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Abstract 
The concept of Network Centric Therapy represents an amalgamation of 
wearable and wireless inertial sensor systems and machine learning with 
access to a Cloud computing environment. The advent of Network Centric 
Therapy is highly relevant to the treatment of Parkinson’s disease through 
deep brain stimulation. Originally wearable and wireless systems for quanti-
fying Parkinson’s disease involved the use a smartphone to quantify hand 
tremor. Although originally novel, the smartphone has notable issues as a 
wearable application for quantifying movement disorder tremor. The smart-
phone has evolved in a pathway that has made the smartphone progressively 
more cumbersome to mount about the dorsum of the hand. Furthermore, the 
smartphone utilizes an inertial sensor package that is not certified for medical 
analysis, and the trial data access a provisional Cloud computing environ-
ment through an email account. These concerns are resolved with the recent 
development of a conformal wearable and wireless inertial sensor system. 
This conformal wearable and wireless system mounts to the hand with the 
profile of a bandage by adhesive and accesses a secure Cloud computing en-
vironment through a segmented wireless connectivity strategy involving a 
smartphone and tablet. Additionally, the conformal wearable and wireless 
system is certified by the FDA of the United States of America for ascertain-
ing medical grade inertial sensor data. These characteristics make the con-
formal wearable and wireless system uniquely suited for the quantification of 
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Parkinson’s disease treatment through deep brain stimulation. Preliminary 
evaluation of the conformal wearable and wireless system is demonstrated 
through the differentiation of deep brain stimulation set to “On” and “Off” 
status. Based on the robustness of the acceleration signal, this signal was se-
lected to quantify hand tremor for the prescribed deep brain stimulation set-
tings. Machine learning classification using the Waikato Environment for 
Knowledge Analysis (WEKA) was applied using the multilayer perceptron 
neural network. The multilayer perceptron neural network achieved consi-
derable classification accuracy for distinguishing between the deep brain sti-
mulation system set to “On” and “Off” status through the quantified accelera-
tion signal data obtained by this recently developed conformal wearable and 
wireless system. The research achievement establishes a progressive pathway 
to the future objective of achieving deep brain stimulation capabilities that 
promote closed-loop acquisition of configuration parameters that are uni-
quely optimized to the individual through extrinsic means of a highly con-
formal wearable and wireless inertial sensor system and machine learning 
with access to Cloud computing resources.  
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1. Introduction 

The advent of Network Centric Therapy offers the potential for a quantum leap 
respective of the treatment of neurodegenerative movement disorders, such as 
Parkinson’s disease. The nascent origins of Network Centric Therapy for pro-
viding objective quantification of Parkinson’s disease hand tremor derive from 
the application of wearable and wireless systems, such as the smartphone. The 
smartphone is equipped with an inertial sensor package that enables the wireless 
transmission of inertial sensor signal data as an email attachment to the Internet. 
The email resource serves as a functional Cloud computing resource [1]-[9]. 

The visionary concept of Network Centric Therapy in the context of neuro-
degenerative movement disorders, such as Parkinson’s disease, pertains to the 
application of highly wearable and wireless inertial sensor systems that utilize 
local wireless connectivity to devices with broader wireless accessibility to the 
Internet, such as a smartphone or tablet. The inertial sensor data package would 
be conveyed to Cloud computing resources using this segmented wireless strat-
egy. Post-processing resources could be applied from anywhere in the world, 
which could enable optimal clinical intervention. The neurodegenerative move-
ment disorder, such as Parkinson’s disease, could be historically monitored on 
an effectively continuous basis. Data science technique may further elucidate the 
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inherent nature of the neurodegenerative movement disorder. In particular, the 
robust process of optimizing the parameter configuration for therapy by deep 
brain stimulation system can be achieved [7] [8] [9].  

