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Abstract 
Considering Pythagorician divisors theory which leads to a new paramete- 
rization, for Pythagorician triplets ( ) 3, ,a b c ∗∈ , we give a new proof of the 

well-known problem of these particular squareless numbers n ∗∈ , called 
congruent numbers, characterized by the fact that there exists a right-angled 

triangle with rational sides: 
2 22A B C

α β γ
     + =    

     
, such that its area  

1
2

A B n
α β

∆ = = ; or in an equivalent way, to that of the existence of numbers 

2 2 2 2, ,U V W ∗∈  that are in an arithmetic progression of reason n; Problem 

equivalent to the existence of: ( ) 3, ,a b c ∗∈  prime in pairs, and f ∗∈ , 

such that: 
2

2
a b

f
 −
 
 

, 
2

2
c
f

 
 
 

, 
2

2
a b

f
 +
 
 

 are in an arithmetic progression of 

reason n ; And this problem is also equivalent to that of the existence of a 
non-trivial primitive integer right-angled triangle: 2 2 2a b c+ = , such that its 

area 21
2

ab nf∆ = = , where f ∗∈ , and this last equation can be written as 

follows, when using Pythagorician divisors:  

(1) ( )( )1 1 21 2 2 2 ;
2

S S Sab de d e d e nf− −∆ = = + + =   

Where ( ) ( )2, 2 1d e ∈ +  such that ( ), 1gcd d e =  and S ∗∈ , where 12S− , 

d, e , 12Sd e−+ , 2Sd e+ , are pairwise prime quantities (these parameters 
are coming from Pythagorician divisors). When 1n = , it is the case of the 
famous impossible problem of the integer right-angled triangle area to be a 
square, solved by Fermat at his time, by his famous method of infinite descent. 
We propose in this article a new direct proof for the numbers 1n =  (resp. 

2n = ) to be non-congruent numbers, based on an particular induction method 
of resolution of Equation (1) (note that this method is efficient too for general 
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case of prime numbers n p a= ≡ ( ( )mod8 , ( ),8 1gcd a = ). To prove it, we 
use a classical proof by induction on k , that shows the non-solvability 
property of any of the following systems ( 0t =  , corresponding to case 1n =  

(resp. 1t = , corresponding to case 2n = )): ( )
( )
( )

22 2

, 22 1 2

2 2

2 2

t k

t k
t k

X Y Z

X Y T+

 + =Ξ 
 + =

, 

where k∈ ; and solutions ( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + , are 
given in pairwise prime numbers.  
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1. Introduction 

From a historical point of view, the search of square-free integers n called con-
gruent numbers, whose problem statement is remarkably simple and dates from 
antiquity cf. [1] [2] [3] [4], see also: [5] [6] [7], remains to this day the last an-
cient mathematical problem bequeathed from antiquity and which is not entirely 
solved at this time day, despite the efforts and diligent work of mathematicians 
cf. [8] [9] [10] [11] p. 556, [12]. 

There is therefore a real global challenge to fully resolve this problem which is 
the subject of numerous contemporary publications. 

In this article, to characterize the fact that an integer n is congruent, we will 
use a new method, using the notion of Pythagorician divisors (cf. § 2.6 & 2.7 and 
[13] [14]), and from there, deduce a new Diophantine proof of the problem of 
Diophantus’s twentieth problem, also known as Fermat’s right triangle theorem, 
which he himself had solved by his famous method of infinite descent. 

Reminders and Notations 

Let’s remind and fix some notations cf. §2.6 & 2.7., especially in Definition 2.2. 
& 2.3., and Theorem 2.5, for the notion of Pythagorician divisors d and e. 

Reminders 1.1 1) T +  is the set of triplets ( ) ( )3
, ,a b c ∗∈  , solutions of 

Pythagoras equation: 2 2 2a b c+ = ; such that , ,a b c  are coprime in pairs, and 
( ) ( )( )1, 2 , 1,0,1 mod 4sa b b c= ≡ ±  with ( )1 1 mod 2b ≡ . 

2) Consider ( )1, 2 ,sa b b c T += ∈ , we put { }0,1λ∈  such that:  

( )mod 2
2

c a λ−
≡ , and S ∗∈ , such that: ( )1S s sλ= − − , from there we define: 
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 ( ) ( ), , , ,ad d gcd a c b and
d

 ′′ = − 
 

    

( ) ( ) 1, , , 2 , 2S s S bbe e gcd b c a e
e e

−  ′′ = − =      
 where 2 1e ∈ + . 

 

( )
( ) ( )

( ) ( )

2

2

2

2

2

2
2

2

2
2

2

S

S
S

S
S

a d e d

e
b e d

e
c e d d

 = +


 = +


 = + +


; and thus 
 

( )( )1 11 2 2 2
2

S S Sab de d e d e− −∆ = = + + . 

One remark that for such triplet ( )1, 2 ,sa b b c= , there is a unique parame- 
trization ( ), ,d e S .  

3) ( ) ( ) ( ) ( ) ( ){ }22 1 2 1 , 2 1 / , 1
cop

x y gcd x y+ × + = ∈ + =   .  
Let’s comme back to our problem, note that from Definition 2.1., a square- 

free natural number 0n ≠ , is said to be congruent if and only if there exists a 
rational number V such that: 2V n+  and 2V n−  are simultaneously rational 
squares. 

