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Abstract 
The estimation of covariance matrices is very important in many fields, such 
as statistics. In real applications, data are frequently influenced by high di-
mensions and noise. However, most relevant studies are based on complete 
data. This paper studies the optimal estimation of high-dimensional cova-
riance matrices based on missing and noisy sample under the 1l  norm. First, 
the model with sub-Gaussian additive noise is presented. The generalized 
sample covariance is then modified to define a hard thresholding estimator 

ˆ th
FΣ , and the minimax upper bound is derived. After that, the minimax lower 

bound is derived, and it is concluded that the estimator presented in this ar-
ticle is rate-optimal. Finally, numerical simulation analysis is performed. The 
result shows that for missing samples with sub-Gaussian noise, if the true co-

variance matrix is sparse, the hard thresholding estimator ˆ th
FΣ  outperforms 

the traditional estimate method. 
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1. Introduction 

The covariance matrix is a key component in various fields, particularly statis-
tics. However, when dealing with many statistical situations, the covariance 
matrix is usually unknown. As a result, estimating the covariance matrix is ex-
tremely significant, and it is frequently utilized in signal processing, genomics, 
financial mathematics, and other domains. When the dimension p is fixed and 
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the sample size n is sufficiently large, the sample covariance matrix is com-
monly used to estimate the true covariance matrix. However, with advance-
ments in information technology and various other technologies, there is a 
growing challenge in estimating large covariance matrices. Issues such as di-
mensionality and noise can significantly impact the effectiveness of using the 
sample covariance matrix to estimate the true covariance matrix. Moreover, in 
the era of big data, missing data is a common occurrence, making research on 
the estimation of high-dimensional covariance matrices based on missing and 
noisy data essential. 

Bickel and Levina [1] proposed thresholding as a commonly used method for 
estimating high-dimensional covariance matrices and and proved its consistency 
under the operator norm. However, there was no discussion on its optimality. 
Cai and Zhou studied the optimal estimation of sparse covariance matrices un-
der the operator norm and Bregman divergence loss. They also proved that the 
thresholding estimator can achieve the optimal convergence rate under the spec-
tral norm, see [2]. Cai and Zhou [3] provided the optimal estimation of the sparse 
covariance matrices under the 1l  norm loss. The thresholding described above 
is also referred to as hard thresholding, and its counterpart is soft thresholding 
[4] [5]. On this basis, Rothman, Levina, and Zhu [6] proposed generalized thre-
sholding and proved its consistency. Cai and Liu [7] proposed adaptive thre-
sholding. The adaptive estimation of high-dimensional sparse precision matrices 
was studied by Cai, Liu, and Zhou [8]. For bandable covariance matrices, [3], 
[9], and [10] conducted in-depth research. 

In the case of missing data, Cai and Zhang [11] assumed that the missingness 
was independent of the data values and studied the optimal estimation of two 
classes of covariance matrices. Qi [12] explored the optimal estimation of sparse 
covariance matrices under the 1l  norm and the Fribenius norm, respectively. In 
addition, the lower bound for estimating bandable covariance matrices under 
the spectral norm was studied based on noisy and missing data, but its optimali-
ty is not considered. Shi [13] studied the optimal estimation of bandable cova-
riance matrices based on missing and noisy sample data. 

It is not difficult to find that the research on estimating high-dimensional co-
variance matrices is primarily based on complete data. However, the correla-
tional research on missing data and noisy models remains critical. The articles 
listed above served as a tremendous source of inspiration for this paper’s study 
topic and methods. This paper will provide corresponding research for the 
aforementioned issues. Sparse covariance matrices are widely employed in a va-
riety of applications, including genomics. As a result, it is necessary to investi-
gate the estimate of this kind of covariance matrix. The research in this paper 
can help people better estimate the high-dimensional covariance matrix when 
the sample is noisy and missing. Thus, it is convenient for many fields to better 
use high-dimensional data to obtain more useful information, and this paper 
provides them with a reliable theoretical basis. 

The remaining sections of this paper are as follows: Section 2 will provide the 
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associated concepts and knowledge of covariance matrix estimation, which 
serves as the theoretical foundation for the research. In Section 3, we will study 
the optimal estimation of sparse covariance matrices with missing and noisy da-
ta. In Section 4, numerical simulation experiment will be performed to investi-
gate the estimating effect of the estimator presented in Section 3. The fifth sec-
tion summarizes the research content and discusses existing problems. 

