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Abstract 
The gadolinium substituted nickel-zinc ferrite nanoparticles of the composi-
tion, Ni0.5Zn0.5Gd0.05Fe1.95O4 were prepared using sol-gel method. In order to 
study the effect of calcination temperature on the optical parameters, the 
prepared powder was divided into five parts. The first part was taken as the 
as-prepared sample and the remaining four parts were calcinated at different 
temperatures, 600˚C, 700˚C, 800˚C & 900˚C. The X-ray diffraction patterns 
revealed the formation of cubic spinel structure with single phase and Fd3m 
space group. The crystallite size was increased from 11.75 nm to 18.13 nm as 
the calcination temperature increased from 600 to 900˚C whereas as-prepared 
sample exhibited 17.61 nm. The dislocation density was decreased from 7.243 
× 10−3 to 3.042 × 10−3 nm−2 as the calcination temperature increased from 
600˚C to 900˚C. The micro strain was decreased from 10 × 10−4 to 6.452 × 
10−4 as the calcination temperature increased from 600˚C to 900˚C. The cha-
racteristic absorbance peaks were obtained at 255.2 nm for the ferrite nano-
particles of as-prepared and calcinated at 600˚C and 800˚C whereas it was 
obtained as 252.8 nm for the sample calcinated at 700˚C and there was no 
such characteristic peak in UV-visible range for the sample calcinated at 
900˚C; it is expected in the below 200 nm region. The optical energy gap was 
calculated using Kubelka-Munk equation based on Tauc’s plot and found in 
the range 4.100 eV to 5.389 eV. The lowest energy gap of 4.100 eV exhibited 
by the sample calcinated at 700˚C and the highest energy gap of 5.389 eV by 
the sample calcinated at 900˚C. It is concluded that the tunable band gaps can 
be obtained with varying calcination temperature.  
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Extinction Coefficient, Real and Imaginary Parts of Dielectric Constant 

 

1. Introduction 

Ferrites are known as the magnetic materials having cubic spinel structure with 
chemical formula AB2O4, where “A” indicates the divalent cations such as Mg2+, 
Ni2+, Cu2+, Co2+, Zn2+, and “B” indicates the trivalent metal ion of Fe3+ [1]. In 
fact, bulk and ferrites nanoparticles perform widespread applications in various 
manufacturing and scientific fields. Predominantly, these materials reveal more 
important in memory devices such as magnetic tapes and hard disk devices, and 
in the field of biomedicine, these were used as magnetic hyperthermia, magnetic 
resonance imaging (MRI) application. In the field of communication systems, 
these are used as transformer & inductor core devices, electromagnetic shielding, 
multilayer chip inductors (MLCIs), high-frequency antenna devices, humidity & 
temperature sensors, magnetic refrigeration [2]. The applications of ferrite na-
noparticles are also extended in the disciplines such as biomedical technology 
[3], nuclear magnetic resonance [4], magnetic fluid [5], hydroelectric energy [6], 
optoelectronic sensor [7], and catalyst [8]. Further, the applications of these ma-
terials in industry are due to their promising dielectric and opto-electronic prop-
erties [9] [10] [11] [12]. The dielectric and opto-electronic characteristics of 
these materials are highly relied on the crystal structure, existence of various 
metal ions in crystal structure, nature and quantity of substitution or dopant.  

UV-vis absorption spectra have been used to investigate the band gap energies 
of AB2O4 spinel ferrites [13]-[18]. Jariti Pal et al. studied the characteristics of 
Co3O4 nanocrystals, and gave curves of (αhν)2 vs hν, where α is the UV-vis ab-
sorption coefficient, and hν is the photon energy. Using this curve, they obtained 
two optical energy bandgaps, 2.28 and 1.57 eV. They appealed that the two opti-
cal energy band gaps link to the electron transitions for O2− to Co2+ and O2− to 
Co3+, respectively [13]. In the similar manner, Hu et al. studied the properties of 
NiCo2O4 nanoparticles and observed two optical energy bandgaps, 2.0 eV and 
3.3 eV, which were attributed to the co-existence of high-spin and low-spin 
states of Co3+ in the NiCo2O4 spinel [14]. Cui et al. estimated the optical energy 
bandgaps from O 2p to Co 3d-eg and Co 3d-t2g for ordinary NiCo2O4, and found 
values of 3.40 and 1.97 eV, respectively [15]. Melsheimer et al. studied the band 
gap energies of heteropoly compounds using differential UV absorption spectra, 
dα/dE vs E, where E = hν is the photon energy [18]. In the present study, apart 
from the analysis of the effect of calcination temperature on optical energy band-
gaps, a sincere effort was put forward to analyze the effect of calcination temper-
ature on several optical parameters, such as, refractive index, absorption coeffi-
cient, extinction coefficient, real and imaginary parts of dielectric constant, as no 
one focused on such study of Ni0.5Zn0.5Gd0.05Fe1.95O4 nanoparticles. This is really 
significant in understanding magnetic properties and electrical transport of a 
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material. 

