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Abstract 
The glass series 50P2O5-25CaO-(25−x)Na2O-xCoO (with (0 ≤ x ≤ 25; mol%), 
has been prepared by direct melting at 1080˚C ± 20˚C. The introduction of 
cobalt in calcium phosphate glasses is used to compare its effect with calcium 
in inhibition corrosion. The dissolution rate has been investigated. It indi-
cated an improvement of chemical durability when the cobalt oxide increases 
in the network glass at the expense of Na2O content. Both, IR spectroscopy 
and X-ray diffraction have confirmed the structure changes when the CoO 
content increases in the glass. This change results in the disappearance of iso-
lated orthophosphate groups followed of a polymerizing of the structure from 
isolated orthophosphate towards pyrophosphate chains (Q1) by promoting 
the formation of olygophosphates (mixed Q1-Q2) rich in pyrophosphates. 
Analysis of the density values, showed an increase of density with the increase 
CoO content. The covalent radius values of oxygen rcal (O2−) indicate a signifi-
cant decrease and therefore a relatively high reinforcement of the met-
al-oxygen-phosphorus (Co-O-P) bonds. SEM micrograph confirms the evolu-
tion of the glass structural morphology. The sample having a maximum CoO 
content confirms a homogeneous glass phase with quite crystalline particles. 
This property is prerequisite for many interesting industrial applications. 
 

Keywords 
Chemical Durability Phosphate Glasses, Cobalt Oxide, Density, DTA, DRX, 

How to cite this paper: Bachachir, B., 
Er-Rouissi, Y., Makhlouk, R., Harrati, A., El 
Bouari, A. and Aqdim, S. (2021) Structural 
Features and Properties of the Vitreous Part of 
the System 50P2O5-25CaO-(25−x)Na2O-xCoO 
(with 0 ≤ x ≤ 25; mol%). Advances in Mate-
rials Physics and Chemistry, 11, 254-266. 
https://doi.org/10.4236/ampc.2021.1112021  
 
Received: October 13, 2021 
Accepted: December 26, 2021 
Published: December 29, 2021* 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution-NonCommercial 
International License (CC BY-NC 4.0). 
http://creativecommons.org/licenses/by-nc/4.0/ 

  
Open Access

https://www.scirp.org/journal/ampc
https://doi.org/10.4236/ampc.2021.1112021
https://www.scirp.org/
https://doi.org/10.4236/ampc.2021.1112021
http://creativecommons.org/licenses/by-nc/4.0/


B. Bachachir et al. 
 

 

DOI: 10.4236/ampc.2021.1112021 255 Advances in Materials Physics and Chemistry 
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1. Introduction 

Due to their poor chemical durability phosphate glasses have rather limited 
technological application despite their investigation so far conducted by many 
researchers [1] [2]. However, several phosphate glasses with high aqueous corro-
sion resistance have been reported [3] [4] [5] [6] [7]. Their properties (low 
melting point, high thermal expansion coefficient, bioactivity, optical properties 
etc.) make these glasses serious potential candidates for many technological appli-
cations. It has been found that the introduction of oxides, such as ZnO, Fe2O3, 
Al2O3, PbO, CaO and Cr2O3, results in the formation of, Zn-O-P, Fe-O-P, Pb-O-P, 
Al-O-P, Ca-O-P and Cr-O-P bonds, leading to improvement of phosphate glasses 
chemical durability [5] [7] [8] [9] [10] [11]. The synergy of phosphate glasses with 
some types of nuclear waste has indicated the possibility of a form of waste with a 
lower corrosion rate than borosilicate glasses [8] [12]. As a result of high chemi-
cal durability, iron phosphate glasses have been considered as better candidates 
for the vitrifying of some type of nuclear wastes when compared with borosili-
cate glasses [4] [5] [6] [8]. The aim of the present work is to synthesize and select 
phosphate glasses in the system 50P2O5-25CaO-(25−x)Na2O-xCoO (with 0 ≤ x ≤ 
25; mol%) for two reasons: 
• the first reason is to analyze glasses, with low cobalt content, by different tech-

niques arranged for further later studies in the biomedical field [13] [14] [15]; 
• the second reason is to compare the effect of cobalt with that of iron in inhi-

bition of corrosion [3] [6] [16]. The studied series indicated the structural 
change when cobalt content increases and causes an important tendency po-
lymerization from orthophosphates to pyrophosphate groups which are at 
the origin of the improvement of chemical durability. 