2. Theoretical Basis 

This paper will primarily study the optimal estimation of covariance matrices 
under the 1l  norm. For a matrix ( ) m n

ija ×= ∈A , ( ) ( )Hσ λ=A A A  repre- 
sents the singular values of A , while ( )Hλ A A  represents the eigenvalues of 

HA A . The operator norm of A  is defined as 

1, 0,
max max

n n
a

a
a a

a
= ∈ ≠ ∈

= =
 x x x x

Ax
A Ax

x
 

There are three common operator norms:  

(1) 1l  norm: 
1 1 1 1

max
m

ijl j n i
a

≤ ≤ =

= = ∑A A ;  

(2) spectral norm: ( ) ( )12 maxi isp σ σ= = =A A A A ;  

(3) l∞  norm: 
1 1
max

n

iji m j
a

∞ ≤ ≤ =

= ∑A .  

Next, we will introduce the sub-Gaussian random vector. If there is a parame-
ter 0k >  such that ( ) 2 2 2 ,sX k se e s≤ ∈ , the random variable X  is consi-
dered a sub-Gaussian random variable with parameter k , that is, ( )X Sub k . 
It is easy to know that sub-Gaussian random variables include Gaussian random 
variables whose mean is 0 and all bounded random variables with a mean of 0. 
Assuming the random variable X  is sub-Gaussian, its sub-Gaussian norm is 
denoted by  

( )
2

1
1 2

1
sup  .

pp

p
X p X

ψ
−

≥
=   

A p-dimensional random vector ( )1 2, ,
T

pX X X= X  is called the sub-Gaussian 
random vector if any linear combination of 1 2, , pX X X  is sub-Gaussian. That 
is, when 0τ > , for any 0t > , p∈v , and 

2
1=v , there is 

( ){ } 2 2 .T tP t e τ−− > ≤v Χ Χ  

Assume that a p-dimensional random vector p∈Χ  has the mean µ  and the 
covariance matrix Σ . Covariance matrix estimation is the process of computing a 
covariance matrix Σ̂  based on n  independent copies 1 2, , p

n ∈ Χ Χ Χ  of 
Χ  and then using Σ̂  to estimate Σ , i.e., making Σ̂  approximate Σ  in a 
certain sense. In this paper, minimax risk is used as a standard to measure the esti-
mation effect. Suppose 1Χ  has a certain class of covariance matrices, and   is a 
specific collection of 1Χ ’s distributions. Then, under the specified matrix norm ⋅ , 
[3] defines the minimax risk of estimating Σ  over   as 
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( )
2

ˆ
ˆinf sup .= −


  

Σ
Σ Σ  

When the vector’s dimension p  is smaller than the sample size n , the sam-
ple covariance matrix is typically utilized to estimate the true covariance matrix. 
The sample mean is 

1

1 ,
n

i
in =

= ∑Χ Χ  

and the sample covariance matrix is 

( ) ( )( )
1

1ˆ ˆ .
n T

ij i ip p
in

σ
×

=

= = − −∑Σ Χ Χ Χ Χ              (1) 

However, as noted in Section 1, when the dimension p  is substantially larger 
than the sample size n , utilizing the sample covariance matrix for estimating 
the true covariance matrix becomes inadequate. Based on the work of Cai et al., 
this paper will study the optimal estimation of high-dimensional covariance ma-
trices based on missing and noisy data. 

The missing completely at random (MCR) model is introduced below. MCR 
indicates that the missingness was random and independent of the data values. 
Suppose { }1 2, , nΧ Χ Χ  is complete random sample from Χ . Introducing 
vector { }0,1 , 1,2,p

k k n= = S  as the observation index for kΧ , then 

1,  is observed
0, is missing

jk
jk

jk

X
S

X
= 


,

 .
 

jkS  and jkX  represent the j th coordinate of vectors kΧ  and kS , respec-
tively. 

We denote { }* * * *
1 2, , , nΧ = Χ Χ Χ  as the sample with missing data, where 

( )*
1 1 2 2, , ,

T

i i i i i pi piX S X S X S= Χ is the i th observation sample. Additionally, 
define 

*

1
: ,    1 , .

n

ij ik jk
k

n S S i j p
=

= ≤ ≤∑  

When 1ik jkS S = , the i th and j th components of vector *
kΧ  are observed 

simultaneously, whereas 0ik jkS S =  indicates that they were not observed si-
multaneously. Thus, *

ijn  denotes the number of times the i th and j th com-
ponents of *Χ  are simultaneously observed. For convenience, let’s define  

* *
i iin n= , * *

min ,
min iji j

n n= . It is simple to know that { }* * * *
min min ,ij i jn n n n≤ ≤ . When 

the sample data are complete, *
ijn n≡ .  

