
Advances in Parkinson’s Disease, 2020, 9, 21-39 
https://www.scirp.org/journal/apd 

ISSN Online: 2169-9720 
ISSN Print: 2169-9712 

 

DOI: 10.4236/apd.2020.93003  Aug. 21, 2020 21 Advances in Parkinson’s Disease  
 

 
 
 

Distinction of an Assortment of Deep Brain 
Stimulation Parameter Configurations for 
Treating Parkinson’s Disease Using Machine 
Learning with Quantification of Tremor 
Response through a Conformal Wearable  
and Wireless Inertial Sensor 

Robert LeMoyne1, Timothy Mastroianni2, Donald Whiting3, Nestor Tomycz4 

1Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA  
2Cognition Engineering, Pittsburgh, PA, USA  
3Department of Neurosurgery, AHN Neuroscience Institute, Pittsburgh, PA, USA 
4AHN Department of Neurosurgery, Pittsburgh, PA, USA 

 
 
 

Abstract 
Deep brain stimulation offers an advanced means of treating Parkinson’s dis-
ease in a patient specific context. However, a considerable challenge is the 
process of ascertaining an optimal parameter configuration. Imperative for 
the deep brain stimulation parameter optimization process is the quantifica-
tion of response feedback. As a significant improvement to traditional ordinal 
scale techniques is the advent of wearable and wireless systems. Recently 
conformal wearable and wireless systems with a profile on the order of a 
bandage have been developed. Previous research endeavors have successfully 
differentiated between deep brain stimulation “On” and “Off” status through 
quantification using wearable and wireless inertial sensor systems. However, 
the opportunity exists to further evolve to an objectively quantified response 
to an assortment of parameter configurations, such as the variation of ampli-
tude, for the deep brain stimulation system. Multiple deep brain stimulation 
amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 
mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of am-
plitude settings is acquired through a conformal wearable and wireless iner-
tial sensor system and consolidated using Python software automation to a 
feature set amenable for machine learning. Five machine learning algorithms 
are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, 
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logistic regression, and random forest. The performance of these machine 
learning algorithms is established based on the classification accuracy to dis-
tinguish between the deep brain stimulation amplitude settings and the time 
to develop the machine learning model. The support vector machine achieves 
the greatest classification accuracy, which is the primary performance para-
meter, and K-nearest neighbors achieves considerable classification accuracy 
with minimal time to develop the machine learning model. 
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1. Introduction 

Deep brain stimulation offers a significant advance for the treatment of people 
with Parkinson’s disease. With the considerable assortment of parameter confi-
gurations, such as amplitude, frequency, pulse width, and polarity, a patient spe-
cific treatment strategy is feasible [1] [2] [3]. The essence of efficacious interven-
tion through the deep brain stimulation system is contingent upon converging 
the parameter configuration to an optimized setting, which can present a labo-
rious process [2]-[7].  

The deep brain stimulation system parameter optimization process relies 
upon the establishment of quantified feedback, such as through ordinal scales. 
However, the ordinal scale approach is inherently subjective, for which the relia-
bility is controversial [3] [8] [9] [10] [11] [12]. A recommended alternative is the 
incorporation of a wearable and wireless inertial sensor system to provide feed-
back for intervention efficacy in a quantified and objective manner [3] [9] 
[13]-[28]. Recent technological evolutions have produced conformal wearable 
and wireless inertial sensor systems that impart minimal encumbrance relative 
to previous applications with a profile on the order of a bandage, such as the 
BioStamp nPoint [18] [29] [30].  

The opportunities of the wearable and wireless system have been further 
evolved with the application of machine learning to ascertain considerable clas-
sification accuracy, such as for distinguishing between deep brain stimulation set 
to “On” and “Off”. The machine learning classification endeavors have relied 
upon the operation of the Waikato Environment for Knowledge Analysis 
(WEKA) [3] [22] [23] [24] [25] [28] [29] [30]. WEKA presents an assortment of 
machine learning classification algorithms [31] [32] [33]. These machine learn-
ing algorithms offer contextually unique performance capabilities, and the most 
appropriate machine learning algorithm is integrally correlated with the in-
tended application [24] [25] [28]. Beyond the scope of differentiating the “On” 
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and “Off” status settings for deep brain stimulation exists the opportunity to dis-
tinguish between actual parameter configurations for deep brain stimulation 
through machine learning, such as with the variation of the amplitude parameter 
in conjunction with an assortment of machine learning algorithms. 