This Definition is equivalent (cf. Proposition 2.1.) to say that there is a 
right-angled triangle with rational sides, whose area is equal to n. This means (cf. 
Theorem 2.1.) that there exists a Pythagorician triplet of T + , whose area is 
equal to n times an integer squared, and in finality, taking account the Pytha- 
gorician parameterization (cf. Theorem 2.5.(iv)), we get:  

n is congruent ( ), ,d e S⇔∃  where ( ) ( ) ( ), 2 1 2 1
cop

d e ∈ + × +  , and  

S ∗∈  such that: 

( )( )1 1 22 2 2 .S S Sde d e d e nf− −∆ = + + =                 (1.1) 

Where the quantities: 1 12 , , , 2S Sd e d e− −+  and 2Sd e+  are pairwise prime. 
It is therefore this Diophantine equation that we will use, to show that numbers 

1 and 2 are not congruents. 
We are now going to solve equation (1.1) for 1n =  and 2n = , provided that 

Lemmas 2.2 are true, with respect of definitions and theorems (including that of 
Pythagorician divisors and some other results), recalled in §2.6 & 2.7, and 
demonstrated in [14]. 

2. New Diophantine Proof of Fermat’s Right-Angled Triangle  
Theorem 
2.1. Some Definitions and Properties towards Congruent Numbers 

Definition 2.1 Let n be a positive integer, we say that n is a congruent number 
if there exists a rational number V such that 2V n−  and 2V n+  are simulta- 
neously rational squares.  

See the examples below for concrete cases. 
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Proposition 2.1 Let n ∗∈ , a square-free natural integer. There is equiva- 
lence between the following propositions: 

(i) n is congruent.  

(ii) , ,U V W ∗∃ ∈  such that: 
2 2

2 2

;
.

U n V
V n W
 + =


+ =
 

(iii) , ,E F G ∗∃ ∈  such that: 

2 2 2 ;
1 .
2

E F G

EF n

 + =



=

  

Proof 1 From Definition 2.1., it is clear that (i) ⇔ (ii).  
Let us show that (ii) ⇔ (iii). 

 If (ii) holds, then (iii) holds too with 
;
;

2 .

E W U
F W U
G V

= −
 = +
 =

 

 Conversely if (iii) holds, then (ii) holds too, with 

;
2

;
2

.
2

F EU

GV

F EW

− =

 =


+
=

 

Concerning equation (iii), we have the following additioning precisions: 
Lemma 2.1 Let n∈  , a square-free natural integer, which is a congruent  

number, i.e. such that there exists , ,A B C
α β γ
 
 
 

 a rational triplet, with , ,A B C
α β γ

 

irreducibles such that: 

2 22

;

1 .
2

A B C

A B n

α β γ

α β

      + =          
 =

 

Then ( ), 1D gcd A B= =  and ( ), 1gcdδ α β= = .  

Proof 2 Note that we have: 1
2

A B n
α β

= , from which we deduce that:  

( )( ) ( )22 .A B nβ α αβ=  

 Let us show first that ( ), 2D pgcd A B= ≠ : 
Suppose that the converse holds: ( ), 2D gcd A B= = : 

Then α  and β  are odd because 
A
α

 and B
β

 are irreducibles. 

Moreover note that γ  is odd too, because 2C C′=  is even (with C′  odd), 
because otherwise we would have: ( ) ( ) ( )2 2 2A B Cβγ αγ αβ+ =  odd, with  

,A Bβγ αγ  even, which is absurd. So as a consequence C is even and necessarly 
γ  is odd. 

Consequently we have:  

( ) ( ) ( ) ( )
2 2

2 2 2 24
2 2
A BA B C Cβγ αγ αβ βγ αγ αβ   ′ ′+ = ⇔ + =   

   
. 
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But then: 
22 2

2 2
A B CC αβγ αβ β α

γ
′    ′ ⇒ + =     

     
 . 

Note that 
2
A

 and 
2
B

 can’t be both even, because ( ), 2gcd A B = , and that 

also 
2
A

 and 
2
B

 can’t be both odd, because if it was the case, we would have 

2 0mod 4≡ . Which is absurd. 

So looking to the left side, as exactly one term between 
2
A

 and 
2
B

 is even, 

then in particular C′  is odd. 
But this would be contradictory since: 
1 1 2 2
2 2 2 2

A B A Bn AB n n nαβ αβ αβ
α β

′= ⇒ = ⇒ = = , where 2n n′= , and n′   

odd without square factors. 

But then 
2 2
A B nαβ′=  remains odd 

2
A

⇒  and 
2
B

 are both odd, which 

contradicts the previous fact that exactly one between 
2
A

 and 
2
B

 is necessarily 

even. 
So necessarily ( ), 2D gcd A B= ≠ . 

 So D is odd. Suppose that 1D ≠ , then from ( )( ) ( )22A B nβ α αβ=  it  
comes ( )22 2D n αβ . 

But as ( ) 2 2, 1 2gcd D D n D nαβ = ⇒ ⇒  which is absurd, because n is square 
free. 

In conclusion: ( ), 1D gcd A B= = . 
Otherwise: 

2 2 22 2 1.A BD n AB n AB
d d

α β α βδ δ δ δ
δ δ δ δ

        = ⇒ = ⇒ ⇒ =        
        

 

Because ( ), 1pgcd ABδ = .  
We deduce the following theorem: 
Theorem 2.1 Let ∈n   a square-free natural integer, there is equivalence 

between the following propositions:  
(i) n is a congruent number. 

(ii) There exists f ∈   and ( ), ,a b c T +∈  (cf. Definition 2.2.), whose area 

21
2

ab nf∆ = = . 