2. Experimental Section 

Phosphate glasses are prepared by direct melting of the (NH4)H2PO4 (98,99% 
pure), CaCO3 (99.5% pure), Na2O (99% pure), CoCO3, xH2O (Co 43% - 47% 
pure) mixtures with suitable proportions. The reagents are intimately crushed 
then introduced into a porcelain crucible. They were initially heated at 300˚C for 
2 h and then kept at 500˚C for 1 h to complete the decomposition. The reaction 
mixture was then heated at 850˚C. for 1 h and finally at 1080˚C for 30 minutes. 
The homogeneous liquid was poured in aluminum plate previously heated to 
200˚C to avoid thermal shock. Pellets about 5 to 10 mm in diameter and 1 to 3 
mm thick were obtained. The samples were polished with carbon Silica sandpa-
per (with CSI of sufficiently high level), cleaned with acetone and immersed in 
pyrex beakers containing 100 ml of distilled water and carried to 90˚C. The 
sample surface must be constantly submerged in distilled water for 21 consecu-
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tive days. The dissolution rate was evaluated from the mass loss as a function of 
time. The IR spectra of the studied phosphate glasses were determined in the 
frequency range between 400 and 1600 cm−1 with a resolution of 2 cm−1 using a 
Fourier transform infrared spectrometer (IR AFFINITY-1S). The samples were 
finally ground and mixed with KBr (potassium bromide), which is transparent 
in the IR and serves as a template. The ratio of the matter/KBr in the pellets was 
10% by weight. The vitreous state was first evidenced from the shiny and trans-
parency aspect, which was confirmed by X-ray diffraction patterns (XRD type 
BRUKER D8 ADVANCE). The glasses S0, S2 and S4 were annealed at 540˚C, 
551˚C and 660˚C, respectively, for 72 hours. Differential thermal analysis (DTA) 
was performed using a DTG-60 SUMULTANEOUS DTA-DTG Apparatus, at a 
heating rate of 10˚C/min in atmospheric air with alumina crucibles. The Archi-
medes method was used to measure the density of glasses using orthophthalate 
as a floating medium. The microstructures of the sample glasses were characte-
rized by scanning electron microscopy (SEM), equipped with a full system mi-
cro-analyser (EDX-EDAX). 

3. Results and Discussion 
3.1. Analysis of Chemical Durability of Series Glasses 

50P2O5-25CaO-(25−x)Na2O-xCoO 

The chemical durability (DR) of the glass series 50P2O5-25CaO-(25−x)Na2O-xCoO 
(with 0 ≤ x ≤ 25 mol%) was determined from the dissolution rate (DR) of the 
samples immersed in 100 ml of distilled water at 90˚C for 21 consecutive days. 
The dissolution rate is defined as the weight loss of the glass expressed in 
g∙cm−2∙min−1. The values of DR and of pH of the leaching aqueous solution are 
represented respectively, in figures 1 and grouped in Table 1. In Figure 1, the 
shape of the DR curve indicates a progressive improvement of the chemical du-
rability of the glass from 5.44 × 10−5 to 8.60 × 10−7 (g∙cm−2∙min−1) when the CoO 
content varies from 0 to 25 mol% [10]. 

3.2. Density and Molar Volumes 

Density measurements allowed us to follow the evolution of the molar volume  
 
Table 1. Compositions, calculated O/P ratio, DR and transition temperature (Tg) of the series 50P2O5-25CaO-(25−x)Na2O-xCoO 
glasses versus CoO (mol%).  