The objective of the research endeavor is to evaluate the efficacy of machine 
learning algorithms with respect to the parametric variation of deep brain sti-
mulation for the treatment of Parkinson’s disease with the BioStamp nPoint 
providing quantified feedback. Five machine learning algorithms are considered: 
J48 decision tree, K-nearest neighbors, support vector machine, logistic regres-
sion, and random forest. The amplitude for deep brain stimulation is the se-
lected parameter for variation respective of the following settings: “Off” status as 
a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. Two machine learning performance 
parameters are considered for determining the most suitable algorithm: classifi-
cation accuracy and time to develop the machine learning model.  

2. Background 
2.1. Parkinson’s Disease and Traditional Therapy 

With respect to the United States of America, approximately one million people 
have been diagnosed with Parkinson’s disease, which is neurodegenerative and 
proportional to age [34] [35] [36]. The neurological basis for Parkinson’s disease 
is associated with degeneration of the substantia nigra, which leads to dimi-
nished dopamine available for the caudate and putamen [34] [37]. Parkinson’s 
disease characteristically involves the movement disorder of resting tremor, 
which has an approximate frequency of four to five per second [34] [38].  

Traditional medication therapy for Parkinson’s disease involves the prescrip-
tion of levodopa [34] [37] [39]. Occasionally the medication therapy diminishes 
in efficacy, and an alternative intervention is sought, such as the thalamotomy 
and pallidotomy. These neurological techniques permanently disrupt pathways 
pertaining to the thalamus and globus pallidus internal segment [20] [34] [39] 
[40] [41] [42]. 

2.2. Deep Brain Stimulation, an Advanced Concept for Treating  
Parkinson’s Disease 

Dr. Alim-Louis Benabid developed deep brain stimulation as an advanced strat-
egy for ameliorating Parkinson’s disease symptoms during the later portion of 
the 1980’s [1] [2] [3] [43] [44]. The primary subsystem of the deep brain stimu-
lation system is the implantable pulse generator that is battery powered. The 
electric signal originating for the implantable pulse generator transmits through 
electrode leads that terminate at a prescribed deep brain neurological structure 
[4]. The ventral intermediate nucleus (VIM) and subthalamic nucleus (STN) are 
frequently utilized targets [2] [3] [5] [45]. 

Upon completion of the surgical procedure for the implementation of the 
deep brain stimulation system, the optimization of the parameter configuration 
is ascertained through the variation of the four available parameter settings: am-
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plitude, frequency, pulse width, and polarity [4] [6] [7]. The parameter configu-
ration optimization process is inherently resource intensive while presenting a 
considerable challenge [2]-[7] [46]. Using current schemes, the acquisition of an 
optimal parameter configuration for deep brain stimulation can span multiple 
months [2] [5] [46]. Quantification of Parkinson’s disease resting tremor can fa-
cilitate the determination of therapy efficacy [3] [8]. 

2.3. Ordinal Scale Approach for Quantifying Parkinson’s Disease  
Status 

The ordinal scale technique is a standard means for the determination of the 
Parkinson’s disease status. An expert skilled clinician interprets the symptoms of 
a subject with Parkinson’s disease in consideration of an established series of 
criteria. The Unified Parkinson’s Disease Rating Scale is frequently utilized, and 
multiple other alternative ordinal scale are available [8] [9] [10] [11] [12]. How-
ever, a means for translating the perspectives of these multiple ordinal scales are 
not currently available. Furthermore, the reliability of the ordinal scale technique 
is a topic of controversy [8] [10]. Wearable and wireless systems with inertial 
sensors provide objective quantification of movement disorder features with a 
particular emphasis regarding Parkinson’s disease [3] [9] [13]-[18] [20] [26] [27] 
[28] [47].  