For sample *Χ  with missing data, we substitute the generalized sample 
mean and generalized sample covariance matrix for the traditional sample mean 
and covariance matrix. The generalized sample mean is defined as the following: 

( )* * * *
* *1

1 1

1 1: ,   ,
n n

i i ik ik iki p
k ki i

S
n n

Χ Χ
≤ ≤

= =

= = =∑ ∑Χ Χ Χ  

the generalized sample covariance matrix is defined as 
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( ) ( )( )* * * * *
*1 ,

1

1ˆ ˆ ˆ: ,   .
n

ij ij ik i jk j ik jki j p
kij

Χ Χ S S
n

σ σ
≤ ≤

=

= = − −∑Σ Χ Χ        (2) 

3. Covariance Matrix estimation 

This paper assumes that the covariance matrix is sparse, which means that the 
majority of its components are 0 or insignificant, and the distribution of non-zero 
elements is irregular. First, we introduce the parameter space ( ),,q n pcρ  of the 
sparse covariance matrices: 

( ) { } ,
, [ ]1 , 1

( , ) : max , max
q n p

q n p ij k j iii j p j p

c
c k

k
ρ σ σ σ ρ

≤ ≤ ≤ ≤

 
= = ≤ ∀ ≤ 
 

，Σ , 

where 0 1q≤ < , and [ ]k jσ  represents the element with the k th largest abso-
lute value in the j th column of matrix Σ . When 0q = , each column of the 
matrices in ( ),,q n pcρ  has at most ,n pc  non-zero components, usually as-
suming , 1n pc ≥ .  

3.1. Noisy Model 

Assuming the complete random vector p∈Χ  has the covariance matrix 
 ( )ˆij p p

σ
×

=XΣ . Using a p -dimensional random vector F  to represent noisy 

data, the noisy model can be expressed as  

,F = X + ε                           (3) 

where p∈ε  represents noise. In this section, we hope to build a p p×  matrix 
ˆ

FΣ  based on n  independent random noisy samples 1 2, , p
n ∈ F F F  of F . 

We next use ˆ
FΣ  to estimate the covariance matrix XΣ  of the random vector 

X . 
The noisy sample with missing data are represented by { }* * * *

1 2, , , nF F F F= , 
where ( )*

1 1 2 2, , ,
T

i i i i i pi piF S F S F S= F  is the i th observation sample. The defi-
nition of the generalized sample mean is as follows: 

( )* * * *
* *1

1 1

1 1: ,   ,
n n

i i ik ik iki p
k ki i

F F S
n n≤ ≤

= =

= = =∑ ∑F F F  

the generalized sample covariance matrix is defined as 

( )( ) ( ) ( )( )* * * *
*1 ,

1

1ˆ ˆ ˆ: ,   .
n

ij ij ik i jk j ik jki j p
kij

F F S S
n

σ σ∗

≤ ≤
=

= = − −∑FΣ F F F F      (4) 

Two new assumptions in [12] are presented below. 
Assumption 1. The observation index { }1 2:= , , nS S S S  can be random or 

deterministic, but it is independent of the noisy observation sample  
{ }1 2:= , , nF F F F .  

Assumption 2. The random vectors 1 2, , nF F F  are i.i.d., where k k k= +F X ε , 
and 

,    ,   1, 2, .k k k k k nε= + = = X Z ε ZΓ µ Γ  

µ  represents a fixed p -dimensional mean vector. ( ), p q p qε ×∈ ≤Γ Γ  are 
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fixed matrices with T = ΣΓΓ  and Tε ε ε= ΣΓ Γ . Each component of the ran-
dom vector ( )1 2, , ,

T

k k k qkZ Z Z= Z  i.i.d. sub-Gaussian with a variance of 1 and 
a mean of 0. For any 0s > , there exists a parameter 0τ >  such that 

 
( ) 2 2iksZ se eτ≤ , that is, ( )ikZ Sub τ . 

3.2. Upper Bound for Estimating Sparse Covariance Matrix  

The hard thresholding estimator based on complete data was proposed by [1]. 
When most of the elements in each row or column of the true covariance matrix 
are close to zero or negligible, set the elements of the sample covariance matrix 
below a certain threshold to 0, and leave the remaining elements unaltered to es-
timate the true covariance matrix, so as to reduce the error. In [2], 

{ } 8ˆ 1ij ijP t Cpσ σ −− ≤ ≥ −  

for logt p nγ= , where C  is a constant. The threshold is set to log p nγ . 
In this paper, it is extended to the case of missing and noisy data. According 

to Lemma 4.6 in [12], if Assumption 1 and Assumption 2 are both hold, then 
there are two absolute constants C  and c  greater than 0, such that 

( ){ }
2

*
min 4 2

ˆ 1 exp min ,ij ij
ii jj ii jj

x xP x C cnσ σ
τ σ σ τ σ σ

∗
    − ≤ ≥ − −     

F     (5) 

for any 0x > . Since 2
ii jjσ σ ρ≤ , the above can be simplified to: there are con-

stants 0C >  and 0γ > , such that 

( ){ }* * 2
min2

8ˆ 1 exp .ij ijP x C n xσ σ
γ

 
− ≤ ≥ − − 

 
F             (6) 

Where x ρ≤ , and the constants C  and γ  only depend on ρ . Note that 

Inequality (6) can be written as ( ){ }* 8ˆ 1ij ijP x Cpσ σ −− ≤ ≥ −F  when  

*
minlogx p nγ= . 

