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Abstract 
Highly efficient silver halide nanoparticles (AgX, X = Cl, Br NP’s) were suc-
cessfully synthesized by facile and template-free direct-precipitation method 
using potassium chloride, potassium bromide and silver nitrate as reactive 
sources. The as-prepared AgX NP’s were characterized by FTIR, thermogra-
vimetric analysis, XRD, EDX and HRTEM. The antimicrobial susceptibilities 
against two Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus) 
and four Gram-negative bacteria (Salmonella typhi, Escherichia coli, P. aeru-
ginosa and Klebsiella pneumoniae) in addition to five fungi (Aspergillus fla-
vus, A. carbonarus, Penicillium verrucosum, Fusarium verticelloides and A. 
niger) were tested by the disk diffusion technique. The antibacterial and an-
tifungal results suggest that the prepared AgX NP’s show high activity against 
the tested organisms compared to tetracycline and Nystatin taken as standard 
drugs. As an application, the use of the prepared AgX NP’s as photo catalyst 
for the decontamination of malathion as VX chemical warfare agent (CWA) 
stimulant from water sample was extensively studied. 
 
Keywords 
AgX Nanomaterials, Antibacterial and Anti Fungal Activity, Photo Catalytic 
Decontamination of Malathion 

 

1. Introduction 

Nano crystalline silver halide (AgX NP’s), as classes of highly photosensitive 
semiconductor materials, have received increasing research attention owing to 
their unique chemical, physical and biological properties [1] [2] [3] [4]. They 
have excellent visible-light-driven photo catalytic performance for applications 
in organic pollutant degradation, biomedical and bioanalytical fields [5] [6] [7] 
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[8] [9]. In addition, AgX NPs have been widely used in several areas of water 
treatment [10] [11], medicine [4], photocatalysis [12] [13], biotechnology [14] 
[15] and cancer therapy [16]. Silver halides can be used as metallic silver pre-
cursors [17]. When they absorb photons an electron and a hole are produced. 
This causes an electron transfer and, subsequently, the Ag+ transforms to Ag0 
converting the surface to tiny clusters of silver atoms which can catalyze the re-
duction of AgX NP’s to Ag nano particle in the presence of mild reducing rea-
gents, known as self-catalytic reduction [17]. This leads to the formation of hy-
brid AgX/Ag nanoparticles providing a class of promising visible-light-driven 
photocatalysts for environmental remediation [18]. In this article, and in con-
tinuation to our previous works [19]-[25], silver halide nanoparticles (AgX, X 
= Cl, Br NP’s) were successfully synthesized by facile and template-free di-
rect-precipitation method in dark atmosphere conditions and characterized by 
different techniques. The antimicrobial susceptibilities against two Gram-positive 
bacteria, four Gram-negative bacteria and five fungi were tested by the disk dif-
fusion technique. As an application, the use of the prepared AgX NP’s as photo 
catalyst for the decontamination of malathion (an VX chemical warfare agent, 
CWA, stimulant) from water sample was extensively studied.  

2. Experimental  

2.1. Materials and Reagents 

All chemicals used in the present study were of pure grade (Aldrich or Merck) 
and were used without further purification. Silver nitrate (>99.95%, Sigma), po-
tassium chloride and potassium bromide; KCl, KBr, >99.5%, Merik Chemical A. 
R. and Polyvinylpyrrolidone (PVP, average MW = 40,000, 30 mg/mL, Sigma) 
were used as received, without additional purification. Bi-distilled water was 
used whenever water is used.  

Preparation of silver halide (AgX) 
Silver chloride Nanoparticulate (AgCl NP) was prepared by titrating 500 mL 

aqueous solution of KCl (0.02 M) drop wisely to 100 mL aqueous solution of 
AgNO3 (0.01 M) mixed with a solution of polyvinylpyrrolidone (PVP) at room 
temperature. The solution mixture was stirred continuously for about three 
hours keeping the reaction vessel in a dark place to prevent the formation of 
metallic Ag0. Precipitation was achieved immediately and the formed precipitate 
was isolated and washed three times with bidistilled water then finally with ace-
tone to expel water from the surface. The solid product was dried at 60˚C for ≈ 6 
hours then grinned in an agate mortar into a fine powder and stored in an amb-
er vial since AgCl is known to be photosensitive. Synthesis of silver bromide 
Nanoparticulate (AgBr NP) was performed via the same procedure using KBr 
instead of KCl as a precursor. 