2.4. Preliminary Wearable and Wireless Systems, such as the  
Smartphone, for Parkinson’s Disease Quantification 

Functionally wearable inertial sensor systems equipped with accelerometers have 
been successfully applied for ascertaining therapy efficacy for movement disord-
ers inclusive of Parkinson’s disease [48]-[53]. The evolution to wearable and 
wireless inertial sensor systems has rendered tethering and manual techniques 
for uploading the signal data obsolete [3] [9] [13]-[18] [54] [55]. Locally wireless 
inertial sensor systems that are accessible to personal computers and functional-
ly wearable have been successfully applied for the quantified characterization of 
symptomatic hand tremor for Parkinson’s disease [20] [21] [56] [57].  

LeMoyne and Mastroianni during 2010 succeeded in the preliminary demon-
stration of the smartphone as a wearable and wireless inertial sensor system for 
quantifying Parkinson’s disease hand tremor through the smartphone’s accele-
rometer. The acquired accelerometer signal data was conveyed wirelessly as an 
email attachment through the Internet for pending post-processing [19]. An im-
mediate observed utility was that the experimental location and post-processing 
resources could be situated anywhere in the world with Internet access [3] 
[13]-[19]. 

2.5. Integration of Wearable and Wireless Systems for Deep Brain  
Stimulation Treatment of Parkinson’s Disease with Machine  
Learning Classification 

Wearable and wireless systems, such as the smartphone, have been successfully 
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applied with machine learning to distinguish between various deep brain stimu-
lation system settings for the treatment of movement disorders, such as Parkin-
son’s disease and Essential tremor. The acquired inertial sensor signal data is 
consolidated into a feature set through post-processing. Considerable classifica-
tion accuracy has been achieved for differentiating between “On” and “Off” set-
tings for deep brain stimulation through the application of Waikato Environ-
ment for Knowledge Analysis (WEKA) [3] [22] [23] [24] [25] [28] [58]. WEKA 
offers an assortment of machine learning classification algorithms, such as the 
J48 decision tree, K-nearest neighbors, support vector machine, logistic regres-
sion, and random forest [31] [32] [33]. 

2.6. Machine Learning for the Distinction of Deep Brain  
Stimulation Scenarios 

The combination of machine learning with wearable and wireless inertial sensor 
systems to provide quantified feedback for establishing a feature set differentiat-
ing deep brain stimulation system tuning scenarios has been advocated and suc-
cessfully implemented with the Waikato Environment for Knowledge Analysis 
(WEKA) [3] [9] [13]-[30] [58]. WEKA consists of machine learning algorithms, 
such as the J48 decision tree, K-nearest neighbors, support vector machine, lo-
gistic regression, and random forest, which have disparate characteristic benefits 
regarding their application [29] [31] [32] [33] [58].  

A general perspective of these machine learning algorithms is warranted. A 
major benefit for the J48 decision tree involves the ability to visualize the deci-
sion tree, which enables the research team to better comprehend the process for 
deriving the classification accuracy in consideration of the numeric attributes 
composing the feature set [31] [32] [33]. With respect to WEKA the J48 decision 
tree is derived from the C4.5 machine learning algorithm established by Quin-
lan, which is based on the application of information theory [31] [32] [33] [59] 
[60]. K-nearest neighbors incorporates an instance based algorithm with para-
meterized Euclidean distance. The origins of this machine learning technique 
date to the 1950’s [31] [32] [33] [61]. The support vector machine originates 
from the 1990’s by Cortes and Vapnik, and the algorithm establishes a hyper-
plane though the application of a kernel to the feature set with a support vector 
delineating the respective classes [31] [32] [33] [62] [63]. Logistic regression ap-
plies the ridge estimator for reducing the occurrence of overfitting while apply-
ing the sigmoid logit transform [31] [32] [33] [64]. Random forest constitutes a 
conceptual extension of the J48 decision tree algorithm, since a set of randomly 
established decision trees are applied for the improvement of performance [31] 
[32] [33] [65]. 