The hard thresholding estimator ˆ th
FΣ  of the covariance matrices 

 
( ),,q n pcρ∈XΣ   is defined by transforming the generalized sample covariance 

( )*ˆijσ F  in Equation (4),  

( )( ) ( ) ( )( )( )* *
*
min

logˆ ˆ ˆ ˆ , ,th th
ij ij ijp p p p

pI
n

σ σ σ λ λ γ
× ×

= = ⋅ ≥ =FΣ F F F    (7) 

where γ  is a constant and 0γ > . 
The following is Lemma 1, which plays an important role in studying the mi-

nimax upper bound. Lemma 1 generalizes Lemma 8 in [8] from complete to 
noisy and missing sample. 

Lemma 1. Define event ( ) ( ){ }*
minˆ: 4min , logth

ij ij ij ijA p nσ σ σ λ γ= − > =F , 

then there is constant 0c > , which only depends on ρ , such that 

{ }
9
22 .ijP A cp

−
≤  
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Proof : Firstly, define event ( ){ }1 ˆ: th
ijB σ λ= ≥F . It is easy to know that 

( ) ( ){ }
( ) ( ){ }

1

1

ˆ ˆ ,

ˆ ˆ .

th th
ij ij ij ij ij

c th th
ij ij ij ij ij

B

B

σ σ σ σ λ σ

σ σ σ σ σ λ

⊂ − ≥ − ≥ −

⊂ − ≥ − > −

F F

F F
            (8) 

According to the definition of ( )ˆ th
ijσ F  in Equation (7), 

( ) ( ) ( ) ( )1 1ˆ ˆ .th c
ij ij ij ij ijI B I Bσ σ σ σ σ∗− = − +F F             (9) 

Next, we will prove this lemma in different cases. It can be obtained by simple 
calculation: 

( ) ( ){ }
9 2

8

8

1 , 4,

ˆ 4min , 1 , 4 2 ,

1 2 2 .

ij

th
ij ij ij ij

ij

Cp

P Cp

Cp

σ λ

σ σ σ λ λ σ λ

σ λ

−

−

−

≥ − <
− ≤ ≥ − ≤ ≤

≥ − >

F  

Therefore, there exists a constant 0c > , such that 

( ) ( ){ } 9 2ˆ 4min , 2th
ij ij ijP cpσ σ σ λ −− > ≤F . 

Next, we can obtain the upper bound for estimating the sparse covariance 
matrices by utilizing the risk properties of thresholding estimator. 

Theorem 1. If Assumption 1 and Assumption 2 hold, ( )*
minlog p o n=  and

*
minp n≥ , then there is a constant 0C >  such that the hard thresholding es-

timator ˆ th
FΣ  defined by Equation (7) satisfies 

,

1
2 2

, *1( , ) min

logˆsup .
q n p

q
th

n p
c

pCc
nρ

−

∈

 
− ≤  

 X
F X

Σ
Σ Σ


            (10) 

Proof: Easy to know, ( )
2

2

1 1

ˆ ˆmax
p

th th
ij ijj i

σ σ
=

 
− = − 

 
∑F XΣ Σ F . If event ijA  occurs, 

( ) ( )
1 1

ˆ 4min , .
p p

th
ij ij ij

i i
σ σ σ λ

= =

− >∑ ∑F  

Simple calculations show that 

( ) ( ) ( ) ( ) [ ] *
1 min

logmin , min , min , .
p

ij ij i j
i k i k i k i ki

p
n

σ λ σ λ σ γ
′ ′ ′ ′≤ > ≤ >=

 
= + ≤ +   

 
∑ ∑ ∑ ∑∑  

According to the definition of ( ),,q n pcρ , we know that { }[ ] ,1
max

q
i j n pj p

c iσ
≤ ≤

≤ , so 

( )1[ ] ,
q

i j n pc iσ ≤ . Select the constant k ′  to satisfy ( ) 2*
, min log

q

n pk c n p ′ =   
, so 

( )
1 1

, ,
* *

1 min min

11
2

,
1 ,* *

min min

log logmin , min , min ,

log log                         .