2.2. Instruments and Characterization Methods 

1) FTIR spectra: were recorded on a Nicolet iSio FT-IR spectrophotometer in 
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the 4000 - 400 cm−1 region using KBr disk technique (Chemistry department, 
Faculty of science, Benha University, Egypt).  

2) Thermal analysis: Thermogravimetric analysis (TGA-DTG) were carried 
out using Shimadzu TGA-50H thermal analyzer within the temperature range 
25˚C - 800˚C (Central Lab, Faculty of Science, Ain Shams University, Cairo, 
Egypt). All measurements were done under nitrogen atmosphere at heating rate 
of 10˚C/min.  

3) Electronic spectra: Electronic spectra of nanoparticles were measured in 
the solid state (Nujol Mull technique) using Jasco V-530 (UV-Vis) double beam 
spectrophotometer (Japan) with scanning speed 400 nm/min and band width 2.0 
nm using 10 mm matched quartz cell at room temperature in the range 800 - 
200 nm at Faculty of Science, Benha University, Benha, Egypt. 

4) X-ray diffraction: X-ray diffraction analysis (XRD) was carried out using 
SIEMENS D5000 instrument. The patterns were run with Cu-filtered CuKα radi-
ation of wavelength 1.79 A˚ energized at 45 kv and 10 mA. The sample was 
measured at room temperature in the range of 2θ from 20˚ - 80˚.  

5) High resolution transmission electron microscopy: The morphology and 
particle shape of the as-prepared samples were studied by high resolution trans-
mission electron microscopy (HRTEM) using JEOL TEM 2100 high resolution 
electron microscope at 100 kv by dispersed sample in ethanol on a copper grid.  

6) Energy dispersive X-ray (EDX): The energy dispersive X-ray spectrosco-
py (EDX) was measured with a Horiba EMAX X-act energy dispersive spectros-
copy that was attached to the Hitachi S-4800 system. 

2.3. Antimicrobial Screening 

The antimicrobial susceptibilities against two Gram-positive bacteria (Bacillus 
cereus, Staphylococcus aureus) and four Gram-negative bacteria (Salmonella ty-
phi, Escherichia coli, P. aeruginosa and Klebsiella pneumoniae) in addition to 
five fungi (Aspergillus flavus, A. carbonarus, Penicillium verrucosum, Fusarium 
verticelloides, and A. niger) (Salmonella typhi, Escherichia coli, P. aeruginosa 
and Klebsiella pneumoniae) were tested by the disk diffusion technique devel-
oped by Bauer et al. [26] and described in our previous work [27]. The method is 
based on the determination of an inhibited zone proportional to the bacterial 
susceptibility to the antimicrobial present in the disk. Three replicas were made 
for each treatment to minimize error. 

2.4. Photocatalytic Degradation of Malathion 

For a typical photocatalytic experiment, 50 mg of (AgX NP) was added to 100 
mL of 0.06 mL/l malathion solution (Malathion purity >95% from Nasr Com-
pany for Intermediate chemicals, Egypt) and was kept in dark for 6 hours to al-
low the system to reach an adsorption desorption equilibrium. Adsorption ki-
netics experiments were operated in a series of 250 mL beakers containing AgX 
NP’s and 100 mL of malathion solutions with continuous stirring at 25˚C under 
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the UV illumination using a 250 W xenon arc lamp (Thoshiba, SHLS-002) (λ = 
365 nm). After recovering the catalyst by centrifugation, the process was fol-
lowed up by scanning the UV-Vis spectra at different time intervals within the 
wavelength range 220 - 350 nm and the band of maximum absorbance at 270 
nm (λmax for Malathion) was taken to follow up the degradation process.  

3. Results and Discussion 
3.1. Characterization of the AgX Nanoparticles (AgX NP’s) 

The as-prepared AgX NP’s were firstly subjected to extensive study to confirm 
their chemical structure. Different techniques were performed for this purpose:  

3.1.1. Thermal Analysis 
Inspection of the TG-DTA curves shows that both AgCl and AgBr NP’s undergo 
thermal degradation through two endothermic steps. The first takes place within 
the range 60.0˚C - 70.0˚C (weak endothermic peak accompanied by ≈ 5.20% 
weight loss) corresponding to the removal of physically adsorbed water mole-
cules from the outer surface of the nano particles. The second step occurs within 
the range 320˚C - 325˚C (strong endothermic one accompanied by ≈ 28.00% 
weight loss) represents the decomposition of the unhydrous AgX NP’s leading to 
the formation of Ag2O as final products. The thermograms of the two samples 
show thermal stability with no further thermal events up to 800˚C indicating 
that the stable residues can be ascribed as silver oxide (Ag2O) crystalline par-
ticles.  

