

Pure SnO₂ Gas Sensor with High Sensitivity and Selectivity towards C₂H₅OH

Abeer Alhadi¹, Shuyi Ma^{1*}, Tingting Yang¹, Shitu Pei¹, Pengdou Yun¹, Khalid Ahmed Abbakar^{2,3}, Qianqian Zhang¹, Nina Ma¹, Li Wang¹, Manahil H. Balal^{3,4}, Hamouda Adam Hamouda^{5,6}, Khalid Mohammed Adam^{5,6}

¹Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China

²College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China

³Department of Mathematics and Physics, Faculty of Education, University of Gadarif, Gadarif, Sudan

⁴Physics Department, Faculty of Science and Art, Al Baha University, Gilwah, Saudi Arabia

⁵College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China

⁶Department of Chemistry, Faculty of Science, University of Kordofan, El Obeid, Sudan

Email: *abeeralhadi18@hotmail.com

How to cite this paper: Alhadi, A., Ma, S.Y., Yang, T.T., Pei, S.T., Yun, P.D., Abbakar, K.A., Zhang, Q.Q., Ma, N.N., Wang, L., Balal, M.H., Hamouda, H.A. and Adam, K.M. (2021) Pure SnO_2 Gas Sensor with High Sensitivity and Selectivity towards C_2H_5 OH. *Advances in Nanoparticles*, **10**, 66-74. https://doi.org/10.4236/anp.2021.102005

Received: March 23, 2021 **Accepted:** May 8, 2021 **Published:** May 11, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO_2 nanoparticles was prepared by using a simple and inexpensive technique (hydrothermal method) without a template. Various confirmatory tests were performed to characterize SnO_2 nanoparticles such as energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transition Electron Microscopy (TEM), during the detection of the gas, we found that pure SnO_2 nanoparticles has a high selectivity for ethanol to 100 ppm at a low temperature (180°C) and a high response (about 27 s) and a low detection limit of 5 ppm, also it have response/recovery times about (4 s, 2 s) respectively. The distinctive sensing properties of SnO_2 sensor make it a promising candidate for ethanol detection. Furthermore, the gas-sensing mechanism have been examined.

Keywords

Hydrothermal Method, Nanoparticles, Ethanol, SnO₂, Gas Sensor

1. Introduction

Volatile organic compounds are considered a major component that participates in the formation of ozone, which are air pollutants, and their percentage increases from weakness in the outside air, due to their presence in many products in the home, as volatile organic compounds are now included in about 90% of the products that enter the home, Its sources include drinking water, carpets, paints, deodorants, cleaning methods, materials used for shoe polishing, cosmetics, dry cleaning clothes, moth repellents, air fresheners, and car exhaust [1] [2] [3]. One of the volatile organic compounds that must be detected is ethanol. Ethanol is an organic chemical compound that belongs to the alcohol family. It has the chemical formula: C_2H_5OH and it is called generalized alcohol [4]. Ethanol is a colorless, flammable substance formed from the fermentation of sugar. It is used in alcoholic beverages and in the manufacture of perfumes and is used as a fuel in mechanical engines prepared for ethanol [5]. Whereas, eating small to moderate amounts may lead to symptoms of toxicities, such as inconsistency in muscle work, poor vision, slurred speech ... etc. As for eating large amounts, dampening of the bulb reflexes, such as drowsiness, forgetfulness, and memory impairment, amnesia, hypothermia, hypoglycemia, stupor, coma, respiratory depression may occur [6]. Therefore, it is necessary to find a high-efficiency and low-cost sensor material for the detection of ethanol [7]. TiO₂, Cr₂O₃, CuO, ZnO, and SnO₂, etc. are semiconducting metal oxides. Defined as high-efficiency and low-cost sensor materials for the detection of toxic and harmful gases [8] [9] [10] [11] [12]. Recently, different structures of MOS materials with a large specific surface area have been reported to improve the sensing response of sensors, for an example nanowires, nanoparticles, nanorods, hierarchical flower-like structure and hollow microspheres [13] [14].