p q qn p n p
ij

i i k i k

q
qn p

n p
i k

c cp p
i in n

cp pk C c
in n

σ λ γ γ

γ

′ ′= ≤ >

−

′>

   
      ≤ +            
   

  
′≤ + ≤   

   

∑ ∑ ∑

∑
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Let the matrix ( )ij p p
d

×
=D  satisfy ( ) ( )ˆ th

ij ij ij ijd Aσ σ= −F I , we have 

2 2 2

11 1
ˆ ˆ2 2 .th th− ≤ − − +F X F X D DΣ Σ Σ Σ    

Then, it is straightforward to acquire 

( ) ( )( ) ( )

( )( ) ( )

2
2

1 1

12
2

2 , *
1 min

ˆ ˆ ˆ2 2 max

logˆ                              2 max .

p
th th th

ij ij ij ij ijj i

qp
th c
ij ij ij n pj i

A

pA C c
n

σ σ σ σ

σ σ

=

−

=

 
− − = − − − 

 

  
≤ − ≤   

   

∑

∑

F XΣ Σ D F F I

F I

 



 

Therefore, we only need to prove that 2

1
2 D  is negligible. 

Firstly, 

( )
( ) { }( ) ( ) { }( )

( ) ( ) ( ) ( )

2 2
2 2
1 ,1

2 2 * 2 2 *

, ,

2 2
2 * 2

, ,

1 2

max max

ˆ ˆmax ( ) max ( )

ˆmax ( ) max

.

p

ij ijj i ji

ij ij ij ij ij iji j i j

ij ij ij ij iji j i j

d p d

p d A p d A

p A p A

E E

σ λ σ λ

σ σ σ

=

 
= ≤ 

 
   = ≥ + <      
   

≤ − +   
   

= +

∑

 

D

I F I F

F I I

  

 

 

 

According to the Cauchy-Schwartz inequality, we know that 
2

ij ii jjσ σ σ≤ , and 

because { } 9 22ijP A cp−≤ , *
minp n≥ , so 

( ) ( )
9 5

2 2 2 42 2
2 3 *,

min

max 2 .ii jj iji j

CE p P A p cp C p
n

σ σ ρ
− −

≤ ≤ ≤ ≤  

In addition, ( ) ( )22 *
1 ,

ˆmax ij ij iji j
E p P Aσ σ≤ −F . From Inequality (5), 

( ){ }
( ){ } ( ){ }

( )

2 2* * *

0

* *

0

2
2 2

5 min 5 min
5 min

ˆ ˆ ˆ( ) ( )

ˆ ˆ                         

                         exp exp .

ij ij ij ij ij ij

ij ij ij ij

dP xP x dx

xP x dx xP x dx

xx C n dx C n
C n

ρ

ρ

ρ

σ σ σ σ σ σ

σ σ σ σ

ρρ ρ
ρ

∞

∞

∞ ∗ ∗
∗

− = − ≤ − ≥

≤ − ≥ + − ≥

 
≤ + − ≤ + − 

 

∫ ∫
∫ ∫

∫

F F F

F F



 

From Lemma 1, we have { } 9 22ijP A cp−≤  and *
minp n≥ , so 

( ) ( )

( )

222 * 2 2 9 2
1 5 min,

5 min

2
2 2 9 2 2 9 2

5 min
5 min

6 74
* * *
min min min

ˆmax ( ) exp 2

                       2 exp 2

                       

ij ij iji j
E p P A p C n cp

C n

p cp p C n cp
C n

C CC
n n n

ρσ σ ρ

ρρ

∗ −
∗

− ∗ −
∗

 
≤ − ≤ + − 

 

≤ + −

≤ + ≤

F

 

To sum up,  

2 8
1 2 * *1

min min

1C
E E O

n n
 

≤ + ≤ =  
 

D . 
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3.3. Lower Bound for Estimating Sparse Covariance Matrix  

Before studying the lower bound, introduce some useful lemmas and symbols. 
Lemma 2. Assume P  and V  are two probability measures, with p  and 

v  representing their probability density functions. The total variation distance 
between P  and V  is ( ) ( ), 1 min ,V P V dP dP= − ∫ . Define the total variation 

affinity as ( ) ( ) ( ): min ,P V dP dP p x v x dx∧ = = ∧∫ ∫ . The Kullback divergence 

between P  and V  is expressed as ( ) ( ) ( ) ( )KL logP V p x p x v x dx=   ∫ . 

Thus, P V∧  and ( )KL P V  satisfy the following inequality:  

( )KL
1 .