Recent developments have manifested the opportunities of Network Centric 
Therapy. The BioStamp nPoint consists of a flexible inertial sensor system that 
has a profile on the order of a bandage. The BioStamp nPoint may be mounted 
at a predetermined position on the body for the quantification of movement. 
The inertial signal data are transmitted by connectivity through connectivity to a 
device, such as a smartphone. The smartphone with its inherently stronger wire-
less transmission capability conveys the inertial signal data to a Cloud compu-
ting resource for subsequent post-processing [10]. The BioStamp nPoint is the 
recent evolution of conformal wearable and wireless systems that have been ad-
vocated and successfully demonstrated for the capability to quantify characteris-
tics of movement disorder, such as Parkinson’s disease [10]-[20]. 

The research objective is to conduct preliminary Network Centric Therapy for 
the treatment of Parkinson’s disease regarding deep brain stimulation therapy 
efficacy with the application of machine learning. The BioStamp nPoint mounted 
about the dorsum of the hand objectively quantifies tremor for Parkinson’s dis-
ease respective of deep brain stimulation “On” and “Off” status. Based on the 
quantified inertial sensor signal data the feature set is established through soft-
ware automation. The multilayer perceptron neural network is selected as the 
machine learning algorithm to distinguish between the deep brain stimulation 
“On” and “Off” status. Preliminary Network Centric Therapy for the treatment 
of Parkinson’s disease through deep brain stimulation enables a plausible path-
way for the future goal of achieving real-time parameter configuration optimiza-
tion. 

2. Background 
2.1. General Perspective of Parkinson’s Disease and Conventional  

Intervention Techniques 

Respective of the United States of America for Parkinson’s disease approximate-
ly one million people have been diagnosed with this particular movement dis-
order [21]. The symptoms of Parkinson’s disease are notably endemic for people 
greater than age 55-years-old [22]. A predominant symptom of Parkinson’s dis-
ease is the presence of a resting tremor [21]. In general, the tremor frequency is 
on the order of four to five per second [21] [23]. Furthermore, this resting tre-
mor may attenuate or even cease during voluntary movement [23]. The neuro-
logical basis for Parkinson’s disease is associated with the degeneration of do-
paminergic neuron of the substantia nigra [21]. Parkinson’s disease symptoms 
manifest with the progressive decrement of dopamine production for structures 
of the basal ganglia, such as the caudate and putamen [24].  

Traditional therapies for Parkinson’s disease involve medication, such as pre-
scribing Levodopa [21] [25] [26]. However, neurosurgery is reserved as an ulti-
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mate intervention, for which medication has been clinically deemed as ineffec-
tive [21] [25]. The pallidotomy and thalamotomy neurosurgical are procedures 
that induce permanent lesioning of deep brain structure pathways [21] [25] [27] 
[28] [29]. 

2.2. Deep Brain Stimulation for the Treatment of Parkinson’s  
Disease and Optimization Challenges 

On the order of three decades ago during the later 1980’s Dr. Alim-Louis Bena-
bid successfully demonstrated the concept of deep brain stimulation for the 
treatment of Parkinson’s disease [30] [31] [32]. The deep brain stimulation sys-
tem consists of electrode leads that are connected to an implantable pulse gene-
rator powered by a battery to generate an electrical signal to a targeted structure 
of the deep brain [33]. Respective of Parkinson’s disease, a primary target is the 
ventral intermediate nucleus (VIM) for candidates for deep brain stimulation 
[34]. 

The deep brain stimulation system has four available parameters: stimulation 
amplitude, stimulation frequency, pulse width, and polarity [33]. The determi-
nation of an optimal parameter configuration is an inherent aspect of providing 
therapy through deep brain stimulation [35] [36]. Using current approaches, the 
optimization process can take on the order of several months [37]. 

Network Centric Therapy has been proposed as a viable strategy for optimiz-
ing the deep brain stimulation system parameters with the future goal of attain-
ing real-time optimization. Central to this concept is the use of wearable and 
wireless systems for objectively quantifying tremor feedback with machine 
learning to distinguish between various parameter configuration scenarios. With 
wireless connectivity to Cloud computing resources a patient could be treated by 
expert clinicians effectively anywhere in the world [7]. 