WEKA requires the development of an Attribute-Relation Format File 
(ARFF). The ARFF is comprised of the feature set, which involves a suitable 
group of numeric attributes that appropriately represent the respective classes 
[31] [32] [33]. Software automation for the post-processing of the inertial sensor 
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signal data would facilitate the machine learning classification endeavor. The 
incorporation of software automation to consolidate inertial sensor signal data 
into an ARFF would benefit the determination of the efficacy of machine algo-
rithms regarding the parametric variation of deep brain stimulation for the 
treatment of Parkinson’s disease with the application of the conformally weara-
ble and wireless BioStamp nPoint for providing quantified feedback. 

2.7. The BioStamp nPoint Conformal Wearable and Wireless  
Inertial Sensor for Quantifying Response to Deep Brain  
Stimulation for the Treatment of Parkinson’s Disease 

The development of the BioStamp nPoint represents a significant evolution with 
respect to the domain of wearable and wireless inertial sensor systems. The Bi-
oStamp nPoint is highly flexible and conformal to effectively any aspect of the 
human anatomy. This conformal wearable can be secured through the applica-
tion of an adhesive medium [18] [29] [30] [66]. This achievement of conformal 
wearable and wireless inertial sensor systems constitutes a significant advantage 
relative to previous devices, such as the larger and rigid smartphone, that require 
relatively more cumbersome adaptive mechanisms, such as elastic bands and 
gloves. Additionally, the BioStamp nPoint has a profile compatible to a bandage 
with a mass on the order of ten grams. The BioStamp nPoint has a mass on the 
scale of more than an order of magnitude less than the standard smartphone [3] 
[13]-[20] [22] [23] [24] [25] [27] [28] [29] [30] [58] [66]. 

The BioStamp nPoint is equipped with connectivity to a secure Cloud compu-
ting environment with wireless operation through the use of a smartphone and 
tablet. After the recording of a series of experimental inertial sensor data, the 
data is wirelessly transmitted to the secure Cloud computing environment for 
later post-processing, such as machine learning classification [18] [29] [30] [66]. 
Additionally, the BioStamp nPoint is certified as a 510(k) medical device by the 
FDA. This certification permits the acquisition of medical grade data [66]. 

The characteristics of the BioStamp nPoint underscore the unique utility of 
the device for the quantification of hand tremor symptoms for Parkinson’s dis-
ease. The objective is to apply an assortment of machine learning algorithms for 
differentiating deep brain stimulation as a therapy intervention for Parkinson’s 
disease respective of multiple parameter configuration settings. The selected pa-
rameter configuration is the amplitude (1.0 mA, 2.5 mA, and 4.0 mA), and the 
“Off” status is included as a baseline. Five machine learning algorithms available 
with WEKA are selected: J48 decision tree, K-nearest neighbors, support vector 
machine, logistic regression, and random forest. 

3. Material and Methods 

One female subject with an age in the mid-60’s diagnosed with Parkinson’s dis-
ease in 2011 was selected for this preliminary demonstration from the perspec-
tive of engineering proof of concept. The subject has been receiving deep brain 
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stimulation regarding the bilateral subthalamic nucleus. Informed consent was 
confirmed, and the research was conducted at Allegheny General Hospital in 
agreement with ethical clearance.  

Since the BioStamp nPoint has a profile comparable to a bandage, the mount-
ing of the device is applied to the dorsum of the hand through an adhesive me-
dium with longitudinal alignment symmetrical to the third metacarpal. Similar 
mounting techniques have been successfully applied for quantifying Parkinson’s 
disease through the use of wearable and wireless systems [19] [20] [21] [23] [24] 
[25] [29] [30]. Figure 1 presents the representative mounting technique, and 
Figure 2 displays the BioStamp nPoint and supporting apparatus. 