(iii) There exists f ∈   and ( ), ,a b c ∗∈  prime in pairs, such that:  
2 2

2 2

;
2 2

.
2 2

a b cn
f f

c a bn
f f

   −
 + =   
   

   +

+ =   
   

 

(i.e. 
2 2 2

, ,
2 2 2

a b c a b
f f f

     − +
     
     

 are in an arithmetic progression of reason n).  
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Proof 3  
 Let’s show that (i)⇒ (ii). i.e. Assume n is congruent number; then there 

exists , ,A B C
α β γ
 
 
 

 a triple, as in Lemma 2.1., such that: 

2 22

;

1 .
2

A B C

A B n

α β γ

α β

      + =          
 =

 

Let f αβγ′ = , and multiply the two equations by 2f ′ , we obtain: 

( ) ( ) ( )

( )

( ) ( ) ( )

( )( )

2 2 2 2 2 2

22 2

; ;
1 1. .
2 2

A B C A B C

AB n A B nf

βγ αγ αβ βγ αγ αβ

αβγ αβγ βγ αγ

 + = + =
 ⇒ 

′= = 
 

 

By setting ;a A b Bβγ αγ′ ′= =  and c Cαβ′ = , we have: 
2 2 2

2

;
1 .
2

a b c

a b nf

 ′ ′ ′+ =



′ ′ ′=

 

Let ( ), ,gcd a b c D′ ′ ′ ′= , and simply take ( ), , , ,a b ca b c T
D D D

+′ ′ ′ = ∈ ′ ′ ′ 
, and 

ff
D
′

=
′
, then the condition (ii) of the Theorem is demonstrated. 

 Let’s show that (ii) ⇒ (iii). Assume (ii) realized, i.e. 2 2 2a b c+ = , and 
21

2
ab nf= , with , ,a b c  prime in pair, then: 

2 22 2 2

2

2 22 2 2 2 2

2 2

2 4 ;
2 24

4 2 .
2 24 4

a b a b ab f n cn
f ff

c a b f n a b ab a bn
f ff f

   − + − +
 + = =   
   

   + + + + +

+ = = =   
   

 i.e. (iii) is checked. 

 Let’s show that (iii)⇒ (i).  
If (iii) holds, then Proposition 2.1., (ii) holds too: 

With ,
2 2

a b cU V
f f
−

= =  and 
2

a bW
f
+

= ; so point (i) of Theorem is true  

because point (i) of the Proposition 2.1., is true.  
In particular, as reminded in the introduction, we obtain formula (1.1), by 

applying Theorem 2.1., and taking into account the Pythagorician parameterization 
Theorem 2.5., and thus: 

n is congruent ( ), ,d e S⇔∃  where ( ), 2 1 2 1
cop

d e ∈ + × +  , S ∗∈  such 

that: 

( )( )1 1 22 2 2 .S S Sde d e d e nf− −∆ = + + =   

However, for a given n, we do not know (in general) if such a rational triplet 
exists, and if we do know it, we do not know from which primitive integer 
Pythagorician triplet it comes. 
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Exemples 2.1 
 Let us now consider these primitive integer Pythagorean triples as they vary 

and calculate the areas of the integer right-angled triangles 2 2 2a b c+ =  

such that 21
2

ab nf∆ = =  where n is a squareless integer, which means 

that: n is a congruent number: 
We therefore see that the number 5 is congruent: Indeed very quickly, we 

obtain: 
2 2 29 40 41+ =  with: 21 9 40 180 5 6

2
× × = = × .  

In this example, the first right-angled integer triplet whose area is 25 f× , is 
quite close in the list, and the corresponding rational right-angled triangle is:  

2 2 23 20 41
2 3 6

     + =     
     

, with: 
1 3 20 5
2 2 3
× × = .  

Compared to the Pythagoras equation with integer solutions: 2 2 29 40 41+ = , 
One find that 

The squares 
2 2 2 2 2 231 49 41, , , ,

2 2 2 2 2 2
b a c b a   − +           =                               

, are in  

arithmetic progression of reason 180, We deduce from that with respect to the 

following Pythagorician rational equation: 
2 2 23 20 41

2 3 6
     + =     
     

, that the  

squares 
2 231 49;

12 12
   
   
   

 and 
241

12
 
 
 

, are in arithmetic progression with reason 

1805
36

= . 

 There are, however, complicated cases, because, although existing, the 
primitive right triangles we are looking for could be very far down the list: 
As a specific example, the number 23 turns out to be a congruent one:  

And we find a primitive integer right-angled triangle ( ), ,a b c  checking:  
21 23

2
ab f=  with f ∈  .  

But this time, this one is far down the list. Indeed, we find:  
2 2 2279340175 860959008 905141617+ = ; with 2

1
1 23 72306780
2

ab∆ = = × .  

And the corresponding rational right-angled triangle is:  
2 2 280155 41496 905141617

20748 3485 72306780
     + =     
     

, with: 2
1 80155 41496 23
2 20748 3485

∆ = × × = .   

Which is also a caracterization cf. Proposition 2.1. (iii), so that 23 is congruent. 
Thus (cf. Definition 2.1. & Theorem 2.1., (iii)) the squares in arithmetic pro- 

gression of reason 23, are:  
2 2 2 2 2 2581618833 905141617 1140299183, , , ,

2 2 2 144613560 144613560 144613560
b a c b a

f f f

        − +        =                             
 

Thus, constructing with large calculators, tables of congruent integers n without 
squares and checking (with usual Pythagorician triplets parameterization): 
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( )2 2 2uv u v nf− = , where ( )1 mod 2u v+ ≡  and ( ), 1gcd u v = , 
is a priori feasible; but show that a given square-free integer n, is congruent or 
not, is a very difficult problem, and which remains open to this day, despite 
progress due to numerous works, based, among others, on elliptic curves, and 
the BSD conjecture cf. [8] [9] [15] [16] [17]. 

Remark 2.1 The problem of determining congruent numbers, or properties 
concerning them, remains open. For example, let n and m be two congruent 
numbers, we can ask ourselves if nm can also be congruent ? In [18], pp 44 and 
65, this problem is stated, and certain families of congruent numbers n and m 
such that nm are congruents, are proposed.  