2.3. Quantification Techniques for Parkinson’s Disease Tremor  
with Transition to Network Centric Therapy 

The ability to quantify the status of a neurodegenerative movement disorder, 
such as Parkinson’s disease, is an inherent aspect for the ability to establish di-
agnosis and treatment strategy [7] [38]. Traditionally an ordinal scale technique 
is applied, for which a highly skilled clinician subjectively interprets an ordinal 
scale, such as the Unified Parkinson’s Disease Rating Scale (UPDRS) [39] [40] 
[41] [42]. The reliability of the ordinal scale technique is a subject of contention 
[40] [43]. Furthermore, the translation between multiple established ordinal 
scale strategies has not been definitively established [40]. The use of wearable 
inertial sensors, such as accelerometers, has been proposed as an advancement 
beyond the inherently resource constrained ordinal scale technique [7] [39] [44].  

Preliminary attempts to apply wearable accelerometer systems for evaluating 
intervention strategies for neurodegenerative movement disorders, such as Par-
kinson’s disease, successfully demonstrated the potential of the inertial sensor. 
With these preliminary inertial sensor systems, the efficacy of various therapy 
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interventions could be objectively assessed using quantified data [7] [39] [44]-[50]. 
The original data transfer methods have become effectively outmoded with the 
progressive evolution of the wearable and now wireless inertial sensor systems 
[7] [44] [51]. 

Preliminary wireless systems incorporated accelerometer systems secured by a 
glove or strap mechanism to the dorsum of the hand. The recorded acceleration 
dataset would be conveyed by local wireless connectivity to a laptop computer 
for subsequent post-processing [52] [53] [54]. Other similar evolutions involved 
wired connectivity of the inertial sensor system to a wrist mounted command 
module for wireless data transfer [55]. 

The nascent origins of Network Centric Therapy were demonstrated by Le-
Moyne et al. during 2010 with the application of a smartphone as a wearable and 
wireless accelerometer platform. The smartphone was mounted about the dor-
sum of the hand through a glove. A software application enabled the recording 
of the accelerometer signal, which could then be conveyed wirelessly as an email 
attachment to the Internet. During this preliminary demonstration the experi-
mental and post-processing resources were situated on other sides of the conti-
nental United States of America [1]. 

Using the smartphone as a wearable and wireless inertial sensor system the ef-
ficacy of deep brain stimulation for the treatment of neurodegenerative move-
ment disorders, such as Parkinson’s disease and Essential tremor, has been suc-
cessfully determined. The inertial sensor signal data were consolidated into a 
feature set through software automation for machine learning classification of 
deep brain stimulation system set to “On” and “Off” status. The machine learn-
ing algorithms achieved considerable classification accuracy to distinguish be-
tween deep brain stimulation system set to “On” and “Off” status for their re-
spective movement disorder scenarios [6] [9] [56] [57] [58] [59]. 

There are many opportunities for improvement beyond the strategy of using 
the smartphone to quantify movement disorder tremor. The generational de-
velopment of the smartphone has led to a more cumbersome device for mount-
ing by glove at the dorsum of the hand. The smartphone is not intended for the 
acquisition of medical grade data. Also, instead of an actual Cloud computing 
environment, a provision email account was utilized [1] [6] [9] [56] [57] [58] 
[59]. 

The next evolutionary phase of Network Centric Therapy is represented by 
the development of the BioStamp nPoint, which constitutes a highly wearable and 
wireless system with a volumetric profile on the scale of a bandage that is more 
than ten times lighter than the standard smartphone. Furthermore, BioStamp 
nPoint is an FDA 510 (k) cleared medical device for the acquisition of medical 
grade data. The BioStamp nPoint presents a segmented wireless strategy with 
local connectivity from the BioStamp nPoint equipped with inertial sensors, 
such as an accelerometer, to a more powerful wireless device, such as a smart-
phone. The more powerful wireless device conveys the BioStamp nPoint inertial 
sensor signal data to a Cloud computing resource for post-processing [10]. This 
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strategy has been demonstrated and proposed as a subsequent evolution to the 
use of a smartphone as a wearable and wireless system for quantifying human 
movement [7] [8] [60] [61] [62]. The BioStamp nPoint is the recent evolution of 
conformal wearable and wireless systems that have been advocated and success-
fully demonstrated for acquiring quantified characteristics of movement disord-
ers, such as Parkinson’s disease [10]-[20]. 