2
P V

P V− ∧ ≤                  (11) 

Lemma 2 in [14] and Le Cam’s lemma and its corollary in [2] [12] introduced 
below are important tools for proving minimax lower bound. 

Lemma 3 (Le Cam). Suppose { }0 1, , , mθ θ θΘ =   is a finite set of parameters. 

Let L  be a loss function and ( ) ( )min 01
:= min inf , , ii m t

l L t L tθ θ
≤ ≤

+   , then 

( ) 0min
1sup , .
2

L l P Pθ
θ

θ θ
∈Θ

  ≥ ∧ 
  

θ  is any estimator of θ  based on the observed values of the probability meas-

ure ( )Pθ θ ∈Θ , and 
1

1
i

m

i
P P

m θ
=

= ∑ . 

Lemma 4. Suppose Σ  be any estimator of iΣ  based on the collection of 

probability measures { }0 1
, , ,

m
P P PΣ Σ Σ . We get 

0 0 11 11

1sup inf ,
2i ii mi m

P P
≤ ≤≤ ≤

− ≥ ∧ ⋅ −

ΣΣ Σ Σ Σ  

where 
1

1
i

m

i
P P

m =

= ∑ Σ . 

Before studying the minimax risk lower bound, it is advisable to construct a 
matrix with all off-diagonal elements equal to 0 except the first row or column. 
Let   be the collection of p p×  symmetric matrices in which exactly k  
non-diagonal elements in the first row or column equal to 1 and all other ele-

ments are 0. Let ( ) 2
, 0 log q

n pk c n p =   . Define 

( ){ }0 1 ,
: , ,ij p pi j p

aσ
≤ ≤

= = = = + ∈或Σ Σ I Σ I H H            (12) 

where pI  represents the identity matrix of size p p× , 0loga p nδ= , and 

δ  is a constant. Assuming 1ρ > , ( ){ }0 min 1,1 4Mδ< < , it is easy to know 

that ( )0 ,,q n pcρ⊂  . 

Obtaining the lower bound requires two steps. Firstly, the subset of the para-
meter space constructed above is selected to simplify the proof. Secondly, calcu-
late the total variation affinity between two probability measures. 

Theorem 2. Let *
0 min1 n n≤ ≤ , ( )0 1p nν ν≥ > , and 0 log p n≤ . Assume  

https://doi.org/10.4236/apm.2024.144013


M. Y. Wang, W. Z. Ye 
 

 

DOI: 10.4236/apm.2024.144013 223 Advances in Pure Mathematics 
 

( )( )1 2
, 0 log q

n pc M n p −≤  with 0 1, 0q M≤ < > . For any *
0 min1 n n≤ ≤ , there ex-

ists a constant 0c >  such that the minimax risk lower bound for estimating the 
covariance matrix XΣ  satisfies 

,

1
2 2

,1( , ) 0

loginf sup .
q n p

q

n p
c

pcc
nρ

−

∈

 
− ≥  

 



F X
F XΣ Σ

Σ Σ


            (13) 

where  FΣ  is any estimator of XΣ  based on noisy sample. 
Proof: Assume { }0 0 1, , ,

m∗= Σ Σ Σ  has 1m∗ +  elements, where 0Σ  repre- 

sents the identity matrix and , 1, ,i i m∗= Σ  represent the non-identity matrix, 
then ( )0 1Card 1 Ck

pm∗
−= − = . 

Assume that ( )
. . .

, 1, , 0, , 1,~ ,
i i d

l il n N i m∗= = X Σ , and the probability meas-
ure and probability density function are 

i
PΣ  and if , respectively, that is,  

0∈XΣ  . Let ( )( )
. . .

,~ 0
i i d

l iNF Σ F  with ( ) 2
i i ps= +Σ F Σ I  and ( )

i
PΣ F  is the 

probability measure. Since ( )0 ,,q n pcρ⊂  , it is easy to know that 

, 0

2 2

1 1( , )
inf sup inf sup .

q n pcρ∈ ∈
− ≥ −

 

 

F FX X
F X F XΣ ΣΣ Σ

Σ Σ Σ Σ 
 

 

Therefore, to prove Inequality (13), just prove the following Inequality: 

0

1
2 2

,1
0

loginf sup .
q

n p
pcc

n

−

∈

 
− ≥  

 



F X
F XΣ Σ

Σ Σ


              (14) 

Lemma 3.3 shows that 

( ) ( ) ( ) ( )
0

0
0 11 1 11

1sup sup inf .
2i i

i mi m
P P

∗∗ ≤ ≤∈ ≤ ≤
− ≥ − ≥ ∧ ⋅ − 

X
F F Σ

Σ
Σ Σ Σ Σ F F Σ F Σ F 


 

