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Abstract 
The iteration-free physical description of pyramidal indentations with closed 
mathematical equations is comprehensively described and extended for creat-
ing new insights in this important field of research and applications. All cal-
culations are easily repeatable and should be programmed by instrument build-
ers for even easier general use. Formulas for the volumes and side-areas of 
Berkovich and cubecorner as a function of depth are deduced and provided, 
as are the resulting forces and force directions. All of these allow for the de-
tailed comparison of the different indenters on the mathematical reality. The 
pyramidal values differ remarkably from the ones of so-called “equivalent con-
es”. The worldwide use of such pseudo-cones is in severe error. The earlier 
claimed and used 3 times higher displaced volume with cube corner than with 
Berkovich is disproved. Both displace the same amount at the same applied 
force. The unprecedented mathematical results are experimentally confirmed 
for the physical indentation hardness and for the sharp-onset phase-transi- 
tions with calculated transition energy. The comparison of both indenters pro-
vides novel basic insights. Isotropic materials exhibit the same phase transi-
tion onset force, but the transition energy is larger with the cube corner, due 
to higher force and flatter force direction. This qualifies the cube corner for 
fracture toughness studies. Pile-up is not from the claimed “friction with the 
indenter”. Anisotropic materials with cleavage planes and channels undergo 
sliding along these under pressure, both to the surface and internally. Their 
volumes add to the depression volume. These volumes are essential for the 
exemplified pile-up management. Phase-transitions produce polymorph in-
terfaces that are nucleation sites for cracks. Technical materials must be de-
veloped with onset forces higher than the highest thinkable stresses (at airlin-
ers, bridges, etc.). This requires urgent revision of ISO 14577-ASTM standards. 
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1. Introduction 
1.1. The Force vs Indentation Depth Relation 

It was in 2013 and 2016 when physical and mathematical breakthroughs de-
scribed (nano)indentations by taking into account the energy conservation law 
and the penetration volume of the immersed indenter, rather than the basal in-
denter area. [1] and [2] undeniably proved the validity of the experimentally 
found h3/2 vs applied normal force (FN) relation instead of h2 for pyramidal and 
conical indentations from 2004 [3]. And already 22 linear FN vs h3/2 plots with 
materials from practically all types of materials had been published in [4]. This 
rightfully opposes to the nevertheless still common belief in incorrect “h2”, los-
ing all information from it (no physical hardness, no initial surface and tip round-
ing effects, no phase transitions, no possible gradients). Similarly, the iteration of 
the loading curve exponent for best-fitting of the loading curve wipes out all 
these information. Still worldwide believed is the using h2 derived ISO 14577- 
ASTM hardness (International Standardization Organization and American So-
ciety for Testing and Materials) from conical and pyramidal indentations that is 
used in available tabulations, peer-reviewed scientific publications, and indus-
tries. It is unduly defined as force over projected basal contact area. But why is 
that so? The applied force does not press to the basal area of the indenter! It 
must be the result of the still retained wrong exponent for the loading curve.  

1.2. ISO and ASTM Hardness and Modulus 

According to [5], the area function of the “perfect” Berkovich is 2
hc c24.5A h= , 

where hc indicates contact height. The constant had been checked with the com-
pliance C (inverse stiffness) vs A1/2 plots from the “two highest” (120 mN) in-
dentations in aluminium of [5]. Ahc is iteratively “refined” for the not ideal in-
denter to give the fitted “contact area” Ahc for other materials. At first the un-
loading curve exponent is iterated with 3 free parameters (fitted unloading steep-
ness). Secondly, the area is iterated with 8 free parameters C1 - C8. The first guess 
of them is 2

c24.5h  and the further 8 exponents on hc decrease via 1 to 1/128 for fit 
with the aluminum data. For smaller depths the fit is for the corresponding fused 
quartz data. That leads to the fitted contact depth c max Nmaxh h F Sε= − . The ε is 
a disputed factor. The necessary stiffness S is defined after differentiation of the 
fitted unloading curve as dFN/dhmax, and the fitted reduced elastic modulus is 

1 2
h
1 2

r c2E S A= π . This does not consider that only part of FNmax is responsible for 
the depth h [1]. All of these iterations from [5] are the ISO 14577-ASTM Inter-
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national standard. They are automatically executed with the commercial inden-
ters to provide iterated ISO-hardness H [N/depth2]. 

Furthermore, the equally iterated Er [N/depth2] is not at all the claimed 
“Young’s modulus”. The latter is, of course, a strictly unidirectional property out 
of the 6 by 6 matrix of Young’s moduli that finally, depending on crystal sym-
metries, gives 9, 7, 6, or in the cubic case 3 independent always very different 
Young’s moduli. That is generally known and communicated, but here falsely 
disregarded.  