The objective of the research endeavor is to demonstrate the preliminary 
Network Centric Therapy for the treatment of Parkinson’s disease through deep 
brain stimulation. The BioStamp nPoint provides a highly wearable and wireless 
inertial sensor system mounted to the dorsum of the hand for quantifying deep 
brain stimulation set to “On” and “Off” status. The inertial sensor signal is con-
solidated into a feature set through software automation. Machine learning clas-
sification using the multilayer perceptron neural network attains classification 
accuracy to distinguish between the deep brain stimulation set to “On” and 
“Off” status for a subject with Parkinson’s disease. 

3. Material and Methods 

Preliminary demonstration of Network Centric Therapy was achieved from the 
perspective of engineering proof of concept for the treatment of Parkinson’s 
disease through a deep brain stimulation system, for which the efficacy of the 
treatment was established based on machine learning classification to distin-
guish between “On” and “Off” status of deep brain stimulation. The BioStamp 
nPoint provided the inherent aspects of Network Centric Therapy, as it consti-
tutes a highly wearable and wireless inertial sensor system capable of providing an 
accelerometer signal with a volumetric profile on the scale of a bandage. The Bi-
oStamp nPoint acquires local connectivity to a device with broader wireless capa-
bility, such as a smartphone. The smartphone subsequently transmits the inertial 
sensor signal data wirelessly to a Cloud computing resource for post-processing 
anywhere in the world with sufficient Internet connectivity [10].  

One subject (66-year-old female) diagnosed with Parkinson’s disease in 2011 
was selected while being administered bilateral subthalamic nucleus deep brain 
stimulation. Informed consent was established, and the experimental research 
was conducted at Allegheny General Hospital in conjunction with ethical clear-
ance. The BioStamp nPoint was mounted about the dorsum of the hand through 
an adhesive medium, such that the BioStamp nPoint was symmetrically aligned 
in a longitudinal manner relatively to the third metacarpal (the aspect of the 
dorsum of the hand that is a collinear extension of the middle finger). This 
mounting strategy emulates the successful applications of wearable and wireless 
systems for objectively quantifying Parkinson’s disease hand tremor [1] [6] [26] 
[54] [57] [58]. Figure 1 illustrates a representative mounting strategy of the Bi-
oStamp nPoint. Figure 2 presents BioStamp nPoint with the associated sup-
porting apparatus for operation. Figure 3 provides the deep brain stimulation sys-
tem clinician programmer, which is capable of controlling the “On” and “Off” 
mode settings. 
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Figure 1. The BioStamp nPoint mounted about the dorsum of the hand symmetrically 
about the longitudinal aspect of the third metacarpal. 
 

 
Figure 2. The BioStamp nPoint and supporting apparatus (computer, docking station, 
smartphone, and tablet). 
 

 
Figure 3. The deep brain stimulation system clinician programmer for commanding 
“On” and “Off” modes. 
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Machine learning classification was conducted through the Waikato Envi-
ronment for Knowledge Analysis (WEKA) [6] [9] [56] [57] [58] [59]. In partic-
ular the multilayer perceptron neural network was considered to be the optimal 
machine learning algorithm, and ten-fold cross validation was incorporated into 
the machine learning classification endeavor. The application of WEKA requires 
the development of an Attribute-Relation File Format (ARFF) based on the nu-
meric attributes that compose the feature set [63] [64] [65]. 

The inertial signal data from the BioStamp nPoint was consolidated to devel-
op the ARFF, which was based on the magnitude of the accelerometer signal. 
The ARFF was established through software automation enabled by Python. 
Based on previous successful machine learning applications involving wearable 
and wireless systems, the feature set was composed of the following attributes for 
the magnitude of the accelerometer signal maximum, minimum, mean, standard 
deviation, and coefficient of variation [6] [62] [66] [67] [68]. 