3.1.2. IR Spectra 
The IR spectra (representative example is shown in Figure 1) show the expected 
characteristic bands in the shortwave region around 690 - 650 cm−1 due to the 
stretching vibration associated with bonds containing a heavy element [19] [21]  
 

 
Figure 1. IR spectrum of AgCl NP. 
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(which is silver here). The bands related to each peak in these spectra are sum-
marized as: 1) Symmetric stretching vibration of the physically adsorbed water 
molecules at about 3450 cm−1, 2) Symmetric and asymmetric stretching vibra-
tion of Ag-Cl and Ag-Br bonds at 690 - 650 cm−1 and 3) Bending vibration of 
C-N bonds at 586 cm−1. The latter band may be due to the vibration of coating 
proteins. 

3.1.3. High Resolution Transmission Electron Microscopy (HRTEM) 
The TEM images of the prepared nano particles were scanned with different 
magnification powers (500 - 5000). For AgCl NPs, the TEM image clearly shows 
that they are cube-shaped single crystallites with the size in the range of 20 nm, 
which reflects the intrinsic cubic symmetry of AgCl. The TEM image of the 
AgBr NPs (Figure 2) indicates that they are spherical in shape and uniform in 
size, with an average particle size of 35 nm. These images also show that the NPs 
are well dispersed and not aggregated.  
 

  

  

 

Figure 2. HRTEM images of AgBr NP with different magnification powers. 
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3.1.4. Energy Dispersive X-Ray Spectroscopy (EDX) 
To validate the generation of AgCl and AgBr nanoparticles, they were investi-
gated by energy dispersive X-ray analysis (EDX). For AgCl NP, (c.f. Figure 3(a)), 
EDX analysis displayed high intensity two absorption peaks at 3.04 and 2.54 kV, 
indicating the presence of Ag and Cl, respectively. A semiquantitative analysis 
(c. f. Table 1) showed that silver constitutes 45.78% while chlorine constitutes 
50.29% and the atomic ratio Ag:Cl elements is approximately 1:1. The data are in 
agreement with the theoretical stoichiometric atomic ratio between Ag and Cl 
species in AgCl. The above findings confirmed that Ag and Cl are the major 
elements found in the composition of AgCl nanoparticles. Oxygen has 3.26%, 
probably due to the release of coating proteins. 
 

 
(a) 

 
(b) 

Figure 3. EDX spectrun of (a) AgCl and (b) AgBr nanorticle. 

 
Table 1. Elemental analusis of AgCl nanoparticle. 

Element Line Mass% Atom% 

O K 0.77 ± 0.09 3.26 ± 0.39 

Cl K 26.58 ± 0.41 50.95 ± 0.79 

Ag L 72.66 ± 0.96 45.78 ± 0.61 

Total  100.00 100.00 

Spc_001 Fitting ratio 0.1142 
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EDX analysis of the AgBr nanoparticle is shown in Figure 3(b) and Table 2. 
The spectrum displayed a medium intensity peak at 1.50 kV indicating the 
presence of bromine constitutes and a high intensity peak at 3.01 kV, due to sil-
ver. The percentages of bromine and chlorine in the sample amount to 42.60% 
and 44.39%, respectively proofing the presence of silver bromide nanoparticle. 
Oxygen and carbon have the percentage of 5.71% and 4.08% respectively, proba-
bly due to the release of coating. 

 
Table 2. Elemental analusis of AgBr nanoparticle. 