Five machine learning classification algorithms available through WEKA have 
been designated for testing and evaluation: J48 decision tree, K-nearest neigh-
bors, support vector machine, logistic regression, and random forest. There are 
two primary performance parameters considered with respect to the machine 
learning algorithms: classification accuracy and time to develop the machine 
learning model. Tenfold cross validation was incorporated [31] [32] [33]. 

 

 
Figure 1. The BioStamp nPoint mounted by adhesive 
medium to the dorsum of the hand. 

 

 
Figure 2. The BioStamp nPoint conformal wearable and 
wireless inertial sensor system and supporting apparatus, 
such as the smartphone, tablet, and docking station. 
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The operation of WEKA requires the organization of an ARFF, which consists 
of a feature set with representative numeric attributes [31] [32] [33]. Software 
automation was applied to consolidate the acquired accelerometer magnitude 
signal data to a feature set in a syntactic manner suitable for the ARFF, and Py-
thon was selected as the programming language. The selected numeric attributes 
were a series of five descriptive statistics: maximum, minimum, mean, standard 
deviation, and coefficient of variation, which were established based on previous 
related machine learning classification research [22] [23] [24] [25] [28] [29] [30] 
[67].  

The experiment involved the recording of accelerometer signal data from the 
BioStamp nPoint representing a conformal wearable and wireless system with 
parametric variation of the amplitude parameter for deep brain stimulation to 
the following settings: “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. 
The BioStamp nPoint incorporated a sampling rate of 250 Hz. The duration of 
the sampling for each deep brain stimulation amplitude setting was sufficient to 
acquire five trials lasting for two seconds. Contact with the table to the measured 
hand was prevented by extending the wrist of the subject beyond an elevated 
support.  

The experimental protocol described below was applied for the four pre-
scribed deep brain stimulation amplitude settings: 

1) Mount the BioStamp nPoint by adhesive medium to the dorsum of the 
hand with a longitudinal and symmetric orientation respective of the third me-
tacarpal.  

2) Situate the respective forearm of the subject on an elevated support so that 
the Parkinson’s disease hand tremor does not collide with the table.  

3) Initiate the BioStamp nPoint recording with a duration that is capable of 
acquiring five trials for each prescribed deep brain stimulation amplitude para-
metric setting (“Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA) for a two 
second duration.  

4) With the completion of recording the trial data, wirelessly transmit the ac-
quired inertial sensor data to the secure Cloud computing environment. 

4. Results and Discussion 
4.1. Results 

The progressive increase of the amplitude parameter for deep brain stimulation 
induces the attenuation of Parkinson’s disease hand tremor. The attenuating 
trend of Parkinson’s disease hand tremor is quantified through the BioStamp 
nPoint, which constitutes a conformal wearable and wireless inertial sensor sys-
tem, and the three dimensional orthogonal accelerometer signal is post-processed 
to the respective acceleration magnitude using Python. The deep brain stimula-
tion system set to “Off” status represents a baseline for Parkinson’s disease hand 
tremor as demonstrated by Figure 3. As the deep brain stimulation amplitude 
parameter is incrementally increased the acceleration magnitude of the Parkin-
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son’s disease hand tremor is diminished as illustrated in Figure 4 with an am-
plitude of 1.0 mA, Figure 5 with an amplitude of 2.5 mA, and Figure 6 with an 
amplitude of 4.0 mA.  

Observation of Figures 3-6 infers perceptible distinction with regards to the 
deep brain stimulation set to “Off” status as a baseline, amplitude set to 1.0 mA, 
amplitude set to 2.5 mA, and amplitude set to 4.0 mA. The acceleration magni-
tude is consolidated into a feature set consisting of five numeric attributes based 
on descriptive statistics: maximum, minimum, mean, standard deviation, and 
coefficient of variation. The derivation of the feature set is precedentially estab-
lished from previous successful machine learning classification utilizing weara-
ble and wireless inertial sensor systems [22] [23] [24] [25] [28] [29] [30] [67]. 
 

 
Figure 3. The acceleration magnitude of Parkinson’s disease hand tremor 
quantified by the BioStamp nPoint conformal wearable and wireless inertial 
sensor system with deep brain stimulation set to “Off” status. 