The common use of the false exponent on h followed by exhaustive iterations 
and false definitions is dangerous. All of that creates false materials properties 
and it denies phase-transitions under load with their polymorph interfaces. Un-
fortunately, that is still enforced by ISO 14577-ASTM for technical materials 
with catastrophic risks.  

1.3. The Mathematics with the Correct Exponent 3/2 on the  
Depth h 

The undeniably [2] correct physical hardness from conical and pyramidal in-
dentations is obtained as k (FN/h3/2), which is the penetration resistance as slope 
of the experimental linear FN vs h3/2 plot (also called “Kaupp-plot” since 2004 
and 2016) as Equation (1). It must be corrected for any axis cut Fa to give (2). 
Such axis cuts can be positive or negative due to various surface effects. They are 
excluded from regressions. The various reasons for initial surface effects have 
been amply discussed in preceding publications. Sample surfaces are not always 
free of layers (twins, oxides, hydroxides, chemical and mechanical pre-treatment 
such as polishing etc). Their separate elucidation requires indentations with very 
small depth ranges. Axis cuts are corrected for in a straightforward way.  

It is the iteration-free and undeniable mathematics that reaches correct phys-
ical data of materials and totally new ones from (nano)indentations. Examples 
are the physical indentation hardness [1] [2] [3] [4], the previously undetectable 
phase-transitions under load as kink unsteadiness on the FN vs h3/2 plot (e.g. Fig-
ure 2 [2]), and the phase-transition energies. The phase-transition energies are 
now normalized per depth region. Unfortunately, the presently still used concept 
of “work hardening” with iterated exponential functions is meaningless, dan-
gerous, and obsolete. The formed polymorphs can be spectroscopically identi-
fied and they create dangerous interfaces after their sharp onset with the non- 
transformed material. Polymorph interfaces are sites for crack nucleation. 

For the mathematical description of the pyramidal or conical indentations on 
a physical basis the formulas from [1] are below extended and completed, and 
their use is outlined. For their deduction it was first necessary to distinguish ap-
plied work Wapplied from indentation work Windent [1]. The latter is the work for 
the impression. The former contains additionally the work for pressure forma-
tion to its environment and all types of plasticizing. The whole indentation 
process subdivides 80% of the applied force for the inverted pyramid or inverted 
cone formation and 20% of it for pressure and all kinds of plasticizing. This al-
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ways mathematically precise 4:1 ratio in (3) has been mathematically deduced in 
2013 [1]. In the case of phase-transition upon indentation the sharp kink un-
steadiness occurs in the FN vs h3/2-plot, separating linear branch 1 from linear 
branch 2 with different slopes k1 and k2. These are the different penetration re-
sistances (hardnesses), in e.g. mN/µm3/2 units of the involved polymorphs. The 
hkink and the FN-kink values for W1-applied are easily obtained by equation of the re-
gression line formulas from the two branches for the triangle Equation (4). For 
the W2-applied value one has to integrate (2) to give (5) that is multiplied with 1.25 
according to (3) and it is added to W1-applied for obtaining ΣWapplied. The latter is 
subtracted from full Wapplied to obtain the transition work Wtransition up to h2 [1] 
[6] (h2 is freely chosen; perhaps at the depth where another kink deviation 
starts). The transition-energy is calculated according to (7). Its normalization is 
now by division through the depth difference (8) (no longer through the force 
difference) for better comparison of different indenter tips. 

An analogous procedure is applied for multiple phase-transitions from kink 
to kink. That purely algebraic sequence of calculations has been performed to 
numerous materials by the present author for endothermic and exothermic 
phase transitions under load. These will now be augmented with different mate-
rials and comparison of two different indenters. Again, phase-transitions cannot 
be obtained by iterative fittings including finite element calculations. Their onset 
forces and transition energies are important for daily life security, because the 
formation of polymorph interfaces can be sites of catastrophic initiations of 
crashes. 