Element Line Mass% Atom% 

C K 4.08 ± 0.10 19.69 ± 0.48 

O K 5.71 ± 0.20 20.71 ± 0.72 

K K 3.23 ± 0.17 4.80 ± 0.25 

Br L 42.60 ± 0.55 30.93 ± 0.40 

Ag L 44.39 ± 0.68 23.87 ± 0.37 

Total  100.00 100.00 

Spc_001 Fitting ratio 0.0762 

3.1.5. X Ray Diffraction Spectra (XRD) 
The XRD spectral data, cited in Table 3, of the AgCl NP show that the distinct 
diffraction peaks at a 2θ of 28.412˚, 32.832˚, 46.809˚, 55.367˚, 58.018˚ and 67.92˚ 
could be assigned to the (111), (200), (220), (311), (222) and (220) planes, re-
spectively, for the typical cubic phase of AgCl crystal (JCPDS file 31-1238). This 
suggests the existence of AgCl species in the synthesized nano structures. The 
lattice parameters indicate the presence of Chlorargyrite (cubic with a = b = c = 
5.7713 A˚) and Periclase (cubic with a = b = c = 3.8908 A˚) as phases. The most 
intense peak (intensity 100%) is from the (200) plane which corresponds to an-
gles of 2θ = 32.832˚. The average crystalline size calculated from Scherrer equa-
tion were found to be 25 nm.  

The XRD pattern of the nanosized AgBr (c.f. Figure 4 and Table 4) shows 
diffraction peaks located at 2θ = 26.456˚, 31.182˚, 44.569˚, 52.754˚ and 55.282˚ 
corresponding to (111), (200), (220), (311) and (222) planes for typical cubic 
phase (AgBr). The lattice parameters indicate the presence of Halite (cubic with 
a = b = c = 5.74456 A˚) and AgBr (cubic with a = b = c = 5.74508 A˚) as phases. 
The most intense peaks (intensity 100%) are from the (200) and (220) planes 
which corresponds to angles of 2θ = 31.182˚ and 44.569˚. The average crystalline 
size calculated from Scherrer equation was found to be 35 nm.  
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Table 3. The XRD spectral data of AgCl NP. 

No 2θ, ˚ Phase Name 
Chemical  
Formula 

Card No 

1 28.412(5) Chlorargyrite: 1 1 1 Ag Cl 9008597 

2 32.832 Chlorargyrite: 2 0 0 Ag Cl 9008597 

3 46.809 
Chlorargyrite: 2 2 0,  

Periclas 
Ag Cl, MgO 

9008597,  
9013210 

4 55.367 Chlorargyrite: 3 1 1 Ag Cl 9008597 

5 58.018 Chlorargyrite: 2 2 2 Ag Cl 9008597 

6 67.92 Periclase: 2 2 0 MgO 9013210 

7 75.03 Unknown   

8 77.14 Unknown   

 

Lattice parameters 

Phase name a, Å b, Å c, Å α, ˚ β, ˚ γ, ˚ 

Chlorargyrite 5.47713 5.47713 5.47713 90.0 90.0 90.0 

Ag Br 3.89078 3.89078 3.89078 90.0 90.0 90.0s 

 
Table 4. The XRD spectral data of AgBr NP. 

No. 2θ, ˚ Phase Name 
Chemical  
Formula 

Card No 

1 26.956 
Halite: 1 1 1,  
Ag Br: 1 1 1 

Cl Na,  
Ag Br 

9006382,  
1509151 

2 31.1818 
Halite:2 0 0,  
Ag Br: 2 0 0 

Cl Na,  
Ag Br 

9006382,  
1509151 

3 44.5693 
Halite:2 2 0,  
Ag Br: 2 2 0 

Cl Na,  
Ag Br 

9006382,  
1509151 

4 52.754 
Halite:3 1 1,  
Ag Br: 3 1 1 

Cl Na,  
Ag Br 

9006382,  
1509151 

5 55.2815 
Halite:2 2 2,  
Ag Br: 2 2 2 

Cl Na,  
Ag Br 

9006382,  
1509151 

6 64.35 Unknown   

7 64.733 Unknown   

8 71.327 Unknown   

9 73.4869 Unknown   

 

Lattice parameters 

Phase name a, Å b, Å c, Å α, ˚ β, ˚ γ, ˚ 

Halite 5.74456 5.74456 5.74456 90.0 90.0 90.0 

Ag Br 5.74508 5.74508 5.74508 90.0 90.0 90.0 
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Figure 4. XRD of AgBr nanoparticle. 