The SnO_2 known as n-type semiconductor with band gap 3.6 eV. Also, it is promising for gas sensing materials in order to chemical stability, perfect thermal, excellent mobility of an electron and low cost [15]. To synthesis SnO_2 nanocrystal line, Different methods have been used such as chemical vapor deposition, sputtering, hydrothermal and sol-gel, among them hydrothermal method is simple and inexpensive method. Syntheses of pure SnO_2 nanoparticles by a hydrothermal method are still limited. In this work, pure SnO_2 nanoparticles were successfully synthesized by hydrothermal method without any template. The obtained sample was analyzed by SEM, TEM, EDX, and XRD. Moreover, the sensing performances and gas sensing mechanism were discussed.

2. Experimental

In a typical procedure, 1.6 g NaOH, 1.4 g SnCl₂·2H₂O and 1 g PVP were dissolved in mixed solution contained of 5 ml H₂O₂ and 35 ml DI under a magnetic stirring at 30°C for 2 h. Then the above mixed solution was transferred to 50 ml Teflon-lined stainless-steel autoclave and reacted for 10 h at 180°C, therefore, after the autoclave cooling down to room temperature naturally the precipitate was washed with deionized water and ethanol for serval time, finally the SnO₂ powders were obtained after dried in a furnace for 24 h. The crystal structure X-ray diffraction (XRD) of SnO₂ nanoparticles was tested by using an X-ray diffractometer (XRD, D/Max-2400) with Cu Ka1 radiation ($\lambda = 0.15406$ nm), Elemental composition was tested by (EDX) an energy-dispersive X-ray detector, surface morphological and microstructural of the sample was carried out on a scanning electron microscopy (SEM, S-4800) and transmission electron microscopy (TEM, JEM-2010). The gas sensing properties were evaluated by the WS-30B gas sensing apparatus (Wei Sheng Electronics Science and Technology Co., Ltd., Henan Province, China). The sensor response (R) to gas was defined as Ra/Rg, where Ra and Rg were the initial sensor resistance in air and gas [16].

3. Results and Discussion

The X-ray diffraction (XRD) analysis was used to examine the crystal structure of the sample, in **Figure 1(a)**. The peak positions of the sample displayed a rutile type tetragonal structure of SnO₂, which were matched well with a standard card (JCPDS, 41-1445) with a = b = 4.736 Å and c = 3.185 Å. No impurity phase detected which indicates the high purity of the prepared SnO₂ [17]. The crystallite size *d* is measured using Debye-Scherer's formula:

$$d = \frac{0.9\lambda}{\beta\cos\theta}$$

 β is the Full Width at Half Maximum (FWHM) of the peak, θ is the Braggs angle, and λ is the wavelength of X-ray. After calculating by means of the above equation, he found that it is equal to 2.215 nm [18] [19]. (the EDX spectroscopy of SnO₂ nanoparticles) in Figure 1(b), indicating that our sample composed of Sn and O elements. Figure 2(a), Figure 2(b) showed the SEM images of SnO₂ nanoparticles, the nanoparticles are well crystallized, Figure 2(c) displays the TEM image of the as-synthesized product. It can be clearly seen that nanoparticles with rough surfaces, it is matched well with results of SEM, rough surfaces. It is very good to the desorption and adsorption of gas molecules [20] [21], the inner figure in Figure 2(c) is SAED pattern illustrated the polycrystalline nature of SnO₂ sample, the HRTEM image displayed in Figure 2(d), the lattice distance was calculated to be 0.175 nm. It corresponds to (211) crystallographic orientation, the optimum operating temperature was determined, the response values of

Figure 1. (a) The XRD pattern of SnO_2 nanoparticles; (b) showed EDS pattern of the SnO_2 nanoparticles.