2.2. Use of Elliptic Curves for Solving the Problem of Congruent 
Numbers 

Consider n, a congruent number, then cf. Proposition 2.1.: , ,E F G ∗∃ ∈ , such 

that: 

2 2 2

1
2

E F G

EF n

 + =



=

 

But then by setting: 
2

2
Gx  =  

 
 et ( )2 2

8
Gy E F= − , the following elliptic curve:  

2 3 2y x n x= − , admits rational points. We recall Tunnel’s theorem (1983) cf. [8]: 
Theorem 2.2 Let n∈ , and square free. Consider then the following cardinals:  

{ }( )2 2 2, , such that : 2 32 ;nA Card x y z n x y z= ∈ = + +
 

{ }( )2 2 2, , such that : 2 8 ;nB Card x y z n x y z= ∈ = + +  

{ }( )2 2 2, , such that : 4 2 6 ;nC Card x y z n x y z= ∈ = + +  

{ }( )2 2 2, , such that : 8 2 16 .nD Card x y z n x y z= ∈ = + +  

 If we assume that n is a congruent number then necessarily: 

n nA B=  if n is even and 2 n nC D=  if n is odd. 
 Conversely if these equalities between cardinals hold, as well as the conjecture 

of Birch and Swinnerton-Dyer (cf. [9] and [10]), for the elliptic curve:  
2 3 2y x n x= − , then n is a congruent number. See also [17] for recent results 

using these methods.  

2.3. New Diophantine Proof that 1 can’t be a Congruent Number 

Proposition 2.2 There is equivalence between the following two propositions: 
(i) ( ) 3, ,a b c∀ ∈ , 0abc ≠ , ( ), 1gcd a b =  and 2 2 2a b c+ =  then 

 
21

2
ab f≠ , f∀ ∈  . 

(ii) ( ), ,a b c T +∀ ∈  then 21
2

ab f≠ , f∀ ∈  .  

Consequently, to solve the problem of Fermat’s right-angled triangle theorem, 
it suffices to prove it only for right-angled triangles of T + . 
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Let us now show the following theorem, which is one of the aims of the article: 
To say that 1 is not a congruent number, amounts to solving equation (1.1) with 

1n = . 

Theorem 2.3 Let ( ), ,a b c T +∈  then 21
2

ab f≠ , f∀ ∈  .  

Proof 4 We have cf. Theorem 2.5. ( )( ) ( )! , , 2 1 2 1
cop

d e S∃ ∈ + × + ×     such 

that: 

( ) ( ) ( ) ( ) ( )
2 2

_
2 2

2 2
, , = 2 , 2 , 2 .

2 2

S S
S S S

e e
a b c d e d e d e d d

 
  + + + +    

 

 

We then show that equation (1.1) for 1n = , is not solvable: 

( )( )1 1 22 2 2 .S S Sde d e d e f− −∆ = + + =  

We distinguish 2 cases according to the parity of S: 
The 1st case: 2S k= , 1k ≥  (which is trivial); 
And the 2th case 2 1S k= + , 0k ≥ . 
In this latter case, we will distinguish 1S =  odd, (which is also trivial); from 

case = 2 1 3S k + ≥  odd, which is more complex. Let’s demonstrate. 
 1st case: 2S k=  is even, 1k ≥ . Then: 

( ) ( ) ( ) ( ) ( ) ( )
2 22 2

2 2 2 2 2
2 2

, , = 2 , 2 , 2 .
2 2

k k
k k k

e e
a b c d e d e d e d d

 
 + + + +  
 

 

Suppose there exists 21
2

f ab f∈ =  , then cf. (1.1) we get: 

( )( )2 1 2 1 2 22 2 2k k kde d e d e f− −+ + = ⇒  

( ) ( )( ) ( )
2

2 1 2 2 2
12 2 2 2 0 mod 4

2
k k

k
fed e d e d−
−

 + + = ⇒ ≡ 
 

, 

which is absurd. 

So 21 ,
2

ab f f≠ ∀ ∈  , in this first case . 

 2th case  
- 1er Subcase: S is odd, and S = 1 (i.e. k = 0).  

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 22 2
, , 2 , 2 , 2 .

2 2
e e

a b c d e d e d e d d
 
 = + + + +
 
 

 

Suppose there exists 21
2

f ab f∈ =  , then cf. (1.1) we have: 

( )( ) 22 .de d e d e f+ + =  

Note that f is necessarily even, and that the four factors are pairwise prime. 
Then 1 1 1, , 2 1D E f ′∃ ∈ +  and 1f ∈

 , Such that: 
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( )

2
1
2
1

22 2
1 1 1

2 2 2
1 1 1

;

;

2 ;

2 .

d D

e E

D E f

D E f

 =


=


+ =
 ′+ =

                       (2.1) 

But the 3th equation ( )2 0 mod 4⇒ ≡ , which is absurd. 

Thus 21 ,
2

ab f f≠ ∀ ∈  . 

- 2th Subcase: S is odd, and 2 1 3S k= + ≥ . 

( ) ( ) ( ) ( ) ( ) ( )
2 22 1 2 1

2 2 1 2 1 2 1 2
2 2

, , 2 , 2 , 2 .
2 2

k k
k k k

e e
a b c d e d e d e d d

+ +
+ + +

 
 = + + + +  
 

 

Suppose, for absurdity, that as above there exists: 21
2

f ab f∈ =  . 

Then: ( )( ) ( )
2

2 2 12 2 1 mod 2
2

k k
k
fde d e d e+  + + = ≡ 

 
. 

⇒∃  pairwise prime integers , , , 2 1k k k kD E f f ′∈ +  such that: 

( )
( )

2

2

22 2

22 2

;

;

2 ;

2 2 .

k

k

k
k k k

k
k k k

d D

e E

D E f

D E f

 =


=
 + =


′+ =

                     (2.2) 

We then recognize the non-solvable system ( )0,kΞ  of Lemma 2.2. (with here 
1k ≥ ), which is found here, to be solvable, which is absurd. 

Thus 1 is not congruent.  
We now use similar approach to show that 2 is not congruent. 