3 2
NF kh=                              (1) 

3 2
N aF kh F= +                           (2) 

indent applied0.8W W=                          (3) 

1-applied kink N-kink0.5W h F=                       (4) 

( ) ( )5 2 5 2
2-indent 2 2 kink 2-a 2 kink0.4W k h h F h h= − + −               (5) 

applied N-max maxfull 0.5W F h=                      (6) 

( )transition applied appliedfullW W W= −Σ                   (7) 

( )transition transition 2 kinknormalized W W h h= −               (8) 

2. Materials and Methods    

A fully calibrated Hysitron Inc. Triboscope® Nanomechanical Test Instrument 
with 2D transducer, leveling device, and direct combination with a Nanoscope II 
atomic force microscope (AFM) was used for the author’s (nano)indentations. 
Loading times were 30 sec, force-controlled in contact mode. The radii of the 
cubecorner (55 nm) and Berkovich (110 nm) diamond indenters [4] were di-
rectly measured by non-contact AFM at a Park NX20 atomic force microscope 
from Park Systems. Highly resolved microscopic images were obtained with a 
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digital 3D microscope from Keyence Ltd., model VHX - 100 K with almost uni-
form coaxial vertical illumination through optical fiber, ring lenses, and 45˚ half 
mirror. A CCD-camera recorded the light of the halogen lamp, as coaxially re-
flected back by the sample through the half mirror. The chosen focal depth steps 
were down to 1 µm. 

Most preferable for the analysis of AFM loading curves is the direct calcula-
tion of all instrumental data points (about 20,000) according to (2) as loaded to 
Excel®. For published loading curves, with reasonable experimental description, 
the data digitization is obtained after paper filling enlargement with the plot di-
gitizer 2.5.1 program (https://www.softpedia.com/) giving 50 - 70 data-pairs, or 
manually 20 to 30 data pairs. Visual inspection of the printed Excel® FN vs h3/2 
plots looks for the linear ranges, surface effects, obvious gradients, and other 
peculiarities (e.g. non-linear force application). The kink is sharp, but there might 
be some short soft transitions in buffering biological materials [7] or at too rapid 
penetration. The bearing analysis routine [8] [9] is used for the measurement of 
depression and pile-up volumes with respect to the plane through the respective 
edges and corners. We did not use the complicate formulas with numerous as-
sumptions of [10]. 

Figure 1 looks quite smooth but Figure 2 shows a much extended initial ef-
fect, some minimal displaced points in the kink region and a deviation above 90 
mN load. The initial effect study would require separate indentation to about 20 
mN load. It is possible that there is another transition, as perhaps twinning. En-
dothermic twin formation of tungsten is indeed initiated by application of 
shear-force to tungsten [11]. The final deviation must here be excluded from 
further consideration, because it also occurs comparably with 6 materials all above 
90 mN load in [5]. But for k1 and k2 there exists no ambiguity due to correlation  
 

 
Figure 1. Force vs depth image with Berkovich onto tungsten from Figure 9 in [5].  
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Figure 2. FN vs h3/2 plot according to (2) of the curve in Figure (1) with regression equa-
tions in the selected ranges (kink at 0.460254957 µm3/2 and 41.28319258 mN); the slopes 
are the physical hardness k (mN/µm3/2); the initial part is cut off and should be separately 
studied with lower force range; a short intermediate range around the kink point is not 
part of the regression.  
 
coefficients R2 of 0.9995 and 0.9996. It appears to be a poor instrumental com-
pliance above 90 mN or non-linear force application from that point. This has 
been revealed in [12]. Our analysis is versatile enough to reliably determine the 
phase-transition energy despite such particular difficulties. This technique is not 
of the Arrhenius type and does not require indentations at different tempera-
tures as with activation energies from indentations as in [13].  

The formulas (1) through (7) contain all information, but a step to step de-
scription of the calculation is also necessary. Due to exponents, sums and dif-
ferences it appears necessary to calculate with 10 figures, so that the experimen-
tal errors are not increased by the calculations. For the transition energies we 
equate the regression lines (R2 must be >0.9995) 3 2

N-1 1 a-1F k h F= +  and  
3 2

N-2 2 a-2F k h F= +  to obtain 3 2
kinkh , hkink, 5 2

kinkh , and FN-kink. W1-applied is then cal-
culated according to (4). W stands for work or energy. The subscript “kink” de-
scribes the sharp intersection of the regression lines that is the “kink-unstead- 
iness” at the onset point (depth and force) of the phase-transition.  

The force value Fend (>FN-1) for the calculation of W2-applied can be chosen at will 
(in the case of a following higher phase-transitions one chooses the value for hmax 
= hkink-2). One then calculates 3 2

maxh , hmax and 5 2
maxh  for 3 2

N-max 2 max a-2F k h F= + . With 
these and obtains 5 2 5 2 5 2

max kinkh h h∆ = −  and max kinkh h h∆ = − . One has thus all 
mathematical values for the calculation of the indentation work. W2-indent ac-
cording to (5) gives W2-applied = 1.25W2-indent according to (3), so that ΣWapplied can be 
formed. The value of full Wapplied is 0.5FNend hend, because the previous calcula-
tions corrected for both axes cut Fa-1 and Fa-2. 