2. Materials 

Ferrite nanoparticles of the composition, Ni0.5Zn0.5Gd0.05Fe1.95O4 were prepared 
by sol-gel method [19]. Nickel nitrate, zinc nitrate, iron nitrate, gadolinium ni-
trate, citric acid and ammonia of analytical grade were used as starting materials. 
Using the materials, nickel nitrate (Ni(NO3)2·6H2O), ferric nitrate (Fe(NO3)3·9H2O), 
zinc nitrate (Zn(NO3)2·6H2O) and gadolinium nitrate (Gd(NO3)3), a solution was 
prepared in their stoichiometry and dissolved in a de-ionized water. With the 
addition of citric acid, the prepared aqueous solution was made to chelate Ni2+, 
Zn2+, Gd3+ and Fe3+ ions in the solution. The molar ratio was adjusted to 1:3 ratio 
between the citric acid and total moles of nitrate ions. The pH value of mixed 
solution was maintained at 7 by neutralizing the solution with the ammonia 
(NH3) in adequate proportion. The neutralized solution was heated at about 
100˚C on a hot plate with continuous stirring to get final product in the form of 
viscous gel. The temperature was increased to about 300˚C and led to ignite the 
formed gel and burnt completely in a self-propagating combustion manner to 
form a loose powder [20] [21]. The prepared powder is divided into five parts, 
one part was kept away from calcination and just treated as as-prepared sample 
and the remaining four parts were calcinated at 600˚C, 700˚C, 800˚C & 900˚C 
for 8 h.  

3. Results and Discussions 

The XRD patterns of all the samples have been recorded at room temperature 
using Shimadzu XRD-7000 X-Ray Diffractometer are presented in Figure 1. 
They exhibited cubic spinel structure with single phase and Fd3m space group. 
The XRD data were fitted using the X' Pert High Score Plus software with the 
Rietveld powder diffraction profile fitting technique [22]. In Table 1, the  
 

Table 1. Lattice parameters, Bragg’s angle, FWHM, crystallite size, density, microstrain and Energy gap of Ni0.5Zn0.5Gd0.05Fe1.95O4 
ferrite nanoparticles (as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C). 

Calcination Temperature As-Prepared 600˚C 700˚C 800˚C 900˚C 

Lattice Parameter (a) (Å) 8.389 8.382 8.373 8.367 8.360 

Volume of Unit Cell (Å3) 590.38 588.90 587.01 585.75 584.28 

Bragg’s Angle (2θ) (˚) 35.58 35.76 35.65 35.49 35.62 

FWHM (˚) 0.47386 0.71047 0.64333 0.5778 0.46028 

X-ray Density (ρx) (g/cm3) 4037 4107 4120 4129 4140 

Crystallite Size (D) (nm) 17.61 11.75 12.98 14.44 18.13 

Dislocation Density (δD) (nm−2) × 10−3 3.225 7.243 5.935 4.796 3.042 

Microstrain (ε) × 10−4 6.634 10.000 9.0260 8.068 6.452 

Absorbance peak (λmax) (nm) 255.2 255.2 252.8 255.2 - 

Energy Gap (E) (eV) 4.327 4.266 4.100 4.308 5.389 
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Figure 1. X-ray diffraction patterns of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles 
(as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) [22]. 
 
parameters such as lattice parameters, Bragg’s angle, FWHM, crystallite size, dislo-
cation density and micro strain of all the samples are furnished. The addition of 
gadolinium ions increases the micro strain (ε) in nickel-zinc ferrite nanopar-
ticles, because the gadolinium ion radius is greater than the ferric ion radius. 
The micro strain value can be calculated from Equation (1) [23].  

4 tan
βε
θ

=                             (1) 

The micro strain value decreased from 10 × 10−4 to 6.452 × 10−4 as the calcina-
tion temperature increases from 600˚C to 900˚C whereas the as-prepared sample 
has a value of 6.634 × 10−4. The dislocation density (δD) is inversely proportional 
to the square of crystallite size. The dislocation density increases with the defect 
occurrence due to any kind of reason and it can be calculated from the following 
Equation (2) [23] 

2

1
D D

δ =                             (2) 

The density of dislocation was decreased from 7.243 × 10−3 to 3.042 × 10−3 
nm−2 as the calcination temperature increases from 600˚C to 900˚C whereas the 
as-prepared sample has a value of 3.225 × 10−3 nm−2. It is clearly noticed that 
there was a systematic effect of calcination temperature on micro strain and dis-
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location density of taken up samples. The X-ray density in the cubic system can 
be calculated from the following Equation (3) [24].  

x
ZM
NV

ρ =                            (3) 

where, Z = 8 for a cubic system (Unit formula), M is the molecular weight of fer-
rite, N the Avogadro’s number (6.023 × 1023 mol−1) and V is the volume of cell 
unit. The X-ray density was increased from 4037 to 4140 g/cm3 as calcination 
temperature increases from as-prepared sample to 900˚C. 