2.4. New Diophantine Proof That 2 Can’t Be a Congruent Number 

That is, to prove the following theorem: 

Theorem 2.4 Let ( ), ,a b c T +∈  Then 21 2 ,
2

ab f f≠ ∀ ∈  .  

Proof 5 Cf. Theorem 2.5., !∃  ( )( ) ( ), , 2 1 2 1
cop

d e S ∈ + × + ×     such that: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
2 2

, , 2 , 2 , 2 .
2 2

S S
S S S

e e
a b c d e d e d e d d

 
 = + + + +  
 

 

We then seek to solve (1.1) with 2n = ; that is: 

( )( )1 1 22 2 2 2 .S S Sde d e d e f− −∆ = + + =  

Let us show that this is impossible, by reasoning taking into account the parity 
of S: The 1st case, wich indeed trivial, corresponds to 1S =  and 2 1 3S k= + ≥ , 
odd, and of is the same type as in the previous 1st case. 

Consequently, we can therefore solve the remaining case which corresponds 
to: 
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2th case: 2S k= , even, with 1k ≥ . 

!∃  ( )( ) ( ), , 2 1 2 1 2
cop

d e S ∈ + × + ×     such that: 

( ) ( ) ( ) ( ) ( ) ( )
2 22 2

2 2 2 2 2
2 2

, , 2 , 2 , 2 .
2 2

k k
k k k

e e
a b c d e d e d e d d

 
 = + + + +  
 

 

Suppose by absurd that there exists f ∈   such that 21 2
2

ab f= . 

Then cf. (1.1) : ( )( )2 1 2 1 2 22 2 2 2k k kde d e d e f− −+ + = ⇒  

( )( ) ( )
2

2 1 2
12 2 1 mod 2

2
k k

k
fde d e d e−
−

 + + = ≡ 
 

. 

From where: 

1 1 1 1, , , 2 1k k k kD E f f− − − −′∃ ∈ +  such that: 

( )
( )

2
1

2
1

22 1 2
1 1 1

22 1 2
1 1 1

;

;

2 2 ;

4 2 .

k

k

k
k k k

k
k k k

d D

e E

D E f

D E f

−

−

−
− − −

−
− − −

 =


=
 + =


′+ =

                   (2.3) 

But here we recognize the non-solvable system ( )1, 1k−Ξ  of Lemma 2.2., (with 

here 1k ≥ ), which is absurd. This shows that equation (1.1) is unsolvable in this 
case. 

So as we had claimed: 21 2 ,
2

ab f f≠ ∀ ∈  . 

That is to say that the number 2 is not congruent.  

2.5. Lemmas 

Let us now state and establish the following Lemmas, which allowed our two 
previous proofs. 

Lemma 2.2 Let { }0,1t∈ , and k∀ ∈ , then the system of equations 

( )
( )
( )

22 2

, 22 1 2

2 2 ,

2 2 ;

t k

t k
t k

X Y Z

X Y T+

 + =Ξ 
 + =

 does not admit any pairwise prime solution  

( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + . 

Remark 2.2 a) When 0t = : It is clear that ( )
( )
( )

22 2

0, 22 2

2 ,

2 ;

k

k
k

T Y Z

T Y X

 + =Ξ ⇔ 
 − =

  

which is not solvable, because it is well known that the sum and the difference of 
two squares cannot both be squares.  

b) When 1t = : It is clear that ( ) ( )

2 2 2

21, 2 2 1

2 ,

2 ;
k k

T X Z

T X Y+

 + =Ξ ⇔ 
− =

 is not solvable,  

because we have:  
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2 2T u v= + , 2 2X u v= − , 12 2k Y uv+ =  2 2 22T X Z⇒ + = 4 4 2u v Z⇒ + =  
which is not resolvable ([19]).  

However, we are going to propose another proof of this lemma. 
Proof 6 CASE 1 : 0t = . 
we will demonstrate by induction on k, the proposition : 

( )
( )

22 2

22 2

2 ,

2 2 ;

k

k

X Y Z

X Y T

 + =

 + =

 does not admit any pairwise prime solution  

( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + . 
 Note first that the proposition is true for 0k =  and 1k = . 

Indeed, if 0k =  (resp. 1k = ), then ( ) ( )0,0 0,1,Ξ Ξ  does not admit solutions in 
( )42 1+ , because otherwise we would have: 2 2 2

0 0 0D E f+ =  (resp.  
( )22 2

1 1 12D E f+ = ) which in both cases is impossible.  
 Assume now that 2k ≥ , and let’s suppose that this proposition is true until 

rank 1k − , What forms our recurrence hypothesis: 
( )0,Ξ



 does not admit, up to rank 1k − , any pairwise prime solution in  

( )42 1+                           (2.4) 

 Let’s show that ( )0,kΞ  does not admit too, any pairwise prime solution in 

( )42 1+ . 

Suppose the converse, that is: ( ) ( )4, , , 2 1k k k kD E f f ′∃ ∈ + , such that: 

( )
( )
( )

22 2

0, 22 2

2 ,

2 2 ;

k

k
k

X Y Z

X Y T

 + =Ξ 
 + =

 is solvable in  

( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + , and pairwise prime. 

As a consequence: ( ),2 ,k
k k kD E f ′  is a non-trivial and positive solution of 

2 2 22x y z+ = , then (cf. Proposition 2.5.):  
!∃  ( ) ( ) ( )1 1, 2 1 2 1k k cop

e e− −′′ ∈ + × +  ; and 0S ∈ , such that: 

( ) ( )( ) ( ) ( )
( ) ( )
( )

0

0

0

2 2 2 1 2 2
1 1 1 1

1 1 1 1

22 2 2 1 2
1 1 1 1

1 2 2 1 2 ;

2 2 2 2 ;

2 2 2 .