Since 0loga p nδ=  and ( ) 2
, 0 log q

n pk c n p =   , there exists a constant  

1 0c >  such that 

( ) ( ) ( ) ( )2 2
0 0 11 11 1 1

1
2

2
0

, 1 ,
0 0

inf inf inf

log log                                   
log

i i p p
i m i m i m

q
q

n p n p

s s a

n p pka c c c
p n n

δ

∗ ∗ ∗≤ ≤ ≤ ≤ ≤ ≤

−

− = + − + =

  
= ≥ ⋅ ≥   

   

Σ F Σ F Σ I Σ I H

 (15) 

Obviously, to prove Inequality (14), we only need to prove that there is a con-
stant 2 0c >  such that ( ) ( )

0 2P P c∧ ≥Σ F F . 

From ( )( )
. . .

,~ 0
i i d

l iNF Σ F , we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
0

1 1
0 0

1KL tr log det .
2i i iP P p− − = − − Σ ΣF F Σ F Σ F Σ F Σ F  

Let a= −B H , it is easy to know that ( ) ( )0 i= +Σ F Σ F B . Suppose the ei-
genvalues of ( )1

i
−BΣ F  are 1, , pξ ξ , then there are 

( ) ( )( ) ( ) ( )( ) ( )1 1 1
0

1
tr tr tr .

p

i i i p i i
i

p ξ− − −

=

   = + = + = +   ∑Σ F Σ F Σ F Σ F B I BΣ F (16) 

In addition, we can know that 
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( ) ( )( ) ( ) ( ) ( )( ) ( )
1 1 2

0 0
1 1

1log det log 1 tr ,
2 1

p p

i i i i
i i

pξ ξ
θ

− −

= =

= + = − −
+∑ ∑Σ F Σ F Σ F Σ F (17) 

where θ  is a number between 0 and iξ . Putting Equation (16) and Equation 

(17) into ( ) ( )( )0
KL

i
P PΣ ΣF F , we can get 

( ) ( )( ) ( ) ( )0

2 2 2

1 1 1

1 1 1 1 1KL .
2 2 1 2 2 1 4i

p p p

i i i
i i i

P P p pξ ξ ξ
θ θ= = =

 
= + − = ≤ 

+ +  
∑ ∑ ∑Σ ΣF F  

According to Theorem 1.3 in [12], 

( )( ) ( )( ) ( ) ( )2 2 22 1 1 1 1 2

1
tr 2 .

p H

i i i i i FF sp
i

kaξ − − − −

=

= = ≤ ≤∑ BΣ F BΣ F BΣ F Σ F B  

It is easy to see that ( ) ( )
1

1
i

m

i
P m P

∗

∗

=

= ∑ ΣF F , hence 

( ) ( )( ) ( ) ( )( )0 0
1

1 1KL KL .
8i

m

i
P P P P

m

∗

∗
=

≤ ≤∑Σ Σ ΣF F F F  

Lemma 2 implies 

( ) ( )
( ) ( )( )0

0

KL 31 .
2 4

P P
P P∧ ≥ − =

Σ
Σ

F F
F F  

That is, there exists a constant 2 0c >  such that ( ) ( )
0 2P P c∧ ≥Σ F F . 

It is worth noting that Theorem 2 requires ( )( ) ( )1 2
, 0 log 0q

n pc M n p M−≤ > , 
which is a necessary condition. If ( )( )1 2

, 0 log q
n pc M n p −> , then 

( ) ( )( )( )1 2
, 0

2 2 2

1 1, , log

inf sup inf sup .
q

q n p q
c M n p

M
ρ ρ −∈ ∈

− ≥ −
 

 

F FX X

F X F XΣ ΣΣ Σ

Σ Σ Σ Σ  
 

 

XΣ  does not have a consistent estimator in this case. 
Theorem 1 and Theorem 2 show that the estimator ˆ th

FΣ  we construct is rate- 
optimal over ( ),,q n pcρ  under the 1l  norm. 

4. Numerical Analysis 

The optimal estimation of sparse covariance matrices based on missing and noi-
sy data is derived in Section 3. This section compares the performance of the 
hard threshold estimator ˆ th

FΣ , as defined in Section 3, against the traditional es-
timator using numerical simulation. 

Some symbols are presented before the numerical simulation begins. Assume 
the p -dimensional Gaussian random vector Χ  has a mean of μ  and a co-
variance matrix of XΣ . n  is the number of samples, and p  is their dimen-
sion. 

Here are the specific steps of numerical simulation. 
1) Construct the sparse covariance matrix. 
Assume μ  is a zero vector and XΣ  is a sparse matrix ( ( ),,q n pcρ∈XΣ  ). 