Glass 
Sample 

Starting glass composition (mol%) Ratio 
O/P 

DR (g/cm2∙min) 
Tg (˚C) TC (˚C) TC-TG pH 

CoO Na2O CaO P2O5 (±5˚C) ±0.5 

S0 0 25 25 50 

3 

(5.40 ± 0.20) × 10−5 377 505 128 6,2 

S1 5 20 25 50 (1.69 ± 0.20) × 10−5 405 524 119 6,6 

S2 10 15 25 50 (4.83 ± 0.20) × 10−6 434 555 121 8,4 

S3 15 10 25 50 (1.55 ± 0.20) × 10−6 455 570 115 8,6 

S4 25 0 25 50 (8.60 ± 0.20) × 10−7 528 661 133 8,8 
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depending on the composition of the system 50P2O5-25CaO-(25−x)Na2O-xCoO. 
The density measurements were completed at room temperature. As can be ob-
served from Figure 2, the variation in density versus CoO content (mol%) indi-
cates an increase of density. On the other hand, it was possible to deduce the 
value of the molar volume and oxygen radius from density measurements, cal-
culated from the approximate hypothesis of the close packing of oxygen anions, 
O2−, each having rcal (O2−) recapitulated for each composition in Table 2 [4] [10] 
[16] [17]. The molar volume of oxygen and the radius of anions of oxygen (O2−) 
in the glass have been determined from Equations (1) and (2), respectively. 

 

 
Figure 1. Dissolution rates (DR) of the series of 50P2O5-25CaO-(25−x)Na2O-xCoO glasses 
versus CoO (mol%). 

 

 

Figure 2. Variation of the density (ρ) versus CoO (mol%) along the glasses series 
50P2O5-25CaO-(25−x)Na2O-xCoO. 
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Table 2. Density and related molar data of the 48P2O5-30CaO-(21−x)Na2O-xTiO2 system. 

Samples 
Molar formula 

Oxygène/Mol (NO) 
Density 

ρv (g∙cm−3) 
Molar Mass 

(g/mol) 

Molar Volume (Å)3 

0
OM

A

MV
N Nρ

=  
Calculated oxygen radius 

(O2−) (Å) ( )2Ocalr −  

S0 
25Na2O-25CaO-50P2O5 

(300) 
2.588 10,051.95 21.5 1.390 

S1 
5CoO-20Na2O-25CaO-50P2O5 

(300) 
2.637 10,116.615 21.2 1.384 

S2 
10CoO-15Na2O -25CaO-50P2O5 

(300) 
2.709 10,181.28 20.8 1.375 

S3 
15CoO-10Na2O -25CaO-50P2O5 

(300) 
2.720 10,245.945 20.6 1.372 

S4 
25CoO-25CaO-50P2O5 

(300) 
2.819 10,375.275 20.3 1.364 

 

0*OM AV M N Nρ=                       (1) 

( )
3

2O
2
OM

cal

V
r − =                        (2) 

With M = molar mass, ρ = density, NA = Avogadro number; *N0 = number of 
oxygen atoms in the molecular formula. A detailed analysis of the data in Table 
2 shows that the molar volume decreases increasing of the CoO content. The 
covalent radius value of the oxygen atom (O2−), calculated by the molar volume 
using the Equation (2) for each composition, decrease, also, indicating a rein-
forcement of the metal-oxygen-phosphorus (Co-O-P) bond with increasing of 
CoO content. 