S k
k k k k k

Sk k
k k k k k

S k
k k k k k

D e e e e

E e e e e

f e e e e

β β −
− − − −

− − − −

−
− − − −

 ′′ ′′= − − = − −
 ′′ ′′= =

 ′ ′′ ′′= + = +


 

Because ( )0
1 1 02 2 2 1Sk

k k kE e e S k− −′′= ⇒ = − , 
which implies: 

( ) ( ) ( )( )2 1 2 2 2 1 2 2
1 1 1 1 1 1,2 , 1 2 ,2 ,2 .k k k k

k k k k k k k k kD E f e e e e e eβ − −
− − − − − −′ ′′ ′′ ′′= − × − +  

But then: 

( )22 2 1 2 2
1 12 k

k k kD e e−
− −′′= −  

( )24 2 2 2 2 1 2
1 1 1 12 2k k

k k k ke e e e−
− − − −′′ ′′= − + ; but as ( )2 2 2 2

1 12 2k k
k k kE e e− −′′= . 
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( ) ( )2 24 2 1 2
1 12 2k k

k k ke E e−
− −′′= − +  

( ) ( )2 22 4 2 1 2
1 12 2 .k k

k k k kD E e e−
− −′′⇒ + = +  

But ( )0,kΞ  solvable ( ) ( )2 22 2 4 2 1 2 2
1 12 2k k

k k k k k kD E f e e f−
− −′′⇒ + = ⇒ + = . 

Thereby: 

( ) ( )( )24 2 2 1 2 4 2 1 2 2 1 2
1 1 1 1 12 2 2 .k k k

k k k k k k k ke f e e f e f e− − −
− − − − −′′ ′′= − ⇒ = − +  

These two factors being coprimes, there exists odd coprimes numbers  

1 1,k kf D− −′ , such that: 
4 2 1 2

1 1
4 2 1 2
1 1

2 ;
2 .

k
k k k

k
k k k

D f e
f f e

−
− −

−
− −

 = −
 ′ = +

 

As a result:  
4 4
1 1

2
k k

k
f Df − −′ +

=  and 
4 4

2 1 2 1 1
12

2
k k k

k
f De− − −

−

′ −
= , from where :  

2 2 4 4
1 1 12 k

k k ke f D− − −′= −  

Thus: 4 2 2 4
1 1 12 k

k k kD e f− − −′+ = ; 

Let’s rewrite that like this: ( ) ( ) ( )2 2 22 2
1 1 12k

k k kD e f− − −′+ = , that is a Pythagoras 

equation:  
Thus ( )2 2

1 1 1,2 ,k
k k kD e f− − −′  is a Pythagorician triplet of T + . (Note that then 

necessarily 2k ≥ ). 
If we denote ( )1 12 ,k

k kE f− −  as the Pythagorician divisors coming from  

12k
ke −  (cf. Definition 2.3.), with respect that here 0λ = , then: 

( )2 2
1 1 1 12 2 ,k k

k k k kE gcd e f D− − − −= − , and 1 1 12 2k k
k k kE f e− − −= . 

And the Pythagorician divisors theorem (cf. Theorem 2.5.) implies that: 

( ) ( )
2

212 2 1
1 1 1

2 2 2
1 1 1

2
2 2 ;

2
2 .

k
k k

k k k

k k k

E
f D E

f D f

− −
− − −

− − −


 ′ − = =
 ′ + =

 

We therefore obtain on the one hand: 

( )22 1 2
1 1 12 2 .k

k k kD E f−
− − −′+ =  

And on the other hand:  

( )( ) ( )2 2 22 1 2 2 2 1
1 1 1 1 1 1 12 2 2 2k k

k k k k k k kD E D f D E f− −
− − − − − − −+ + = ⇒ + = . 

And as a result we have: 

( )
( )

2 22 1
1 1 1

22 1 2
1 1 1

2 ;

2 2 .

k
k k k

k
k k k

D E f

D E f

−
− − −

−
− − −

 + =

 ′+ =

( )0, 1k−⇒ Ξ  is solvable, which contradicts the 

assumption of recurrence assumed to be true up to rank 1k − . 
So the Lemma when 0t = , is proved.   
CASE 2 : 1t = . 
In this case too, we will demonstrate by induction on k, the proposition: 
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( )
( )

22 2

22 2

2 2 ,

4 2 ;

k

k

X Y Z

X Y T

 + =

 + =

 does not admit any pairwise prime solution  

( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + . 

 This proposition is true for 0k = . Because if not, then ( )1,0Ξ  should 
admit solutions in ( )42 1+ , consequently we would have: 

( )2 2 2
0 0 02 3 1 mod 4D E f+ = ⇒ ≡ , which is absurd. 

 Assume now that 1k ≥ , and let’s suppose that this proposition is true until 
rank 1k − , What forms our recurrence hypothesis: 

( )1,Ξ


 does not admit, up to rank 1k − , any pairwise prime solution in  

( )42 1+                             (2.5) 

 Let’s show that ( )1,kΞ  does not admit too, any pairwise prime solution in 
( )42 1+ . 

Suppose the converse, that is: ( ) ( )4, , , 2 1k k k kD E f f ′∃ ∈ + , such that:  

( )
( )

22 2

22 2

2 2 ;

4 2 .

k
k k k

k
k k k

D E f

D E f

 + =

 ′+ =

                       (2.6) 

Let’s solve by factorization the equation ( )22 24 2k
k k kD E f ′+ = . 

Define { }0,1β ∈  such that 
( ) ( )1

0 mod 2
2

k kf Dβ′ + −
≡ . 

