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Abstract 
Red blood cell deformability is a crucial factor in blood flow. Since sickle cell 
anemia is a disease characterized by a non-conforming deformation of red 
blood cells (RBCs) in oxygen-deprived conditions. This thread-like shape 
causes poor blood circulation. We measured, and compared, Sickle RBCs de-
formability by lateral indentation using optical tweezers. We used a camera to 
acquire the various videos. The trapped microbead distributions were pro-
cessed using Boltzmann statistics to calculate the optical trap stiffness and 
trapping force. Finally, the Hertz model was used to determine the mechanical 
properties of sickle cell red blood cells. The mean values of shear modulus 
measured were (3.94 ± 0.71) µN/m for the sickle RBC Type I, (8.54 ± 1.7) 
µN/m for sickle RBC Type II and (11.72 ± 2.05) µN/m for sickle RBC Type III. 
These results confirmed that lateral indentation is becoming an almost indis-
pensable technique for characterizing red blood cells. 
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1. Introduction 

Hemoglobin is the substance contained in red blood cells that transports oxygen 
throughout the body. This substance is affected by the blood disorder known as 
sickle cell disease. This genetic anomaly is caused by sickle cell hemoglobin (HbS), 
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a variant of the hemoglobin (Hb) molecule resulting from a mutation in the β-
globin gene [1]. Red blood cells are normally discoid in shape, but under certain 
conditions and in sickle cell disease, they can take on a sickle or half-moon shape. 
These rigid, sickle-shaped red blood cells cause occlusions in the blood vessels 
(vaso-occlusion), preventing the normal flow of blood and oxygen to the organs, 
particularly the bones, and are responsible for the most frequent manifestation of 
the disease: painful attacks. These abnormally shaped blood cells also have a con-
siderably reduced lifespan when they leave the bone marrow, leading to chronic 
anemia. For the majority of the population, the hemoglobin in red blood cells is 
normal A (from “adult”, unrelated to blood groups); genetically, their hemoglobin 
type is AA (half A inherited from each parent). Carriers of the sickle cell gene 
produce normal hemoglobin A and the characteristic hemoglobin S characteristic 
of sickle cell disease: they are AS. They do not have the disease. In the most com-
mon and severe type of sickle cell disease, patients have two S genes, transmitted 
by both parents: they are known as SS, or sickle cell anemia [2]. In other forms of 
the disease, the S hemoglobin is associated with other hemoglobin abnormalities: 
this is the case of the SC form. Sickle cell sufferers are thus likely to develop 
chronic conditions affecting the lungs, brain, kidneys, heart and eyes. Because of 
these complications and the limited choices for medical treatments, life expec-
tancy for SCD patients is short; only 50% of patients with SCD survive beyond 
their fifth decade [3]. Hydroxyurea (HU) has been successfully used to treat this 
disease. In addition to improving fetal hemoglobin production, hydroxyurea is 
known to have a crucial effect on red blood cell deformability [4]. The forces ex-
erted by light have little effect on the macroscopic scale. One of the few macro-
scopic examples is the orientation of comet tails, as discovered by astronomer Jo-
hannes Kepler in the early 17th century. The tail always points away from the sun, 
because the particles in it are driven by radiative forces. In 1873, James Clerk Max-
well theoretically demonstrated that light can exert forces. Given their very low 
values, it wasn’t until the early 1960 and the development of lasers that these forces 
were studied. A pioneer in these studies was Arthur Ashkin. By focusing a laser 
beam, he was able to move and even levitate particles just a few microns in diam-
eter. This research forms the basis of atom trapping and cooling, as well as the 
development of optical tweezers. He demonstrated the possibility of optically ma-
nipulating biological species without damaging them, such as viruses, bacteria [5] 
or living cells [6]. These results paved the way for numerous research projects and 
applications in the fields of biochemistry, physics and medicine. Hee Su Byu’s 
team had to fit the power spectral density function of the measured membrane 
fluctuations to quantitatively determine the mechanical properties of sickle cell 
RBCs [7]. Some have used the rotation speed of red blood cells to differentiate 
between sickle cell red blood cells from a treated patient and those from a patient 
not treated with the HU drug [8]. Recently, optical tweezers have been successfully 
used to characterize red blood cells [9]-[11]. With a view to making our contribu-
tion to research into sickle cell disease, we propose in this work the lateral inden-
tation of sickle cell red blood cells to extract their mechanical properties.  
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2. Experimental Procedure 

The description of experimental setup has been well detailed in our previous arti-
cles [9] [12]. The experimental approach used in this work is shown in Figure 1. 
First, the silica bead was optically trapped without coming into contact with the 
RBC. The stage was then translated horizontally so that the red cell came into 
contact with the trapped microbead. Once contact has been made between the 
two, the microbead receives a force from the red blood cell, causing the microbead 
to move from its initial equilibrium position. In turn, the trapped microbead de-
forms the red cell membrane, inducing an Id indentation in the RBC membrane. 

Each time the contact between the microbead and the RBC increases, the in-
dentation force increases and membrane deformation becomes significant. It is 
therefore possible to measure the distance the microbead is pressed into the RBC 
membrane (the indentation Id) using this relationship [12]. 

 ( )2 2
d iI D D d= − −  (1) 

where D is the diameter of the microbead and di is the touch diameter between 
the microbead and the RBC in micrometers. Another parameter essential for cal-
culating the shear modulus is the contact force between the RBC and the trapped 
bead. Parameters such as the trapping force and the contact force between the 
trapped microbead and the red blood cell were obtained using the Boltzmann sta-
tistical method [13]. The various steps are well detailed in our previous articles 
[12]. 