The UV-visible absorption spectra of all the samples were measured with a 
spectrophotometer (SYSTRONICS DOUBLE BEAM UV-Vis Spectrometer: 2202) 
at room temperature in the wavelength range 200 - 800 nm, with a maximum 
step size of 0.2 nm. The absorbance can be obtained from the instrument and the 
transmittance can be calculated using the following relation (4).  

10 100A
sT −= ×                          (4) 

where, Ts is known as transmittance and A is known as Absorbance. Hence, the 
absorption coefficient can be calculated using the following relation (5) [25]. 

2.303 A
l

α ×
=                          (5) 

where, α is known as absorption coefficient, A is known as absorbance and l is 
known as thickness of the specimen. Figure 2 shows the variation of absorbance 
and transmittance of all the ferrite nanoparticles (as-prepared and calcinated at 
600˚C, 700˚C, 800˚C & 900˚C) with wavelength in UV-visible range, 200 - 800 
nm. In the case of U. Naresh, et al., for CuFe2O4 the characteristic absorbance 
peak was obtained in the range 311 - 340 nm [26]. The characteristic absorbance 
peaks were obtained at 255.2 nm for the ferrite nanoparticles of as-prepared and 
calcinated at 600˚C and 800˚C whereas it was obtained as 252.8 nm for the sam-
ple calcinated at 700˚C and there was no such characteristic peak in UV-visible 
range for the sample calcinated at 900˚C, may be the it would be in the below  
 

 

Figure 2. Variation of absorbance and transmittance of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite na-
noparticles (as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with wave-
length in UV-Visible region. 
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200 nm region. The refractive index can be measured with the help of following 
relation (6). 

1 1
1s s

n
T T

= +
−

                         (6) 

where, n is refractive index and Ts is transmittance. Figure 3 shows the variation 
of refractive index of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles (as-prepared 
and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with wavelength in UV-visible 
region, 200 - 800 nm. From the study, it was observed clearly that refractive in-
dex of the samples increased gradually, reaches maximum and then decreased. 
The characteristic peaks were observed at the characteristic wavelengths ob-
served for absorbance peaks. Using the following relation (7), extinction coeffi-
cient can be calculated [27]. 

4
k αλ
=

π
                           (7) 

where, k is extinction coefficient, λ is wavelength and α is absorption coefficient. 
Figure 4 shows the variation of extinction coefficient of Ni0.5Zn0.5Gd0.05Fe1.95O4 
ferrite nanoparticles (as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 
900˚C) with wavelength in UV-visible region, 200 - 800 nm. All the samples ex-
hibited a characteristic peak except the sample calcinated at 900˚C. In case of all 
the samples, the extinction coefficient was gradually increased, reached maxi-
mum and then decreased in the wavelength range, 200 to 300 nm, there on-
wards, the extinction coefficient increased linearly except the case of sample cal-
cinated at 900˚C. In case of sample calcinated at 900˚C, the extinction coefficient 
varied linearly from 200 to 800 nm, may be the characteristic peak would be in 
the below 200 nm region. It was clearly observed that extinction coefficient was 
observed maximum for the as-prepared sample and it was observed low for the 
sample calcinated at 700˚C. 
 

 

Figure 3. Variation of refractive index of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles 
(as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with wavelength in 
UV-Visible region. 
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Figure 4. Variation of extinction coefficient of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles 
(as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with wavelength in 
UV-Visible region. 
 

The reflectance can be calculated with the help of refractive index, as follows 
(8) [28]: 

( )
( )

2

2

1

1

n
R

n

−
=

+
                          (8) 

where, R is reflectance, and n is refractive index. Figure 5 shows the variation of 
reflectance of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles (as-prepared and cal-
cinated at 600˚C, 700˚C, 800˚C & 900˚C) with wavelength in UV-visible region, 
200 - 800 nm. All the samples exhibited a characteristic peak except the sample 
calcinated at 900˚C. In case of all the samples, the extinction coefficient was 
gradually decreased, reached minimum and then increased in the wavelength 
range, 200 to 300 nm, there onwards, the reflectance was constant except the 
case of sample calcinated at 900˚C. In case of sample calcinated at 900˚C, the 
reflectance increased gradually till 300 nm and there onwards it was consistent, 
may be the characteristic peak would be in the below 200 nm region. It was 
clearly observed that the reflectance was observed maximum for the as-prepared 
sample and reflectance was observed low for the sample calcinated at 600˚C. 