Then: ( ) ( ) ( )1 1, 2 1 2 1k k cop
e e− −′′∃ ∈ + × +   such that: 

( ) ( ) ( )

( )

( )

2 2
1

2

1 1

2
1

1
2 ;

21 1
2 2 2 ;

2 2
1

.
2

k k k
k

k k k k k k k
k k k k

k k
k

f D
e

f D f D
E E e e

f D
e

β

β β

β

−

− −

−

 ′ + −
=

′ ′+ − − −  ′′× = ⇒ =
 ′ − − ′′=

 

Then: 

( ) ( )2 2 2
1 1

1 1
2 2 2

1 1

1 2 ;

2 2 ;

2 .

k
k k k

k k
k k k

k
k k k

D e e

E e e

f e e

β
− −

− −

− −

 ′′= − −
 ′′=
 ′ ′′= +

 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 22 2 2 2
1 1 1 1

2 2 22 2 2
1 1

2 2 2

2 2 2 ;

k k
k k k k k

k k
k k k

D e e e e

e e E

− − − −

− −

′′ ′′⇒ = + −

′′= + −
 

( ) ( ) ( ) ( )2 2 22 2 2 2 2
1 1recurrence hypothesis

2 2 2 ;k k
k k k k kD E f e e− −′′⇒ + = = +  

( ) ( )2 22 2 2 2
1 12 ;k

k k kf e e− −′′⇒ − =  

( )( )2 2 2 2 4
1 1 12 2 ;k k

k k k k kf e f e e− − −′⇒ − + =  

Then ∃  ( ) ( ) ( )1 1, 2 1 2 1k k cop
D f− −′ ∈ + × +   such that: 
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( ) ( ) ( )
4 2 2 2 22 2 2 21 1

1 1 14 2 2
1 1

2 ,
2 2 ;

2 ;

k
kk k k

k k kk
k k k

D f e
f D e

f f e
− −

− − −
− −

 = − ′⇒ − = ′ = +
 

And ( ) ( ) ( )1 1, 2 1 2 1k k cop
E f− −∃ ∈ + × +   such that: 

( )
2 2 2 22 2

2 2 2 2 1 1 11 1
1 1 1 2 2 2

1 1 1

2 ;
= 2

2 2 .

k
k k k kk k

k k k
k k k

f D Ef D
f D e

f D f
− − −− −

− − −
− − −

 ′′ − =+ ′⇒ − ⇒ ⇒ ′ + =
 

( )22 2
1 1 12k

k k kD E f− − −′+ =  which can be rewritten in one hand:  

( )22 1 2
1 1 14 2k

k k kD E f−
− − −′+ = ;  

and, on the other hand:  

( )( )22 2 2 2 1 2 2
1 1 1 1 1 1 12 4 2 2k

k k k k k k kf D f D E D f−
− − − − − − −′ + = ⇒ + + = ⇒  

( )22 1 2
1 1 12 2 .k

k k kD E f−
− − −+ =  

So as a result:  

( )
( )

22 1 2
1 1 1

22 1 2
1 1 1

2 2 ;

4 2 .

k
k k k

k
k k k

D E f

D E f

−
− − −

−
− − −

 + =⇒ 
 ′+ =

( )1, 1k−⇒ Ξ  is solvable, which contradicts the  

assumption of recurrence assumed to be true up to rank 1k − . 
So the Lemma is proved.    
Note that these two Lemmas induce the following Corollary: 
Corollary 2.1 ,k t∀ ∈ , the systems of equations  

( )
( )
( )

22 2

,0 22 1 2

2 2 ,

2 2 ;

t k

t
t k

X Y Z

X Y T+

 + =Ξ 
 + =

 don’t admit any solutions in  

( ) ( ) ( )4, , , , , , 2 1k k k kX Y Z T D E f f ′= ∈ + , and pairwise prime.  

Proof 7 It suffices to consider the cases t even (resp. t odd), which lead in one, 
or the other of the cases, of the previous lemmas.  

Let us recall here some results and definitions used in various proofs above. 

2.6. Pythagoras Equation: Notations-Reminders-Pythagorician  
Divisors 

All these concepts, definitions and proofs are found in [13] or [14]. 
Convention 2.1 Let ( ) ( ), , 0,0,0a b c ≠  be a solution of the Pythagoras equation: 

2 2 2a b c+ = . We agree for the following, unless otherwise stated, that  
( ) ( )( ), , 1,0,1 mod 4a b c ≡ ± .  

This in no way restricts the expression of the generality of the solutions of said 
equation, because ( ), ,b a c  is also a solution called “associated with ( ), ,a b c ”, 
such that ( ) ( )( ), , 0, 1,1 mod 4b a c ≡ ± . 

Definition 2.2 T + : is the set of non-trivial, primitive and positive Pythagoras 
solutions of the type ( ) ( )( )1, 2 , 1,0,1 mod 4sa b b c= ≡ ± .  

It is well known that: 
Proposition 2.3  
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( ) ( ) ( ){ }2 2 2 2,2 , ; , , 0, 1 mod 2 and , 1T u v uv u v u v u v u v gcd u v+ = − + ∈ > > + ≡ = . 

2.7. Pythagorician Divisors 

Definition 2.3 Let ( )1, 2 ,sa b b c T += ∈ , 2s ≥ , 1b  odd.  

-Denote by ( ) ( ), , , ad d gcd a c b
d

 ′′ = − 
 

 and 
 

( ) ( ) 1, , , 2 ,2S s S bbe e gcd b c a e
e e

−  ′′ = − =   
   

, this quantities are the Pythagorician  

divisors of ( ), ,a b c . The first ones are said coming from a, and the second coming 
from b.  

-The number S ∗∈ , is defined by: ( )1S s sλ= − − , where { }0,1λ∈  is such 

that: ( )mod 2
2

c a λ−
≡ ,  and e  is the suitable odd integer.  

Let’s recall cf. [13] [14]. 
Theorem 2.5 (Of Pythagorician divisors). Let ( )1, 2 ,sa b b c T += ∈ , 2s ≥ , 

1b  odd.  
There is equivalences between the following propositions: 

(i) 2 2 2a b c+ = .  