 

 
Figure 1. Interaction illustration between trapped bead and cell. 
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In this work, we determined the various parameters mentioned above, taking 
into account the two horizontal directions. 

2.1. Cell Preparation 

The particles used as indenters in these experiments were silica beads with a di-
ameter of 3 µm. We used blood from a sickle-cell anemia patient (a single donor), 
type SS. To carry out the experiments, the sample was prepared as follows: 0.5 µl 
of blood was suspended in 5 ml of phosphate-buffered saline, then this solution 
was incubated with a dilute solution of microbeads. 

2.2. Elastic Stiffness and Shear Stiffness 

In our work, Hertz-model was used to obtain the elastic stiffness [12] [14] [15]. 
Eh is given by 

 
( )23 1

4 c
c

v
Eh F

I R

 −
 = ⋅
 ⋅ 

 (2) 

where R is the microbead radius, Fc the contact force between trapped bead and 
cell, Ic the indentation and v the Poisson ratio. For these experiments, v = 0.5 was 
used [15]. In the literature, usually the cortical shear modulus Gh is given, rather 
than the elastic stiffness Eh. The Shear stiffness are related by: 

 
( )2 1
EhGh

v
=

+
 (3) 

The Hertz model was used because for large deformations, the Hertz model 
leads to large prediction errors, and because the contact surfaces are small and 
flat. 

3. Results and Discussion 

We worked on five cells: one cell of almost spherical biconcave RBC (Type I), 
three cells of square biconcave RBC (Type II) and one cell of non-biconcave RBC 
(Type III). 

3.1. Mechanical Properties of RBC (Type I) 

For this first type of red blood cell, a microbead with a diameter of 3 µm was op-
tically trapped with a force of 20.60 pN. By translating the sample holder in 5 µm 
steps in a horizontal direction, the contact diameter between the microbead and 
the red blood cell increases. As the contact between the two increases, so does the 
deformation of the red blood cell membrane. A number of different images from 
the videos recorded during each measurement are shown in Figure 2. 

Under the action of a contact force of 14.36 pN, an indentation of 0.31 µm was 
measured. We then used the Hertz model to obtain the mechanical properties: 
(11.83 ± 2.51) µN/m for the elastic modulus and (3.94 ± 0.71) µN/m for the shear 
modulus. 
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Figure 2. Images of RBC Type I indented at different contact forces. 

3.2. Mechanical Properties of RBCs (Types II and III) 

This time, the bead trapping force was 29.87 pN for RBC type II and 59.25 pN for 
RBC type III. Different images from the videos recorded during each measure-
ment are shown in Figure 3.  

 

 
Figure 3. Images of RBCs indented at different contact forces: (a) RBC Type II, (b) RBC Type III. 

 
The mean values of mechanical properties, in particular elastic modulus and 

shear modulus were (25.61 ± 3.12) µN/m and (8.54 ± 1.7) µN/m for RBC Type II 
and (35.17 ± 2.74) µN/m and (11.72 ± 2.05) µN/m for RBC Type III. Measure-
ments of contact forces, indentations and elastic stiffness were presented in Table 
1. 

 
Table 1. Different values of measurements. 

Parameters RBC (Type I) RBC (Type II) RBC (Type III) 

Contact force (pN) 14.36 26.74 31.85 

Indentation (µm) 0.31 0.23 0.17 

Elastic stiffness (µN/m) (11.83 ± 2.51) µN/m (25.61 ± 3.12) µN/m (35.17 ± 2.74) µN/m 

 
The values presented in the table show that for a low contact force, the mi-

crobead sank further into the RBC Type I than in the other two cases. The values 
of shear modulus for the sickle RBCs are shown in Figure 4. 
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Figure 4. Mean values of shear modulus. 

 
For sickle RBCs Types II and Type III, the values obtained are higher than that 

for the sickle RBCs Type I. These results show that RBC Type I are more elastic 
than RBCs Type II and Type III. This difference may be explained by the different 
membrane conditions of sickle cell RBCs. The values obtained for RBC Type I are 
supported by the results of previous work carried out on healthy red blood cells 
[9]. This can also be explained by the fact that when HbS-containing red blood 
cells are oxygenated, they can function relatively normally and retain a biconcave 
shape, although they are generally stiffer than normal red blood cells. Sickle RBCs 
Types II and III showed significantly decreased cell deformability compared to 
healthy RBCs [9] [16]. These results are consistent with previous works on sickle 
RBCs [17]. Note that, when the sickle RBCs releases oxygen into the tissues, he-
moglobin S tends to polymerize, forming rigid fibers that deform the cell into a 
characteristic sickle shape. This process is reversible up to a point, but repeated 
cycles of polymerization and depolymerization progressively damage the cell 
membrane. With repeated polymerization of HbS, red blood cells become increas-
ingly rigid and fragile. This rigidity hampers their ability to pass through small 
capillaries, leading to blood vessel obstruction.  

4. Conclusion 

In this paper, we used the lateral deformation of sickle cell red blood cells. Using 
the linearized Hertz model, we obtained the indentations and mechanical proper-
ties of the cells studied. These results showed us that lateral indentation remains 
an appropriate technique for characterizing any type of RBCs.  
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