Figure 2. (a) (b) displayed the morphologies of SnO_2 nanoparticles; (c) showed the TEM picture of SnO_2 nanoparticles, the inner figure in (c) showed the SAED pattern; (d) displayed HRTEM picture of SnO_2 nanoparticles.

SnO₂ nanoparticles to 100 ppm ethanol under different operating temperatures in the range of 140°C \rightarrow 340°C are evaluated and depicted in Figure 3(a), when the increase of ethanol concentrations from 5 \rightarrow 1000 gas response increases progressively, Figure 3(b), when the concentration is above 150 ppm, the gas sensor nearly be stable. The responses of SnO₂ nanoparticles to 100 ppm different gasses at 180°C determined in Figure 3(c). Our sensor exhibits high selectivity to ethanol. The response and recovery times are about 4 s and 2 s, respectively, Figure 3(d). In Figure 3(e) indicated the sensor nearly to be stable. The results indicate that the SnO₂ nanoparticles based sensor can successfully differentiate ethanol at 180°C. Table 1 showed the Comparison between various SnO₂ based gas sensors to C₂H₅OH.

Experimental results of SnO₂ nanoparticles sensor have been compared with the results reported by the other workers on C_2H_5OH sensors and presented in **Table 1**. It can be seen that SnO₂ nanoparticles sensor can reach a relatively higher response toward C_2H_5OH at lower temperature. The obtained results indicate that the SnO₂ nanoparticles sensor is promising for C_2H_5OH gas sensing. In **Figure 4** the gas-sensing mechanism of SnO₂ nanoparticles when the sample is exposed to air, oxygen molecules will be absorbed on the surface, trapping the conduction band's electrons and creating chemisorbed oxygen species (e.g. O^{2-} , O^- and O_2^-) through Eqs [30].

$$O_2 + e^- \to O_2^- (ads) \tag{1}$$

$$O_2^-(ads) + e^- \to O^-(ads)$$
⁽²⁾

Figure 3. (a) displayed the gas sensor responses of sample to 100 ppm ethanol to different operating temperatures; (b) is gas sensor responses to different concentrations (5 - 1000 ppm) of ethanol; (c) displayed the response to 100 ppm ethanol at different gases; (d) is the response and recover time towards 100 ppm ethanol at 180° C; (e) showed the stability of SnO₂ sample to 100 ppm ethanol at 180° C.

Figure 4. Demonstrated gas sensing mechanism of SnO₂ nanoparticles.

Con (ppm)	Selectivity	Gas response	Synthetic method	Ref.
500	ethanol	208	HM	[22]
100	ethanol	22.46	ES	[23]
100	ethanol	~1.7	EF, HM	[24]
100	ethanol	2.9	HM	[25]
1000	acetone	16.9	НМ	[26]
5	formaldehyde	4.2	BM	[27]
100	formaldehyde, ethanol	24.8	HM	[28]
100	ethanol	392.29	ES	[29]
100	ethanol	27	HM	this work
	Con (ppm) 500 100 100 1000 5 100 100 100	Con (ppm)Selectivity500ethanol100ethanol100ethanol100ethanol1000acetone5formaldehyde100ethanol100ethanol100acetone100formaldehyde100ethanol100ethanol	Con (ppm)SelectivityGas response500ethanol208100ethanol22.46100ethanol22.46100ethanol21.7100ethanol2.91000acetone16.95formaldehyde, ethanol24.8100ethanol392.29100ethanol27	Con (ppm)SelectivityGas responseSynthetic method500ethanol208HM100ethanol22.46ES100ethanol~1.7EF, HM100ethanol2.9HM100acetone16.9HM5formaldehyde4.2BM100formaldehyde, ethanol24.8HM100ethanol392.29ES100ethanol27HM

Table 1. The Comparison between various SnO_2 based gas sensors to C_2H_5OH .