The experimental protocol involved five trials each spanning two seconds for 
the deep brain stimulation system set to “On” status and five trials each span-
ning two seconds with the deep brain stimulation system set to “Off” status. The 
subject’s wrist was suspended beyond a support for the forearm for each respec-
tive trial. The BioStamp nPoint was set to 250 Hz for the sampling rate of the 
accelerometer signal with the recording set to a sufficient duration to provide 
two second intervals for each of the five trials. The experiment was conducted 
based on the following protocol: 

1) Mount the BioStamp nPoint through an adhesive medium to the dorsum of 
the hand, such that the BioStamp nPoint is symmetrically and longitudinally 
oriented about the third metatarsal.  

2) Orient the forearm of the subject relative to the support, such that the wrist 
is suspended beyond the support, ensuring that hand tremor is unimpaired.  

3) Activate the recording process of the BioStamp nPoint for acquisition of 
the BioStamp nPoint accelerometer signal with pending upload to the Cloud 
computing resource.  

4) Continue recording duration such that five trials spanning two seconds can 
be acquired with the deep brain stimulation system set to “On” status.  

5) Repeat the same protocol for the deep brain stimulation system set to “Off” 
status. 

4. Results and Discussion 
4.1. Results 

The hand tremor for the subject with Parkinson’s disease is perceptivity dispa-
rate from an observational perspective regarding deep brain stimulation set to 
“On” status and “Off” status. The BioStamp nPoint enables quantification of the 
hand tremor for each respective scenario through inertial sensors, such as an ac-
celerometer. The visualized quantification of the acceleration magnitude is rea-
dily determined. Figure 4 represents hand tremor acceleration magnitude for 

https://doi.org/10.4236/apd.2019.84007


R. LeMoyne et al. 
 

 

DOI: 10.4236/apd.2019.84007 83 Advances in Parkinson’s Disease 
 

the subject with Parkinson’s disease while the deep brain stimulation system is 
set to “On” status. Figure 5 illustrates the hand tremor acceleration magnitude 
with the deep brain stimulation system set to “Off” status. 

Based on the observation of the inertial sensor signal data a feature set for the 
five instances of deep brain stimulation system set to “On” status and five in-
stances of deep brain stimulation system set to “Off” status is consolidated 
through five attributes: 
 maximum; 
 minimum;  
 mean; 
 standard deviation; 
 coefficient of variation. 

These attributes back been successfully applied to an assortment of machine 
learning classification endeavors pertaining to the application of wearable and 
wireless inertial sensor systems [6] [62] [66] [67] [68]. 

WEKA consists of a considerable array of machine learning classification al-
gorithms. The multilayer perceptron neural network was selected as the most 
suitable machine learning algorithm to distinguish between deep brain stimula-
tion system set to “On” status and deep brain stimulation system set to “Off” 
status based on quantification of the inertial sensor signals derived from a wear-
able and wireless system. The acquired multilayer perceptron neural network is 
presented in Figure 6. A classification accuracy of 100% was achieved by the 
multilayer perceptron neural network for differentiating between deep brain 
stimulation set to “On” and “Off” status for a subject with Parkinson’s disease. 
 

 
Figure 4. The acceleration magnitude of hand tremor for the Parkinson’s disease subject 
with the deep brain stimulation system set to “On” status. 
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Figure 5. The acceleration magnitude of hand tremor for the Parkinson’s disease subject 
with the deep brain stimulation system set to “Off” status. 
 

 
Figure 6. The multilayer perceptron neural network for distinguishing hand tremor for a 
subject with Parkinson’s disease with respect to deep brain stimulation set to “On” and 
“Off” status based on a wearable and wireless inertial sensor system. The input layer con-
sists of five feature set attributes (Amag_max: maximum of the acceleration magnitude, 
Amag_min: minimum of the acceleration magnitude, Amag_mean: mean of the accelera-
tion magnitude, Amag_stdev: standard deviation of the acceleration magnitude, and 
Amag_CV: coefficient of variation of the acceleration magnitude). 

4.2. Discussion 

The BioStamp nPoint serves as a preliminary demonstration of the opportunity 
and potential of Network Centric Therapy, which represents a highly wearable 
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and wireless inertial sensor system. A segmented wireless strategy is utilized, 
which locally transmits inertial sensor signal data to a device, such as a smart-
phone, for broader wireless connectivity to the Internet through access to Cloud 
computing resources. In fact, the BioStamp nPoint is effectively conformal about 
the dorsum of the hand, underscoring the inherent value of highly wearable and 
wireless systems for Network Centric Therapy.  