3.3. Structural Approach by Infrared Spectroscopy 

Infrared spectra of glass series 50P2O5-25CaO-(25−x)Na2O-xCoO (0 ≤ x ≤ 25; 
mol%) are shown in Figure 3. The assignments of the vibration bands are given 
in Table 3. All vibration bands of treated phosphate glasses are shown in the 
range of frequencies between 400 and 1600 cm−1. The band at 490 - 510 cm−1 is 
attributed to skeletal deformation δske (P-O-P) [3] [4] [5] [6] [18]. The frequency 
band located at 770 - 786 cm−1 is attributed to the symmetrical mode of vibration 
νsym (P-O-P) of the pyrophosphate groups (Q1) [4] [18] [19] [20] [21], while the 
bands at 880 - 910 are assigned to the asymmetric vibration mode νasym (P-O-P) 
[4] [8] [22] [23] [24] [25] [26]. The band that appears around 1015 cm−1 is attri-
buted to the asymmetric vibration mode νasym (P-O-P) of the isolated orthoph-
sphate groups (Q˚) [5] [19] [21] [23]. The band at 1280 cm−1 is attributed to 
asymmetric stretching of two non-bridging oxygens νsym PO2. Analysis of the IR 
spectra obtained (Figure 3) indicates that the vibration band νasym P-O-P at 1015 
cm−1 attributed to the isolated orthophosphate groups decreases with increasing 
cobalt oxide at the expense of Na2O content. This band disappears completely 
when the CoO content reaches 15 mol%. On the other hand the shift, at the  
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Figure 3. IR spectra of the series of 50P2O5-25CaO-(25−x)Na2O-xCoO glasses,(with 0 ≤ x 
≤ 25; mol%). 

 
Table 3. The assignments of different vibration bands of the IR spectra of the quaternary 50P2O5-25CaO-(25−x)Na2O-xCoO. 

Régions de  
fréquence (cm−1) 

assignements Réferences 

490 - 510 

777 - 786 

880 - 910 

1015 

1078 - 1093 

1280 

Vibration mode δske (P-O-P) 

Vibration mode υsym (P-O-P) in unit Q1 

Vibration mode υasym (P-O-P) in unit Q1 

Vibration mode υasym (P-O-P) in unit Q0 

Vibration mode υsym(PO2)/υasym (PO3) in units Q1 + Q2  

Vibration mode υasym (PO2) in unit Q2 

[3] [4] [5] [6] [14] [19] [20] [21] [22] [23] 

[14] [18] [19] [20] 

[5] [18] [19]  

[5] [23] [27] 

[20] 

[3] [4] [5] [19] [26] [27] 

 
same time, of the vibration band νsym P-O-P, located at 777 cm−1, towards the 
high values and the decrease in the intensity of the vibration band νPO2, located 
at 1280 cm−1, added the shift of the vibration band νasym (PO3)/νsym (PO2) toward 
low values, confirms the increase in the number of pyrophosphate groups to the 
detriment of metaphosphate groups, when the CoO content increases in the glass 
network. As for the vibration bands at approximately 1078-1093 cm−1 and 1280 
cm−1 are assigned, respectively, to the stretching vibration mode νasym (PO3)/νsym 
(PO2) attributed of the pyrophosphate groups and to the vibration mode Vasym 
(PO2) attributed to metaphosphate groups (Q2) [3] [4] [9] [20] [21] [26] [27] 

3.4. X-Ray Diffraction and DTA Analysis 

As expected, X-ray diffractions have confirmed the vitreous character of all of 
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the investigated glass samples (see Figure 4). DTA analysis of the phosphate 
glass 50P2O5-25CaO-(25−x)Na2O-xCoO (with 0 ≤ x ≤ 25; mol%), shown in Figure 
5, indicates both an increase in the glass transition temperature and the crystallisa-
tion temperature versus the CoO content. When the CoO content increases from 
0 to 25 mol%, the glass transition temperature (Tg) increases in the 399˚C - 
477˚C range, whereas the crystallisation temperature (Tc) increases in the 502˚C 
- 657˚C range (Table 1). The Tc-Tg difference is significant, which explains the 
high thermal stability [13] [28]. The heat treatments of the S0, S2 and S4 glasses at 
540˚C, 551˚C and 660˚C for 72 h, respectively, give the XRD patterns shown in 
Figure 6. These spectra show a structural evolution from orthophosphate (O/P 
= 4) and olygophosphate phases (3 ≤ O/P ≤ 3.5) to olygophosphate phase with 
majority of pyrophosphates phases (Q1). When the S0 sample was thermally 
treated at 540˚C, the amorphous phase partially disappeared and major Ca3PO4 
[JCPDS file N˚: 00-009-0340], NaCaPO4 [JCPDS file N˚: 00-029-1193] and 
Na3PO4 [JCPDS file N˚: 00-031] occurred in the sample, with minor NaPO3 
[JCPDS file N˚: 00-002-0776], Ca(PO3)2 [JCPDS file N˚: 00-017-0500], CaP2O6 
[JCPDS file N˚: 00-015-0204], and Ca2P2O7 [JCPDS file N˚: 00-009-0346] phases. 
When the CaO content increased in the S2 glass, the heat treatment at 551˚C  