3.1.6. Optical Analysis 
A fundamental property of nanosized particulates is the band gap energy. The 
UV-Visible spectra allow direct determination of band gap using the relation 
between the absorption coefficient (α) and the incident photon energy (hv) 
represented by Tauc equation [28]: ( ) ( )nhv A hv Egα = − . Where, A is a con-
stant, Eg is the band gap of the material and the exponent (n) depends on the 
type of transition, n is either 2 for an indirect transition or ½ for a direct transi-
tion. Here the best curve is found when n = 2 indicating indirect transition. The 
value of optical band gap is calculated by plotting the relation between (αhv)2 vs 
hv and extrapolating the straight line portion to the hv axis. The UV-Visible 
spectra and Tauc plots of AgCl and AgBr nano particles in the solid state (Nujol 
mull technique) are shown in Figure 5 and Figure 6. The extrapolation of linear 
portion to the hv axis gives values of energy gap as 3.5 ev and 3.8 ev for AgCl 
and AgBr NP’s, respectively.  
 

 
Figure 5. Electronic absorption spectrum and Tauc plot of AgCl nano particle in nujol 
mull. 
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Figure 6. Electronic absorption spectrum and Tauc plot of AgBr nano particle in nujol 
mull. 

3.2. Antimicrobial Screening 

The antimicrobial susceptibilities against two Gram-positive bacteria and four 
Gram-negative bacteria in addition to five fungi were tested by the disk diffu-
sion technique. Standard drug; tetracycline (500 µg∙ml−1) and dimethyforma-
mide (DMF) were screened separately for their antibacterial activity as positive 
and negative controls, respectively, while Nystatin (1000 Unit∙ml−1) and DMF 
were screened separately for their antifungal activity as positive and negative 
controls, respectively The antibacterial and antifungal results (c.f. Table 5 and 
Table 6) suggest that the prepared AgXNP’s show high activity against the tested 
organisms compared to tetracycline and Nystatin taken as standard drugs.  
 

Table 5. Antibacterial activity (inhibition zone diameter (mm)) of tetracycline (500 µg∙mL−1) and the as prepared AgXNP’s. 

Tested  
species 

Gram-negative bacteria  Gram-positive bacteria 

E. coli P. aeruginosa K. Pneumoniae S. typhi  S. aureus B. cereus 

Inh.  
Zone 

% Ac.Ind 
Inh.  
Zone 

% Ac.Ind 
Inh.  
Zone 

% Ac.Ind 
Inh.  
Zone 

% Ac.Ind 
Inh.  
Zone 

% Ac.Ind 
Inh.  
Zone 

% Ac.Ind 

−ve control* 0 0 0 0 0 0 0 0 0 0 0 0 

+ve control** 28.2 100 27.2 100 32.3 100 29.8 100 28.5 100 27.0 100 

AgCl 25.8 91.49 25.7 94.49 30.2 93.86 30.2 101.34 26.9 94.39 28.1 104.07 

AgBr 25.2 89.36 23.5 86.4 28.2 87.31 28.5 95.64 25.9 90.88 26.8 99.26 

*Dimethylformamide (DMF); **Tetracycline (500 µg∙mL−1). 
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Table 6. Antifungal activity (inhibition zone diameter (mm)) of Nystatin (1000 Unit∙ml−1) and the as prepared AgXNP’s. 

Tested  
species 

Fungai 

A. flavus A. carbonarius A. niger F. verticillioides P. verrucosum 

Inh. Zone % Ac.Ind Inh. Zone % Ac.Ind Inh. Zone % Ac.Ind Inh. Zone % Ac.Ind Inh. Zone % Ac.Ind 

−ve control* 0 0 0 0 0 0 0 0 0 0 

+ve control** 14.5 100 16.5 100 15 100 14.5 100 16.5 100 

AgCl 14.0 96.55 16.1 97.58 15.8 105.33 15.1 104.14 15.7 95.15 

AgBr 13.7 94.48 15.3 92.73 13.5 90.0 15.0 103.45 14.9 90.30 

*DMF; **Nystatin (1000 Unit∙ml−1). 
 
The most acceptable mechanism for the antimicrobial effect of the nano ma-

terials is the in-situ production of reactive oxygen species (ROS) which occurs by 
the metal surface reducing oxygen molecules [29]. The species produced in these 
reactions are the hydroxyl radical (∙OH), superoxide ( 2O− ), singlet oxygen (O2) 
and hydrogen peroxide (H2O2). If the amount of ROS produced within the cell 
by metal nanoparticles increases too much the cell will not be able to survive the 
damage. This leads to the reduction of the activity of periplasmic enzymes which 
are needed for the health of the bacteria [29]. Silver nanoparticles have been 
shown to react with water to produce hydroxyl radicals and react with oxygen to 
produce superoxide and singlet oxygen [30]. 