Where: $EF \equiv$ electrospinning followed; $HM \equiv$ hydrothermal method; $BM \equiv$ ball-milling solid chemical reaction method; $ES \equiv$ electrospinning.

$$O^{-}(ads) + e^{-} \rightarrow O^{2-}(ads)$$
(3)

which will generate an electron depletion layer on the surface, leading to high resistance of the material. When the sample is exposed to ethanol, the adsorbed ethanol molecules will react with the surface oxygen species. This process releases the trapped electrons back to the conduction band. Thus, the thickness of the electron depletion layer will decrease, resulting in low resistance of the sample. This progress can be described as follows [31]:

$$C_2H_5OH + 6O^{-}(ads) \rightarrow 2CO_2 + 3H_2O + 6e^{-}$$
(4)

$$C_2H_5OH + 6O^{2-}(ads) \rightarrow 2CO_2 + 3H_2O + 12e^{-}$$
 (5)

4. Conclusion

In summary, SnO_2 nanoparticles have been successfully synthesized through a facile and low-cost hydrothermal method. The sensor exhibits excellent sensitivity about 27, fast response and recovery time (4 s and 2 s), long-term stability and the optimum operating temperate 180°C. Thus SnO_2 nanoparticles can be used as a promising material for ethanol sensors.

Acknowledgements

The authors would like to thank the associate editor and the anonymous reviewer for their valuable comments and suggestions, which have led to a significant improvement of the whole manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 11864034 and 11964035), and the Scientific Research Project of Gansu Province (Grant No. 18JR3RA089 and 17JR5RA072).

Conflicts of Interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported in this paper.

References

- Wang, X., et al. (2020) SnO₂ Core-Shell Hollow Microspheres Co-Modification with Au and NiO Nanoparticles for Acetone Gas Sensing. *Powder Technology*, **364**, 159-166. https://doi.org/10.1016/j.powtec.2020.02.006
- [2] Guo, W., Zhou, Q., Zhang, J., Fu, M., Radacsi, N. and Li, Y. (2019) Hydrothermal Synthesis of Bi-Doped SnO₂/rGO Nanocomposites and the Enhanced Gas Sensing Performance to Benzene. *Sensors and Actuators B: Chemical*, 299, Article ID: 126959. https://doi.org/10.1016/j.snb.2019.126959
- [3] Cao, P.F., et al. (2020) Preparation and Characterization of a Novel Ethanol Gas Sensor Based on FeYO₃ Microspheres by Using Orange Peels as Bio-Templates. Vacuum, 177, Article ID: 109359. <u>https://doi.org/10.1016/j.vacuum.2020.109359</u>
