2
2

2

2 2
2

b

s s s

b
bb

s

dc a

B B Bc a d
c a dd

b bc a b
c a B

β
  − = =  

 


  ′+ = = = =  −  

   ′′+ = = = −  

. 

Consequently ∃  2 2b β=  and 2
2

2

Bb
b

′ =  odds such that:  

( ) ( )2 2 2 2, 1, 2 , and , 1s
b b b bgcd b b d b d b gcd d d′ ′ ′ ′= = = =           (2.8) 

Checking: 

( )
4 41

2

4 4
2

2 2 4
2

4 2
4

2 2
2

sb

b

dc a b

c a d b
c a b

−
− = = ⇒ ′ ′+ = =

 ′′+ =

 Point (iii) of the theorem, when 0λ = . 

As a result in this case: 

((2.7) 2 2 22sb b b b′ ′′⇒ = ) 1 2 2 2b b b b′ ′′⇒ =                   (2.9) 

  2) Case 2: 2bδ ′ =  i.e 1λ = . 

( ) ( ) ( )4 4 44 1 4 4
1 1

,
2 16 2 4 .

2 2
s s T c ac ab b b c a−  − = = = − =   

  
 

From where:  

( ) ( ) 2 24 41
1

,
2

2 8 2 4 2
s T c ac a c a c a c ab−  − − + + = = × ×  

  
         (2.10) 

But: ( )1 mod 2
2

c a−
≡  and  

( ) ( )4 4, ,
, 1 , 1

2 2 2 8
T c a T c ac a c agcd gcd

   − −
= ⇒ =   

   
. 

Which implies: 4
22

c a β−
=  and 

( )4 4
2

,
8

T c a
β ∗= , 

with 2β  odd and 2β
∗  even, because 1

12s b−  is even. 
Then: 1

1 2 2 1 2 22 2 2s sb b bβ β β β− ∗ ∗= ⇒ = = . And so: 

( ) ( )4
2 2 2 2 2, 2 ,2 2

2
b

b
dd gcd b c a gcd β β β β β∗= − = = ⇒ = . 

Consequently: 
4 44

2
8 2 2 2
b b bd d dc ac a −   − = = ⇒ =   

   
. 

From where: ∃  ( )2 1 mod 2b ≡  such that 22bd b= , (here 2 2b β= ) moreover, 
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considering ( )
2 2 41

22
8

sc a B−−
= , it comes: 

( ) ( )
( )

( )4 4 4 41
2 2 2 42

4

8 2 2 2 28 .
2 2 4

s s s s

b
bb

B B B Bc ac a d
c a c a dd

−
 + ′+ = = = ⇒ = = − −  

 

We then set: ( )2
2

2

1 mod 2Bb
b

′ = ≡  which is quite an integer (cf. Lemma 2.1.). 

Then: 1 12 2
2

2

2 2 2
s

s s
b b

b

B Bd d b
d b

− −′ ′ ′= = ∈ ⇒ = . 

In the end, we have the formulas of the Theorem 2.2.(iii) when 1λ = : 

( )

( ) ( )

4
4

2

4
44 12

2

2 2 4
2

2 ;
8

2
4 4 4 2 ;

2 .

b

s
s

b
b

d
c a b

Bc a d b
d

c a b

−


− = =




  ′ ′+ = = = 
 

 ′′+ =

 

Summaring, and considering (2.10), the quantities 2 2 2, , 2 1b b b′ ′′∈ +  verify:  

( ) ( )( )1
2 2 2 2 1 2 2 2, 1, 2 , 2 , , 2s

b b b bgcd b b d b d b gcd d d b b b b−′ ′ ′ ′ ′ ′′= = = = ⇒ = .   (11) 

3. New Proof of Fermat’s Theorem for n = 4  
We get the following corollary: 

Corollary 3.1 Let ( )1, 2 ,sa b b c= ∈  , and { }0,1λ∈  defined by:  

( )mod 2
2

c a λ−
≡ . 

Then we have the proposition: 
!∃  ( ) ( )3

1 ,2 ,2 21, , 1 2 1b b bλ λ− ′′≠ ≠ ∈ +  , formed by strictly odd divisors of 1b , 
checking 1 ,2 ,2 2 1b b b bλ λ− ′′ = , and such that the following equation of degree 8 
holds:  

( ) ( ) ( )2 2 24 4 3 4 2
,2 1 ,2 ,2 2: 2 sF b b bλ λ λ

−
− ′′+ = , where: 1 ,2 1b λ− ≠  and ( )21 1 mod 4b′′≠ ≡ . 

And: ( ) ( )
( )

2 2 2
1 ,2 ,2 2

2 2 2

, , if 0;
, ,

, , if 1.
b b b

b b b
b b bλ λ

λ
λ−

′ ′′ =′′ =  ′ ′′ =
  

The proof is obvious, it suffice to calculate 2 2 4
22c a b′′+ = , from the values c 

and a extrated from Theorem 2.2.  
Remark 3.1 1) The degree 8 equation: ( ) ( ) ( )2 2 24 4 3 4 2

1 ,2 ,2 22 sb b bλ λ
−

− ′′+ = , is of 
the type of that of [7], but ours is more precise, both at the level of the exponent 
“s”, which is the key to our proof, as well as the other quantities which are in fact 
proper divisors of the odd part of b, and whose product gives back this same odd 
part. 