With the inertial sensor signal acquired the data can be consolidated into a 
feature set for machine learning classification. The role of machine learning is 
envisioned as instrumental for augmenting the clinician’s ability to rapidly con-
verge upon an optimal series of parameter configuration for efficacious deep 
brain stimulation therapy. In particular, the Cloud computing storage of the in-
ertial sensor signal data through wireless connectivity enables a skilled clinician 
to proactively optimize treatment strategy for a subject with a movement dis-
order, such as Parkinson’s disease.  

The achievements of the research objective elucidate perspective regarding 
future goals, such as automated real-time optimization of deep brain stimulation 
system parameter configurations. Machine learning and highly wearable and 
wireless systems that are effectively conformal and envisioned serve as inherent 
aspects of achieving the real-time automation of parameter configurations capa-
bility for deep brain stimulation systems for the treatment of movement disord-
ers, such as Parkinson’s disease. Another design requirement to consider is 
whether to conduct the machine learning classification at the Cloud computing 
resource level or intrinsic to the wearable and wireless systems, for which re-
spective Network Centric Therapy architectures have been proposed [7] [69].  

The selection of the appropriate machine learning algorithm is imperative 
depending on the selected Network Centric Therapy architecture. A wearable 
and wireless system would likely be equipped with substantially less processing 
capability than a Cloud computing resource, however the wireless transmission 
of an optimized parameter configuration would be essentially instantaneous. 
Previous research has addressed and contrasted the processing time to attain 
classification accuracy for an assortment of machine learning algorithms re-
garding the application of wearable and wireless systems for determining the ef-
ficacy of deep brain stimulation to ameliorate movement disorder tremor symp-
toms [9] [58] [59]. In summary, Network Centric Therapy with the integration 
of wearable and wireless systems with Cloud computing access, such as the Bi-
oStamp nPoint, deep brain stimulation, and machine learning are envisioned to 
provide a quantum leap for the treatment of movement disorders, such as Par-
kinson’s disease. 

5. Conclusions 

Network Centric Therapy has been successfully demonstrated through the im-
plementation of wearable and wireless systems and machine learning that utiliz-
es the synergistic capabilities of Cloud computing for the treatment of Parkin-
son’s disease through deep brain stimulation. The Biostamp nPoint represents a 
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highly conformal wearable and wireless system with a profile on the order of a 
bandage that offers a considerable reduction in mass compared to other devices, 
such as a smartphone. This device achieves wireless access to a Cloud computing 
environment. The inherent characteristics of this conformal wearable and wire-
less system enable mounting to the dorsum of the hand by adhesive as opposed 
to a specialized glove used in previous experiments to secure a device, such as a 
smartphone. The BioStamp nPoint acquired accelerometer signal data to quan-
tify the efficacy of a deep brain stimulation system for treating a subject with 
Parkinson’s disease. The magnitude of the accelerometer signal was consolidated 
to a feature set through software automation using Python. A multilayer percep-
tron neural network machine learning algorithm achieved considerable classifi-
cation accuracy to distinguish between deep brain stimulation set to “On” and 
“Off” status for the treatment of a subject with Parkinson’s disease using the Bi-
oStamp nPoint, which is FDA cleared for the acquisition of medical grade data. 

The association of these achievements infers the pathway to the progressive 
research, development, testing, and evaluation of Network Centric Therapy for 
the treatment of people with movement disorders. Network Centric Therapy 
represents a combination of the expansive opportunities enabled with conformal 
wearable and wireless systems with segmented access to a Cloud computing en-
vironment with machine learning to augment clinical situational awareness re-
spective of the efficacy of the prescribed intervention strategy. Respective of deep 
brain stimulation, these capabilities are envisioned to provide a pathway for the 
optimization of deep brain stimulation parameters in a closed-loop context for 
people with Parkinson’s disease. 
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