(ii) 
2

2

;
.

c b d
c b d
 − =
 ′′+ =

  

(iii) 

( )2
2

2
2 1

2
;

2 2

2 2 2 .

S

s S

eec a

bc a e
e

−


 − = =


  ′′+ = =  

 

 

(iv) 

( )
( ) ( )

( ) ( )

2

2

2

2

2 ;

2
2 ;

2

2
2 .

2

S

S
S

S
S

a d e d

e
b e d

e
c e d d

 = +


 = +


 = + +


 

Remark 2.3 About the Pythagirican divisors’s Theorem one can says that  

( )1, 2 0,sa b b c T += ≠ ∈ , is a Pythagorician triplet if and only if ∃  d odd divisor 

of a, ∃  e even divisor of b such that: 

2
2

;

;
2

.
2

a d e
d
b ed
e

ec a b d

 = +

 = +



= + = +


  

Let’s put: 

Definition 2.4 ( ) ( ) ( ){ }22 1 2 1 , 2 1 / , 1
cop

x y gcd x y+ × + = ∈ + =   .  

We have the following corollary: 
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Corollary 2.2 T +  is in bijection with: ( )2 1 2 1
cop

∗+ × + ×   , as follows: 

( )

( )( )

( )
( )

, ,

: 2 1 2 1

,
,

, , =
2

cop

Sa b c

T

d gcd a c b
a

gcd b c a
b d e S e
c S

π + ∗→ + × + ×

= − 
   

−   =   
      

 



  

 

Where ( )1S s sλ= − −  with ( )2s v b=  and λ  defined in Definition 2.3.;   
Whose reciprocal bijection is: 

( )

( )( )

( )
( ) ( )

( ) ( )

1

2

2

, ,

2

2

: 2 1 2 1

2

2
, , 2

2

2
2

2

cop

S

S
S

d e S

S
S

T

a d e d
d e
e a b c b e d
S

e
c e d d

π − ∗ ++ × + × →

 
= + 

       = = +    
   

 = + + 
 



  

 

In particular we get the proposition: 
Proposition 2.4  

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
2 2

2 , 2 , 2 / ,
2 2

2 1 2 1and

S S
S S S

cop

e e
T d e d e d e d d d e

S

+

∗

 
 = + + + +   


∈ + × + ∈ 



  

. 

From all the above, we have: 

Theorem 2.6 Let ( ), ,a b c T +∈ , whose area is 
1
2

ab∆ = . Then !∃   

( ) ( ), , 2 1 2 1
cop

d e S ∗∈ + × + ×   , such that:  

1) 

( )
( ) ( )

( ) ( )

2

2

2

2

2 ;

2
2 ;

2

2
2 .

2

S

S
S

S
S

a d e d

e
b e d

e
c e d d

 = +


 = +


 = + +


   

2) ( )( )1 11 2 2 2
2

S S Sab de d e e d− −∆ = = + + .  

With: ( ) ( )1 12 , , , 2 , 2S S Sd e d e e d− −+ +  , pairwise prime.  
Remark 2.4 Other interesting parametrizations of Pythagorician triplets can 

be found in [20], [21] or [22].  
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We now giving the positive, non-null and non-trivial primitive solutions (i.e. 
( )1,0,1≠ ), of the equation 2 2 22x y z+ = , cf. [14]. These solutions are necessary 

to solve the Fermat’s Theorem of the right-angled triangle, and that of the 
non-congruence of 2. 

Solution of the Diophantine Equation x y z2 2 2+ 2 =  

We get the following theorem cf. [13] [14]: 
Proposition 2.5 There is an equivalence between the following propositions 

(the solutions are supposed to be non-null, non-trivial, primitive and positive). 
(i) 2 2 22x y z+ =  is solvable;  
(ii) ∃  ,e e′′  coprimes, such that: 

( ) { } ( ) ( )( )
2

22 2

2
2

1 2 , where 0,1 and 1 2 2 ;
2

2 ;
2

2 .
2

Sex e sign e e

ey e

ez e

β ββ ′′
    ′′ ′′= − − ∈ − = −       

  ′′=  

 
   ′′= +    

 

Remark 2.5 1) { }0,1β ∈  is defined by:
 

( ) ( )1
0 mod 2

2
z xβ+ −

≡ . 

2) e′′  is an odd integer, as well as e , and are such that: 2se e= , and so 
2sy ee′′= . 

( )

( )

;
1

,
2

1
,

2
;

2 2
1 .

S

ye
z x

gcd y

z x
gcd y

e

S s

β

β

′′

 ′′ =  + −    
 

  + −
  

   =
×

′′ = − ∈ 

 

2.8. Conclusions and Perspectives 

The Pythagorician divisors theorem, gives a new, simple original proof of Fermat’s 
right-angled triangle theorem, and that number 2 is not a congruent number. We 
do believe, that such a method seems to be usable for the general problem of 
congruent numbers, namely for other values of square-free integers n, and in 
particular for those where: n p=  prime. With this method, we have been able to 
show that any prime number ( )3 mod8p ≡ , is not congruent; and that any prime 
number ( )5,7 mod8p ≡  are congruents. We seek to show, with our method, the 
resolution of the problem of congruent numbers for the prime numbers 

( )1 mod8p ≡ . Note that for this last case, using the theory of elliptic curves, Evink, 
Top and Top, J., D. cf. [17], showed on the one hand, that there exists an infinity 
of prime numbers ( )1 mod8p ≡ , which are not congruent (these being of  
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density 
1
8

>  ), and on the other hand, that the infinity of the prime numbers of  

( )f   are congruents, where ( ) 4 3 28 16 12 4 1f x x x x x= + + + + , is a polynomial 
verifying the conjecture of Bouniakowsky, see also [23] [24], for related results. 
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