- [4] Ma, Z., Yu, R. and Song, J. (2019) Facile Synthesis of Pr-Doped In₂O₃ Nanoparticles and Their High Gas Sensing Performance for Ethanol. *Sensors and Actuators B: Chemical*, 305, Article ID: 127377. <u>https://doi.org/10.1016/j.snb.2019.127377</u>
- [5] Haron, W., Wisitsoraat, A. and Wongnawa, S. (2017) Nanostructured Perovskite Oxides—LaMO₃ (M = Al, Co, Fe) Prepared by Co-Precipitation Method and Their Ethanol-Sensing Characteristics. *Ceramics International*, **43**, 5032-5040. https://doi.org/10.1016/j.ceramint.2017.01.013
- [6] Ma, Y.T., et al. (2020) Hydrothermal-Synthesis Flower-Like SNS Microspheres Gas Sensors Bonded Physically by PVDF for Detecting Ethanol. Vacuum, 181, Article ID: 109657. https://doi.org/10.1016/j.vacuum.2020.109657
- [7] Xin, X., *et al.* (2019) UV-Activated Porous Zn₂SnO₄ Nanofibers for Selective Ethanol Sensing at Low Temperatures. *Journal of Alloys and Compounds*, **780**, 228-236. https://doi.org/10.1016/j.jallcom.2018.11.320
- [8] Singh, G., Kohli, N. and Singh, R.C. (2017) Preparation and Characterization of Eu-Doped SnO₂ Nanostructures for Hydrogen Gas Sensing. *Journal of Materials Science: Materials in Electronics*, 28, 2257-2266. https://doi.org/10.1007/s10854-016-5796-3
- [9] Enachi, M., et al. (2015) Integration of Individual TiO₂ Nanotube on the Chip: Nanodevice for Hydrogen Sensing. *Physica Status Solidi (RRL)—Rapid Research Let*ters, 9, 171-174. <u>https://doi.org/10.1002/pssr.201409562</u>
- [10] Singh, O. and Singh, R.C. (2012) Enhancement in Ethanol Sensing Response by Surface Activation of ZnO with SnO₂. *Materials Research Bulletin*, **47**, 557-561. <u>https://doi.org/10.1016/j.materresbull.2011.12.049</u>
- [11] Cretu, V., et al. (2016) Synthesis, Characterization and DFT Studies of Zinc-Doped Copper Oxide Nanocrystals for Gas Sensing Applications. Journal of Materials Chemistry A, 4, 6527-6539. <u>https://doi.org/10.1039/C6TA01355D</u>
- [12] Kohli, N., Singh, O. and Singh, R.C. (2011) Influence of pH on Particle Size and Sensing Response of Chemically Synthesized Chromium Oxide Nanoparticles to Alcohols. *Sensors and Actuators B: Chemical*, **158**, 259-264. https://doi.org/10.1016/j.snb.2011.06.016
- [13] Lee, C.T., Lee, H.Y. and Chiu, Y.S. (2016) Performance Improvement of Nitrogen Oxide Gas Sensors Using Au Catalytic Metal on SnO₂/WO₃ Complex Nanoparticle Sensing Layer. *IEEE Sensors Journal*, **16**, 7581-7585. https://doi.org/10.1109/JSEN.2016.2598349