 

 
Figure 4. The acceleration magnitude of Parkinson’s disease hand tremor 
quantified by the BioStamp nPoint conformal wearable and wireless inertial 
sensor system with deep brain stimulation amplitude set to 1.0 mA. 
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Figure 5. The acceleration magnitude of Parkinson’s disease hand tremor 
quantified by the BioStamp nPoint conformal wearable and wireless inertial 
sensor system with deep brain stimulation amplitude set to 2.5 mA. 

 

 
Figure 6. The acceleration magnitude of Parkinson’s disease hand tremor 
quantified by the BioStamp nPoint conformal wearable and wireless inertial 
sensor system with deep brain stimulation amplitude set to 4.0 mA. 

 
Using the Waikato Environment for Knowledge Analysis (WEKA) five ma-

chine learning algorithms are selected for the ability to differentiate Parkinson’s 
disease hand tremor quantified by the BioStamp nPoint conformal wearable and 
wireless inertial sensor system with respect to deep brain stimulation set to “Off” 
status as a baseline, amplitude set to 1.0 mA, amplitude set to 2.5 mA, and am-
plitude set to 4.0 mA:  
• J48 decision tree 
• K-nearest neighbors 
• Support vector machine 
• Logistic regression 
• Random forest 
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These machine learning algorithms are evaluated for the performance in terms 
of classification accuracy and time to derive the machine learning model. In as-
sociation to classification accuracy the confusion matrix is addressed to further 
define the nature of misclassifications. 

All five machine learning algorithms achieved considerable classification ac-
curacy. Figure 7 presents their attained classification accuracy for differentiating 
between deep brain stimulation set to “Off” status as a baseline, amplitude set to 
1.0 mA, amplitude set to 2.5 mA, and amplitude set to 4.0 mA for a subject with 
Parkinson’s disease tremor. The Parkinson’s disease tremor is quantified by a 
conformal wearable and wireless inertial sensor system. Figure 8 represents the 
time to develop the machine learning models that achieve their associated classi-
fication accuracy. 

The J48 decision tree achieved 90% classification accuracy. Two instances 
were misclassified. One instance involving deep brain stimulation set to “Off” 
status as a baseline was misclassified as being deep brain stimulation set to an 
amplitude of 1.0 mA. The other instance involved deep brain stimulation set to 
an amplitude of 2.5 mA being misclassified to an amplitude of 1.0 mA. The ma-
chine learning model was developed in less than 0.01 seconds. 

K-nearest neighbors machine learning model was also developed within less 
than 0.01 seconds. K-nearest neighbors attained 95% classification accuracy with 
one misclassified instance. One instance of deep brain stimulation set to “Off” 
status as a baseline was misclassified as an amplitude setting of 1.0 mA. 

The support vector achieved the greatest classification accuracy of 100%. Al-
though the time to develop the support vector machine learning model was rela-
tively protracted. The time to establish the machine learning model was 0.19 
seconds. 

Logistic regression and random forest both achieve 95% classification accura-
cy. They both misclassified an instance of deep brain stimulation set to “Off” 
status as a baseline as an amplitude setting of 1.0 mA. The logistic regression 
required 0.07 seconds to develop, and the random forest machine learning mod-
el was developed in 0.09 seconds. 

4.2. Discussion 

The selection of the best machine learning algorithm is determined based on two 
performance parameters: classification accuracy and time to develop the ma-
chine learning model. In general, the classification accuracy is the primary per-
formance parameter, and the time to derive the machine learning model is of 
secondary significance. Based on the organization of the performance parame-
ters the support vector machine that attains 100% classification accuracy is the 
most appropriate machine learning algorithm for distinguishing deep brain sti-
mulation amplitude parameter settings for a subject with Parkinson’s disease 
tremor. Another observation is that the support vector machine requires the 
longest time to develop with a span of 0.19 seconds. 
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Figure 7. Machine learning classification accuracy achieved for the J48 decision tree, K-nearest 
neighbors, support vector machine, logistic regression, and random forest with respect to deep 
brain stimulation set to “Off” status as a baseline, amplitude set to 1.0 mA, amplitude set to 2.5 
mA, and amplitude set to 4.0 mA. The subject’s Parkinson’s disease hand tremor was quantified 
by a conformal wearable and wireless inertial sensor system. 