2) At this stage, we could also conclude in a classic way, because we find a 
right triangle whose area is equal to the square ( )41

2 22s b b− ′  which is impossible.  
From this we deduce the goal of our paper: 
Theorem 3.1 Fermat’s equation: 4 4 4a b c+ = , does not admit solutions in   

(i.e. =∅ ). Consequently its only solutions are those generated by the trivial 

https://doi.org/10.4236/apm.2024.144017


P. K. Kimou et al. 
 

 

DOI: 10.4236/apm.2024.144017 317 Advances in Pure Mathematics 
 

one ( )1,0,1  and its associates.  
Remark 3.2 From Theorem 2.2. and Corollary 3.1., other new and original 

proofs exist, but the following giving is the most natural, and uses the argument 
of the infinite descent or the minimality of a parameter, between 2 similar Fermat 
equations.  

Proof 8 Consider ( )1 1 1, 2 ,sa b b c= ∈ , with 2s ≥  and minimal in all solu- 
tions of  . 

Clearly ( )4 4 3 4 2
1 ,2 ,2 2,2 , ,sb b b T u vλ λ

− + ∗
− ′′ ∈ ⇒ ∃ ∈ , ( )1 mod 2u ≡ , ( )0 mod 2v ≡ , 

u v> , and ( ), 1gcd u v = , checking: 
4 2 2

1 ,2

4 3 4
,2 2 2

2 2 2
2

2 2 , 2 1s

b u v

b uv

b u v

λ

λ α β
−

−

 = −
 = ⇒ ∃ ∈ +
 ′′ = +

 , and coprime, such that: 

( )( ) ( )( ) ( )( )
( )

4 44 4 1 4 1
1 ,2 2 2 2 2

44 1
2 2 2 2 ,2

2 2

; 2 and

s s

s

b u v u v

u v b

λ

λ

α β α β

α β α β

− −
−

−

 = + − = + − ⇒
 = = =

 

∃  2 2, 2 1α γ′ ∈ + , and coprime such that 
( )
( )

44 4 1
2 2 2

44 4 1
2 2 2

2

2

s

s

γ α β

α α β

−

−

 = +

 ′= +

, and  

2 2 1 ,2b λα γ −′ = . 

But these last 2 Fermat’s equations, contradict the minimality of s: that is 
absurd.  

Remark 3.3 About the proof of Theorem 3.1.  
An alternative proof, which is a very particular recurrence, is to consider for 

fixed k, k∈ , the following property: 
( )k : “The equation ( )44 4

12ka b c+ = , with 1, ,a b c  odds; is not solvable”. 
It is clear that ( )0  is true and that ( )1  is true (cf. Proposition 2.3.(i)). 
Let’s make the following recurrence hypothesis:  
“ ( )k  is true from rank 0, up to rank 1s − ”.  
Let us deduce that ( )s  is true for 2s ≥ , which means that ( )s  would be 

true k∀ ∈ . 
Indeed, suppose the converse when 2s ≥ , i.e. ( )s  is false. Then:  
∃  1 1 1, , 2 1a b c ∈ +  such that ( )44 4

1 1 12sa b c+ = . 
But then, the previous demonstration shows precisely the existence of  

2 2 2, , 2 1α β γ ∈ +  such that: 

( )44 1 4
2 2 22sα β γ−+ =  which means that ( )1s−  is false, thus contradicting the 

recurrence hypothesis, that is absurd.  
Remark 3.4 1) Always about proof of Theorem 3.1. 
An other alternative proof, is to consider a solution: ( )44 4

12sa b c+ = , i.e. 

( )1, 2 ,sa b b c= ∈  with 2s ≥  arbitrary (i.e. s not necessarily minimal) then 
after 1s −  iterations as was done once in proof 8, we will have an equation of 
type ( )44 42α β γ+ = , in odd integers, that is not solvable cf. Proposition 2.3.(i). 

2) And what about the remaining, 8 degree equation coming from quantity a: 
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8 8 4
2 2 22a a a′ ′′+ = ? that extracted from the system of Remark 2.10., which follows 

Theorem 2.2, and which can be reduced to a Pythagorean equation or to an 
equation of the type [14], see also [8]. We do believe that a priori, it would also 
be able to produce an original and simple solution.  

4. Conclusions and Perspectives 

The use of Pythagorician divisors and Fermat’s absolute divisors, will have 
allowed us to establish a simple and new method based on particular divisors of 
b, here exposed, for demonstrate the Fermat’s great Theorem: n n na b c+ =  when 

( )0 mod 4n ≡ . 
We do believe that this method can be used to bring something new in the 

Diophantine proof of Fermat’s Theorem, when ( )2 mod 4n ≡ , i.e. 2n p= , p 
prime, cf. [15], and finally to the general case of Fermat’s Theorem p p pa b c+ = , 
cf. [16] [17] and that, whether p/abc or not. 
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