3.3. Analytical Application 

Among the organophosphorus insecticides, malathion is the most widely used (32% 
- 44% of total organophosphorus insecticide) [31]. Malathion [S-(1,2-dicarbetho- 
xyethyl)-O,O-dimethyldithiophosphate], is a non-systemic, wide-spectrum or-
gano-phosphorus pesticide used in public health, residential, and agricultural 
settings. It is classified as a toxicity class III according to Environment Protec-
tion Agency (EPA) [32] and can be degraded chemically and microbiologically 
in water within a few weeks, but it can remain in the environment for months 
[33].  

The photodegradation of Malathion as VX chemical warfare agent (CWA) 
stimulant and as widely used insecticide was studied without using catalyst and 
with using AgCl and AgBr NP’s as catalysts. The results are represented, graphi-
cally in Figure 7 and Figure 8. Inspection of the absorption spectra and the cal-
culated % degradation values shows that, after 240 min Malathion degraded 
maximally up to 48.5% under the effect of UV radiation only, while the percent 
degradation efficiencies reach 99.2% and 82.4% on using AgCl and AgBr nano-
particles, respectively as catalyst within only 120 min. This reflects the high effi-
ciency of these materials for the removal of such toxic organic insecticide pollu-
tant.  
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Figure 7. Effect of time on the degradation of malathion using AgCl NP as catalyst under 
UV irradiation. 
 

 
Figure 8. Effect of time on the % degradation of malathion under the effect of: 1) UV 
radiation only, 2) AgCl NP as catalyst and 3) AgBr NP as catalyst. 

 
Studies on the effect of pH on the % removal of malathion were studied keep-

ing the mass of catalysts constant (0.1 g) and measuring the absorbance at 265 
nm after 150 min constant stirring where it was found that (c.f. Figure 9) best 
removal takes place at, more or less, neutral solution (pH = 6.5 - 8.0). 

3.3. Mechanism of Photocatalytic Activity of Ag/AgX 

The photocatalytic mechanism of Ag/AgX nanocomposites is displayed in Fig-
ure 10, [4]. When photons are absorbed, AgX produces an electron and a hole. 
This causes an electron transfer and, subsequently Ag+ transforms into Ag0 so 
forming Ag/AgX NP acting as photocatalyst. The Ag metal as a conductor 
grown on the surface of AgX can easily generate electron-hole pairs, then those 
electrons in the valance band can absorb photons with energy equal to or higher 
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than the band gap energy. The main process that can generate reactive oxygen 
species (ROS) is the photo-generated charge-mediate redox reactions, which in-
clude the oxidation of H2O to form OH∙ radicals, and the reduction of O2 to form 
(ROS) (e.g., singlet oxygen, hydroxyl radical, superoxide, hydroperoxyl radical, 
and hydrogen peroxide) [34] [35].  
 

 
Figure 9. Effect of pH on the % degradation of malathion under the effect of: 1) UV radi-
ation only, 2) AgCl NP as catalyst and 3) AgBr NP as catalyst. 

 

 
Figure 10. The photocatalytic mechanism of pesticides on the the surface of nanocatalyst. 
(plagiarized from Ref. 4; Zhang et al., 2022). 

4. Conclusion 

Highly efficient silver halide nanoparticles (AgX, X = Cl, Br NP’s) were success-
fully synthesized by facile and fast precipitation method. The as-prepared AgX 
NP’s were characterized by FTIR, thermogravimetric analysis, XRD, EDX and 
HRTEM. The antimicrobial susceptibilities against two Gram-positive bacte-
ria, four Gram-negative bacteria and five fungi were tested by the disk diffu-
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sion technique. The antibacterial and antifungal results suggest that the pre-
pared AgX NP’s have high activity against the tested organisms compared to te-
tracycline and Nystatin taken as standard drugs. As an application, the use of the 
prepared AgX NP’s as photo catalyst for the decontamination of malathion as 
VX chemical warfare agent (CWA) stimulant from water sample was extensively 
studied. 
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