The transition-energy (7) transition applied appliedfullW W W= −Σ  is then divided by 
Δh to finally obtain normalized Wtransition/µm (mNµm/µm) values. These charac-
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terize the phase-transition onset of the material in question. Different materials 
can be compared and calculations for any wished depths and forces are possible. 
A corresponding sequence applies for higher phase-transitions at higher forces.  

3. Results 
3.1. Verification of the Transition-Energy Calculations  

The determinations of the phase-transition energies are tested at a practical ex-
ample from the literature. For example, Figure 1 shows the FN vs h curve that is 
the basis of the still used iterative ISO-hardness (HISO) and ISO-modulus of 
tungsten, which is used as indentation standard for calibrations up to 120 mN, 
even though compliance or linearity are unfortunately miscalibrated (also for the 
other standard materials in [5]) and despite the particularly pronounced flaws 
that are challenged in the Introduction. We open the possibility for nevertheless 
using such published experimental loading curves for the non iterative penetra-
tion resistance (k mN/µm3/2) calculation and detection of phase-transitions with 
their onset force and phase-transition energy in the valid regions.  

The purely arithmetic calculations remove the initial effects, less precise da-
ta-pairs close to the kink point, and deviations due to non-linear force applica-
tions. After these strict precautions it can be tested whether the same result is 
obtained for Wtransition/µm when the different selected forces at 60 and 90 mN are 
chosen from the tungsten curves in the Figure 1 and Figure 2. Table 1 collects 
the test results as calculated according to (1)-(8) with 10 figures. The calculated 
values of Wtransition/Δh from the different end forces confirm the correctness of 
our formula scheme. The very low differences of 0.665 × 10−6 % (due to round-
ing) also confirm that the errors by the calculation using exponents, summations 
and subtractions strongly disappear in relation to unavoidable experimental errors.  
 
Table 1. Calculation test from 3 2

N-1 100.38 4.9172F h= −  and 3 2
N-2 114.50 11.416F h= −  

for Wtransition of tungsten at different chosen end forces from Figure 2. 

Fend 60 (mN) 90 (mN) 

hkink (µm) 0.596118111 0.596118111 

FNkink (mN) 41.28319258 41.28319258 

Wapplied-1 (mNµm) 12.30482939 12.30482939 

Δh (µm) 0.133888326 0.326171522 

Δh5/2 (µm5/2) 0.180953682 0.542532597 

Windent-2 (mNµm) 6.759209506 21.12441884 

Wapplied-2 (mNµm) 8.449011820 26.40552356 

ΣWapplied (mNµm) 20.75384127 38.71035295 

Full Wapplied (mNµm) 21.90019311 41.50303349 

Wtransition (mNµm) 1.14635184 2.792680535 

Wtransition/Δh (mNµm/µm) 8.561999946 8.561999889 
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It is therefore advisable to perform a computer program for the calculation of 
phase-transition energies in the future. However, the independent expert scruti-
ny by using the physically correct FN vs h3/2 plot of the experimental data from 
conical or pyramidal indentations remains indispensable. The situation with un-
fitted data of spherical indentations is described in [14] and [15].  

This Table 1 indicates the calculation procedure and the precision of the cal-
culations with 10 significant figures for at the end obtaining reasonably rounded 
results. The normalization of the transition energy at the onset kink point is now 
per depth region (hfinal - hkink). 

3.2. Phase-Transition Energies  

It is important to distinguish the modification of the indented material and the 
indented surface of crystals. For example quartz (SiO2) occurs as amorphous 
fused quartz and α-quartz (rocksalt), the latter with surface twins that can be 
cautiously removed by polishing if necessary. Also water layers will form at am-
bient atmosphere. Furthermore, Cristobalite, Coesite, Stishovite, and Seifertite 
are at ambient conditions metastable polymorphs of quartz. The latter two have 
been synthesized and are also known as Meteor crystals. The indentation onto 
Stishovite produced probably Seifertite and another still higher energetic as yet 
unknown polymorph, but none of the lower energy polymorphs of SiO2. All of 
these give different results upon indentation [6]. 

The amorphous to amorphous transition of fused quartz is well known. Never-
theless the present ISO 14577 still uses fused quartz for indentation-instrument 
calibrations, which is another source of error when not taking care of it. The 
phase-transition energies can be negative (exothermic) or mostly positive (en-
dothermic). The exothermic ones of iron (100) and (110) as well as of InGaAs2 
have been published in [12] and [16]. Also the 5 indented different faces of 
α-SiO2 undergo the phase-transition exothermically [12] and [16]. 