 

 

Figure 4. XRD patterns for glass samples S0, S1,S2, S3 and S4. 
 

 

Figure 5. Differential thermal analysis (DTA) of the series of 50P2O5-25CaO-(25−x)Na2O-x 
CoO glasses versus CoO (mol%). 
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Figure 6. X-ray diffraction spectra, after heat treatment at crystallization temperatures 
508˚C, 560˚C and 680˚C for 72 h, respectively, for S0, S2 and S4. 

 
caused the formation of Na2P2O7, [JCPDS file N˚: -], Ca2P2O7 [JCPDS file N˚: 
00-009-0346] and COP2O7 [JCPDS file N˚00-052-1470] with some traces of me-
taphosphate and isolated short orthophosphates phases. However, when the 
CoO content increased to 25 mol%, the heat treatment, at 660˚C, indicated the 
disappearance of the isolated ortho-phosphate phases, while the CaP2O6 phases 
[JCPDS file N˚: 01-015-0204], Ca(PO3)2 [JCPDS file N˚: 00-009-0363], Co2P4O12 
[JCPDS file N˚: 00-040-0068], Co(PO3)2, [JCPDS file N˚: 00-027-1120], Ca2P2O7 
[JCPDS file N˚: 00-009-0346], and Co2P2O7 [JCPDS file N˚: 00-040-0068] ap-
peared largely in the sample with very high intensities that confirms the results 
obtained by IR [13]. 

3.5. SEM Micrograph Analysis 

SEM images in Figure 7 illustrate the morphology of the glasses considered in 
this work. The glass form of S1 shown in Figure 7(a), exhibit the presence crys-
talline phases with different form and size [5] [9] [10] [23]. When the CoO con-
tent increases in the glass, the number of crystallites decreases. Hence, SEM 
analysis confirms a homogenous vitreous phase with feeble crystalline particles 
in the S4 sample (Figure 7(e)) which has the maximum CoO content. Some dif-
ferent crystalline phases were identified by XRD and it seems that a decrease of 
crystallisation tendency is enhanced and Co(PO3)2, Ca2P2O7 and Co2P2O7 phases 
are crystallized in the last sample (S4) [13]. This probably explains the structural 
change towards more short pyrophosphates at the detriment of shorter isolated  
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Figure 7. SEM micrographs (a)-(e), showing the structural evolution of phosphate glasses 
respectively from S0 to S4. 

 
orthophosphate chains as the CoO content increases in the glass network. 

4. Discussion 

The glasses series 50P2O5-25CaO-(25−x)Na2O-xCoO (with 0 ≤ x ≤ 25; mol%), 
were prepared by direct melting at 1080˚C. The structure and the chemical du-
rability of these glasses have been investigated using various techniques such as 
density, X-Ray, DTA, diffraction, IR and SEM. The study of the dissolution rate 
for all the glasses studied indicates an improvement in chemical durability when 
the CoO content increases to the detriment of Na2O. The variation of transition 
temperature versus CoO content indicates an increase in Tg from 399˚C to 
477˚C when the CoO content increases from 0. To 25 mol%, elucidating an im-
provement in the rigidity of the glass [8] [13] [18] [21] [28]. 