Consult the construction of the sparse matrix in [11], let 

( ) ( )1
0.01 ,T T

p= + + + +XΣ I B B B B  
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where ( )ij p p
b

×
=B , and ( )1 0.1ijP b = − = , ( )0 0.8ijP b = = , ( )1 0.1ijP b = = . 

2) Generate random samples according to the true covariance matrix. 
After XΣ  is constructed, n  p -dimensional random samples are first gen-

erated from the multivariate normal distribution with mean μ  and covariance 
matrix XΣ . The resulting n  samples are then subjected to noise with a 
sub-Gaussian distribution, followed by random missing processing. This method 
produces sample data with missing and sub-Gaussian noise. 

3) Compare the estimation effect of different estimators. 
Based on the sample data with missing and sub-Gaussian noise, calculate the 

generalized sample covariance matrix ˆ ∗
FΣ  and the hard thresholding estimator 

ˆ th
FΣ  according to Equation (4) and Equation (7). Then compute the error be-

tween ˆ ∗
FΣ  and the real matrix XΣ , as well as the error between ˆ th

FΣ  and the 
real matrix XΣ , under the given norm. 

After determining the values of n  and p , repeat the above three steps 1), 2), 
and 3) 50 times, and take the mean value of the fifty error results as the standard for 
evaluating the estimation effect of different estimators in this case. The performance 
is better when the outcome is smaller. Table 1 shows the experimental results. 

The values of n  and p  are shown in the first two columns of Table 1. Ta-
ble 1 shows the average after 50 runs of the processes 1), 2), and 3) with n  and 
p  fixed. When the true covariance matrix XΣ  is sparse, the hard thresholding 

estimator ˆ th
FΣ  has a substantially better performance than the generalized sam-

ple covariance matrix ˆ ∗
FΣ  under any norm, especially when p  is larger than 

n , that is, the dimension is high. 
Therefore, when the dimension is very small in comparison to the sample 

size, the sample covariance matrix can be used to estimate the population co-
variance matrix. When estimating a high-dimensional sparse covariance ma-
trix with sub-Gaussian additive noise and missing data, it is best to choose the 
hard thresholding estimator ˆ th

FΣ  given in Equation (7). This section provides 
some suggestions for application statisticians on how to select estimation me-
thods. 

 
Table 1. Results of estimating sparse covariance matrix. 

n  p  
1

ˆ ∗ −F XΣ Σ  
1

ˆ th −F XΣ Σ  ˆ
sp

∗ −F XΣ Σ  ˆ th

sp
−F XΣ Σ  ˆ

F

∗ −F XΣ Σ  ˆ th

F
−F XΣ Σ  

50 

20 7.5627 3.6435 3.9422 2.5361 7.3714 5.2233 
50 17.2511 4.8241 6.6115 3.1177 16.3977 8.3793 

100 34.0303 6.5240 10.7189 3.7975 31.6744 12.4028 
200 66.4459 7.3150 17.3097 4.1697 61.4820 17.3793 
300 99.1861 8.6805 23.5170 4.6641 92.1988 21.8822 
400 133.1350 9.9978 29.3351 4.9576 122.3446 25.6115 
500 164.1220 10.1261 35.1697 5.0476 152.2275 28.4986 

100 

50 12.1295 3.8520 4.7372 2.4652 12.7856 7.9800 
100 23.4557 4.8388 7.1643 2.8657 23.6691 11.5331 
200 44.8538 5.6213 10.9060 3.2010 45.0899 16.4487 
500 109.8831 6.9815 20.6747 3.6017 109.2537 26.2359 
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5. Summary and Outlook 

In statistics and other fields, covariance matrix estimation is crucial. The estima-
tion of high-dimensional covariance matrices has always been a hot topic with 
the rapid growth of numerous technologies. 

Based on the missing and noisy sample data, this paper constructs a hard 
thresholding estimator ˆ th

FΣ , and studies its optimality. Section 3 shows that the 
hard thresholding estimator given in this paper is rate-optimal. The numerical 
simulation shown in Section 4 demonstrates that the hard thresholding estima-
tor works well in situations where the true covariance matrix is sparse. When the 
true covariance matrix is not sparse, the estimation effect of the hard threshold-
ing estimator has not been discussed. 

This paper’s research has limitations and areas that require more investiga-
tion:  

1) This paper focuses solely on the optimal estimation of sparse covariance 
matrices based on noisy and missing data. More research is needed on the op-
timal estimation of other common high-dimensional covariance matrices.  

2) If the sub-Gaussian distribution used in this article is replaced with the 
sub-exponential distribution with a larger range, the relevant issues merit addi-
tional investigation. 
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