Using the refractive index and extinction coefficient, the real and imaginary 
parts of dielectric constant can be expressed with the following relations (9 
and10) [29] [30]. 

2i nkε =                            (9) 
2 2

r n kε = −                          (10) 

Figure 6 shows the variation of real and imaginary parts of dielectric constant 
of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles (as-prepared and calcinated at  
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Figure 5. Variation of reflectance of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles (as-prepared 
and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with wavelength in UV-Visible region. 
 

 

Figure 6. Variation of real and imaginary parts of dielectric constant of Ni0.5Zn0.5Gd0.05Fe1.95O4 
ferrite nanoparticles (as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) with 
wavelength in UV-Visible region. 
 
600˚C, 700˚C, 800˚C & 900˚C) with wavelength in UV-Visible region, 200 - 800 
nm. All the samples exhibited a characteristic peak except the sample calcinated 
at 900˚C, may be the characteristic peak would be in the below 200 nm region. 

The optical energy bandgap (Eg) of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles 
(as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C) were calculated 
using the Tauc plots. The absorption coefficient of the ferrite nanoparticles has 
been determined from the absorption data by using the fundamental relation-
ships (11, 12 and 13) [31] [32].  

0e tI I α=                             (11) 

0log
I

A
I

=                            (12) 
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Figure 7. Tauc plots of Ni0.5Zn0.5Gd0.05Fe1.95O4 ferrite nanoparticles (as-prepared and calcinated at 600˚C, 700˚C, 800˚C & 900˚C). 
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and 

2.303A
t

α =                           (13) 

where, α is absorption coefficient, A is the absorbance, and t is the thickness of 
the samples. To calculate the optical absorption for the present ferrite nanopar-
ticles, the following Tauc’s relation (14) [33] [34] is used 

( ) ( )1 n
gh A h Eα ν ν= −                      (14) 

where, α is absorption coefficient, h is Plank’s constant, ν is frequency; A is ab-
sorbance and Eg is optical energy bandgap. (αhν)1/n was plotted as a function of 
the photon energy (hν) for different n values (n = 1/2, 3/2, 2, 3). These plots are 
known as Tauc plots [35] and are presented in Figure 7. For direct allowed tran-
sition n = 1/2, indirect allowed transition n = 2, direct forbidden transition n = 
3/2 and forbidden indirect transition n = 3. To determine the possible transi-
tions, (αhν2) vs hν is plotted and corresponding optical energy bandgap were 
obtained from extrapolating the straight portion of the graph on hν axis. The 
optical energy bandgap obtained in the range of 4.100 to 5.389 eV. The sample 
calcinated at 700˚C exhibited minimum optical energy bandgap of 4.100 eV 
whereas the sample calcinated at 900˚C exhibited maximum optical energy band-
gap of 5.389 eV. The energy gap can be attributed to the energy difference be-
tween conduction band and valence band. This may be due to presence of addi-
tional sub-band-gap energy levels that are induced by the abundant surface and 
interface defects in the agglomerated nanoparticles [36] [37].  

4. Conclusions 

It is evident that the effect of calcination temperature was present on all factors 
that are studied in this paper. Some of the salient conclusions: 

1) The crystallite size was increased from 11.75 nm to 18.13 nm as the calcina-
tion temperature increased from 600˚C to 900˚C whereas as-prepared sample 
exhibited 17.61 nm.  

2) The dislocation density was decreased from 7.243 × 10−3 to 3.042 × 10−3 
nm−2 as the calcination temperature increased from 600˚C to 900˚C.  

3) The micro strain was decreased from 10 × 10−4 to 6.452 × 10−4 as the calci-
nation temperature increased from 600˚C to 900˚C.  

4) The characteristic absorbance peaks were obtained at 255.2 nm for the fer-
rite nanoparticles of as-prepared and calcinated at 600˚C and 800˚C whereas it 
was obtained as 252.8 nm for the sample calcinated at 700˚C and there was no 
such characteristic peak in UV-visible range for the sample calcinated at 900˚C; 
it is expected in the below 200 nm region. 

5) The optical energy gap was calculated using Kubelka-Munk equation based 
on Tauc’s plot and found in the range 4.100 eV to 5.389 eV. The lowest energy 
gap of 4.100 eV exhibited by the sample calcinated at 700˚C and the highest 
energy gap of 5.389 eV by the sample calcinated at 900˚C.  
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6) It’s evident that the tunable band gaps can be obtained with varying calci-
nation temperature. 
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