 

 
Figure 8. Time to develop the J48 decision tree, K-nearest neighbors, support vector machine, 
logistic regression, and random forest machine learning classification models. Note that the J48 
decision tree and K-nearest neighbors machine learning algorithms require less than 0.01 
seconds to develop their machine learning models. 
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However, the time to develop the machine learning model may become more 
relevant in scenarios, for which the computational processing time is more pro-
tracted. This observation would be pertinent for a design requirement of deriv-
ing the classification accuracy through an associated wearable system rather than 
a Cloud computing environment. With respect to this design requirement sce-
nario K-nearest neighbors would be most preferable, since the 95% classification 
accuracy is associated with a time to develop the machine learning classification 
model of less than 0.01 seconds. 

These progressive evolutions further realize the broad objective of achieving 
real-time optimization of the parameter configuration for a deep brain stimula-
tion system providing therapy for a person with a movement disorder. Addi-
tionally, the evaluation of more subjects is warranted in light of the successful 
preliminary research. These achievements further develop the presence of Net-
work Centric Therapy, which synergizes the amalgamated capabilities of con-
formal wearable and wireless inertial sensor systems with data access to Cloud 
computing resources and acuity of machine learning to distinguish the quanti-
fied response to various therapy strategies. Network Centric Therapy has global 
healthcare implications as patients can be treated with internationally renowned 
medical talent from anywhere in the world [3] [17] [18] [26] [27] [28] [29] [30] 
[54] [68]. 

5. Conclusions 

The efficacy of five machine learning algorithms (J48 decision tree, K-nearest 
neighbors, support vector machine, logistic regression, and random forest) has 
been successfully evaluated with respect to differentiating an assortment of deep 
brain stimulation parameter configurations, such as amplitude set to of “Off” 
status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA, for the treatment of Parkin-
son’s disease. The composition of a feature set suitable for machine learning us-
ing WEKA is derived from the quantification of Parkinson’s disease hand tre-
mor based on a conformal wearable and wireless inertial sensor system with 
connectivity to a secure Cloud computing environment, which has a profile on 
the order of bandage and can be readily mounted about the dorsum of the hand 
by an adhesive medium. Post-processing of the recorded acceleration signal was 
facilitated through software automation enabled through Python. 

In order to ascertain the best machine learning algorithm, two performance 
parameters were assigned. The primary performance parameter was classifica-
tion accuracy, and secondary performance parameter was the time to develop 
the machine learning model. The support vector machine achieved 100% classi-
fication accuracy, but this machine learning algorithm required 0.19 seconds to 
construct the machine learning model, which is the greatest for the five machine 
learning algorithms under consideration. In the event that the time to construct 
the machine learning model becomes relatively more significant K-nearest 
neighbors attains 95% classification accuracy with less than 0.01 seconds to de-
velop the machine learning model. 

https://doi.org/10.4236/apd.2020.93003


R. LeMoyne et al. 
 

 

DOI: 10.4236/apd.2020.93003 34 Advances in Parkinson’s Disease 
 

These progressive evolutions of conformal wearable and wireless inertial sen-
sor systems with connectivity to Cloud computing resources in conjunction with 
machine learning further realize the development of Network Centric Therapy. 
In addition to the logistic implications of bridging the patient to clinician rela-
tion through the flexibility of Cloud computing resources through the expansive 
connectivity to the Internet exist the opportunities for treating movement dis-
orders through data science strategies. The incremental evolutions establish the 
pathway for the development of real-time optimization of the parameter confi-
guration for deep brain stimulation for the treatment of movement disorders, 
such as Parkinson’s disease, in a closed-loop context through quantified feed-
back derived from conformal wearable and wireless inertial sensor systems. 
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