The specific mass (Density) of vitrified phosphates is increasing with molar 
fraction along the series. The covalent radius values of oxygen calculated from 
Equation (2) indicate that the minimum value rcal (O2−) is observed for x = 20 
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mol% and therefore a relatively high reinforcement of the met-
al-oxygen-phosphorus (Co-O-P) bond [4] [12] [17] [28]. On the other hand, 
Analysis of infrared spectra indicates that the increase of CoO content to the de-
triment of Na2O, in phosphate glass, leads to the formation of olygophosphate 
groups (Q1-Q2) [22] [28] with the majority pyrophosphates at the expense of or-
thophosphates and metaphosphates and or cyclical metaphosphates groups. 
X-ray diffraction analysis of glasses, annealed between 502˚C to 663˚C for 72 
hours, confirms the evolution, with the increase of CoO content, of crystalline 
phases towards olygophosphate phase’s rich of pyrophosphates. In fact, when 
the CoO content exceeds 15 mol%, the orthophosphate phases completely dis-
appear in the vitreous network. Analysis of SEM micrograph indicates the evolu-
tion of the structural morphology of the glasses. As the CoO content increases in 
the glass, the number of crystallites decreases, consequently, SEM micrograph 
expected in Figure 7(e) for S4 sample, having a maximum CoO content, con-
firms a homogeneous glass phase with low crystalline particles. 

This phenomenon is explained by the fact that Na2O (Na+ alkali ion) is a 
main modifier oxide which easily depolymerizes the vitreous network by 
creating increasingly short chains going from ultraphosphate chains to meta-
phosphate, pyrophosphate and shorter isolated orthophosphate chains [3] [5] 
[29]. This accentuated depolymerization leads to the formation of a large 
number of easily hydrated Na-O-P bonds which greatly reduce the chemical 
durability of the glasses. In addition, the effect of the oxide CaO which depo-
lymerizes the glass from ulra-phosphate towards chains mainly of metaphos-
phate or cyclic metaphosphate, it can be explained that the increases of CoO to 
the detriment of Na2O has the effect of polymerizing the structure from iso-
lated orthophosphate chains toward the formation of olygophosphates predo-
minately by pyrophosphate chains. This behavior leads to the replacement of 
hydrated Na-O-P, P-O-P and possibly Ca-O-P bands, by the covalent and re-
sistant Co-O-P bonds. 

Hense, the glasses series studies in the present work can be divided into three 
categories: 

1) Glasses with a low CoO content (0.5 to 3 mol%) can be applied with a slight 
improvement in the optical field [19] [30] [31]. 

2) Glasses with CoO content between 5 and 15 mol% can be tested successful-
ly in the biomedical field because they can increase the rigidity of the glass and 
participate in the osteoinduction of bone tissue [14] [15] [18] [31]. 

3) Glasses with content between 20 and 25 mole%, can be used, with some 
improvement, in the electrical conduction range since cobalt can be found under 
two degrees of oxidation Co2+ and Co3+ which ensures the hopping mechanism 
of the electrons and therefore oxidation reduction phenomenon [21] [32].  

Hence, a better understanding of phosphate glass structure is very relevant to 
the industry in the development of technical glasses to achieve good perfor-
mances. 
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5. Conclusions 

The structure and properties of xCoO-(25−x)Na2O-25CaO-50P2O5 phosphate 
glasses (with 0 ≤ x ≤ 25; mol%) have been investigated in the present paper. Here 
are some conclusions from this paper: 

1) The structure of the Co-Na-Ca-phosphate samples glasses, predominantly, 
consists of olygophosphate, Q2-Q1 units, and the CoO leads to the conversion of 
Q0 units to Q1 units. 

2) The glass transition temperature is improved by increasing CoO content in 
the glass network and leads to the increase of thermal stability. 

3) Increasing the glass transition temperature leads to improved chemical du-
rability. 

4) The SEM Micrograph indicates an obvious decrease in crystallites with the 
increase in CoO, causing a relatively large equilibrium between the glass bath 
and the crystallites. 
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