- [14] Hu, J., *et al.* (2018) Enhanced Formaldehyde Detection Based on Ni Doping of SnO₂ Nanoparticles by One-Step Synthesis. *Sensors and Actuators B: Chemical*, 263, 120-128. <u>https://doi.org/10.1016/j.snb.2018.02.035</u>
- [15] Xu, K., Zeng, D., Tian, S., Zhang, S. and Xie, C. (2014) Hierarchical Porous SnO₂ Micro-Rods Topologically Transferred from Tin Oxalate for Fast Response Sensors to Trace Formaldehyde. *Sensors and Actuators B: Chemical*, **190**, 585-592. <u>https://doi.org/10.1016/j.snb.2013.09.021</u>
- Yang, A.H.M., *et al.* (2017) Synthesis of La₂O₃ Doped Zn₂SnO₄ Hollow Fibers by electrospinning Method and Application in Detecting of Acetone. *Applied Surface Science*, **425**, 585-593. https://doi.org/10.1016/j.apsusc.2017.07.073
- [17] Wang, Q., et al. (2011) Porous SnO₂ Nanoflakes with Loose-Packed Structure: Morphology Conserved Transformation from SnS₂ Precursor and Application in Lithium Ion Batteries and Gas Sensors. *Journal of Physics and Chemistry of Solids*, 72, 630-636. https://doi.org/10.1016/j.jpcs.2011.02.004
- [18] Almamoun, O. and Ma, S.Y. (2017) Effect of Mn Doping on the Structural, Morphological and Optical Properties of SnO₂ Nanoparticles Prepared by Sol-Gel Method. *Materials Letters*, **199**, 172-175. <u>https://doi.org/10.1016/j.matlet.2017.04.075</u>
- [19] Cheng, L., *et al.* (2014) Highly Sensitive Acetone Sensors Based on Y-Doped SnO₂ Prismatic Hollow Nanofibers Synthesized by Electrospinning. *Sensors and Actuators B: Chemical*, 200, 181-190. <u>https://doi.org/10.1016/j.snb.2014.04.063</u>
- [20] Zhang, G.H., Chen, Q., Deng, X.Y., Jiao, H.Y., Wang, P.Y. and Gengzang, D.J. (2019) Synthesis and Characterization of In-Doped LaFeO₃ Hollow Nanofibers with Enhanced Formaldehyde Sensing Properties. *Materials Letters*, 236, 229-232. https://doi.org/10.1016/j.matlet.2018.10.062
- [21] Liao, L., et al. (2007) Size Dependence of Gas Sensitivity of ZnO Nanorods. The Journal of Physical Chemistry C, 111, 1900-1903. <u>https://doi.org/10.1021/jp065963k</u>
- Jiang, X.H., *et al.* (2015) 3D Porous Flower-Like SnO₂ Microstructure and Its Gas Sensing Properties for Ethanol. *Materials Letters*, **159**, 5-8. https://doi.org/10.1016/j.matlet.2015.06.050
- [23] Yan, S., Xue, J. and Wu, Q. (2018) Synchronous Synthesis and Sensing Performance of A-Fe₂O₃/SnO₂ Nanofiber Heterostructures for Conductometric C₂H₅OH Detection. *Sensors and Actuators B: Chemical*, **275**, 322-331. https://doi.org/10.1016/j.snb.2018.07.079
- [24] Li, R., *et al.* (2017) Fabrication of Porous SnO₂ Nanowires Gas Sensors with Enhanced Sensitivity. *Sensors and Actuators B: Chemical*, 252, 79-85. https://doi.org/10.1016/j.snb.2017.05.161
- [25] Zhao, C., *et al.* (2018) Facile Synthesis of SnO₂ Hierarchical Porous Nanosheets from Graphene Oxide Sacrificial Scaffolds for High-Performance Gas Sensors. *Sensors and Actuators B: Chemical*, **258**, 492-500. https://doi.org/10.1016/j.snb.2017.11.167
- [26] Zhu, Y., et al. (2019) High-Performance Gas Sensors Based on the WO₃-SnO₂ Nanosphere Composites. Journal of Alloys and Compounds, 782, 789-795. https://doi.org/10.1016/j.jallcom.2018.12.178
- [27] Xiang, X., Zhu, D. and Wang, D. (2016) Enhanced Formaldehyde Gas Sensing Properties of La-Doped SnO₂ Nanoparticles Prepared by Ball-Milling Solid Chemical Reaction Method. *Journal of Materials Science: Materials in Electronics*, 27, 7425-7432. <u>https://doi.org/10.1007/s10854-016-4718-8</u>

- [28] Ren, H., Zhao, W., Wang, L., Ryu, S.O. and Gu, C. (2015) Preparation of Porous Flower-Like SnO₂ Micro/Nano Structures and Their Enhanced Gas Sensing Property. *Journal of Alloys and Compounds*, 653, 611-618. https://doi.org/10.1016/j.jallcom.2015.09.065
- [29] Li, W., et al. (2015) Enhanced Ethanol Sensing Performance of Hollow ZnO-SnO₂ Core-Shell Nanofibers. Sensors and Actuators B: Chemical, 211, 392-402. https://doi.org/10.1016/j.snb.2015.01.090
- [30] Li, Z. and Yi, J. (2017) Enhanced Ethanol Sensing of Ni-Doped SnO₂ Hollow Spheres Synthesized by a One-Pot Hydrothermal Method. Sensors and Actuators B: Chemical, 243, 96-103. https://doi.org/10.1016/j.snb.2016.11.136
- [31] Fan, C., et al. (2020) Enhanced H₂S Gas Sensing Properties by the Optimization of p-CuO/n-ZnO Composite Nanofibers. Journal of Materials Science, 55, 7702-7714. https://doi.org/10.1007/s10853-020-04569-8