The already published indentations with endothermic phase-transitions of 
superalloys including aluminium and γTi-6Al-4V in [16] are of particular im-
portance in view of flying safety and require most scrutiny. Light titanium-alu- 
minium-vanadium alloys are the preferred materials for airplane constructions. 
The present author complained in his publication [16] and in preceding world- 
wide lectures the low phase-transition onset forces and the low phase-transition 
energy of γTi-6Al-4V alloy that are much inferior with respect to pure alumi-
num and superalloys. For example, the phase-transition onset of the Vitreloy- 
105 metallic glass occurs at 58 fold higher onset force and at 108-fold higher 
phase-transition energy. All of the various researchers who indented onto and 
published on this and related TiAlX alloys did not check for phase transition 
onsets, but they persisted on the unphysical ISO-ASTM standards. They are ur-
gently asked to reanalyze and publish their original experimental data. The present 
author urgently exacted and exacts that the builders of airliners must check and 
improve their technical alloys by physical indentation (h3/2 not h2 and no itera-
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tions). Phase-transitions under load must be recognized, detected, and characte-
rized. Their onset force and transition energy must be increased with improved 
alloys for much higher phase-transition onset forces and transition energies. 
Phase-transition polymorph interfaces are crack nucleation sites that must be 
avoided upon operation [17]. The justification of these urgent reports followed 
soon: propeller blades, one with a deadly accident, broke twice from a turbine 
and hit the fuselage within one year from the same type of airliner. Obviously 
alerted by [16] and [17] hundreds of airliners were together grounded for 
months due to scratches even at the pickle forks between wings and fuselage, but 
several catastrophic airliner accidents still occurred. Unfortunately, sharp onset 
phase-transitions under mechanical load with their polymorph interfaces forma-
tions are not detectable with the disproved [2], but still binding ISO-ASTM 
standards that continue to be an enforcing part of the industrial certification. 
This must be urgently and immediately changed, for safer flying and safer daily 
life. ISO and ASTM representatives are being personally informed since long 
ago. 

Numerous further phase-transition onsets and endothermic transition ener-
gies are published in [16] for calibration standards, silicon (two faces), strontium 
titanate (3 faces), numerous salts, polymers, wood, and organic crystals. These 
cannot be repeated here. 

3.3. The Comparison of Berkovich with Cubecorner Phase  
Transitions Using the Indenter Volumes and Side-Areas 

While the Berkovich indenter is ISO standard in indentation testing, the steeper 
cubecorner has advantages for the study of fracture toughness. Actually, the cu-
becorner appears more appropriate for the fracture toughness measurement by 
indentation and we can explain it. Fracture toughness is commonly calculated as 

( ) ( )3 22
N

10.036K E H F c=  where c is the crack length, H and E are ISO 
hardness and ISO falsely so-called “Young’s elastic modulus”. The 0.036 is an 
empirical constant “from a fit” for cubecorner, but the E/H values are taken 
from Berkovich indentations [18]. Clearly, Berkovich and cubecorner indenta-
tions provide different results. The strange claims in that paper of the Oliv-
er-Pharr group that the “hardness measured with the two indenters should be 
about the same” and the unpardonable claim that “the cubecorner geometrically 
displaces more than 3 times the volume of the Berkovich” at the same force are 
nevertheless unduly acknowledged. For example, it is used in [19] with citation 
of [18]. Also Wang [20] falsely claims that the cube-corner transforms more 
than 3 times the volume of the Berkovich “for a given load, and thus produces 
“higher stress beneath the indenter”. On the other hand [21] claims that “the 
Berkovich indenter probes a volume approximately 8-times bigger than the 
cube-corner” and “the Berkovich indenter distributes the load over a wider area 
with respect to the sharp cube-corner indenter”. All of these contradictionary 
published claims are more than disturbing. Clearly, the physical hardness (k- 
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value as slope of the FN vs h3/2 plot [2]) and indentation modulus from cube-
corner and Berkovich results are different. Also ISO-hardness H and ISO-so- 
called “Young’s” modulus E depend on the indenter acuteness [21]. Numerous 
fitting simulations exist, but experimental comparisons on the basis of published 
experimental loading curves are rare. It was however not taken into account, 
that the cubecorner must create the same indentation volume (plus eventual 
pile-up volume) than the Berkovich at the same force, because the energy law 
cannot be disregarded. The same applied work creates the same volume. This 
can be seen in Table 2 and Table 3. It is not seen by Bor et al. [21] who simu-
lated fracture toughness again with H and E from Berkovich and cracking with 
cubecorner on the energy law violating 1:3 volume ratio basis with Berkovich 
and cubecorner. This paper tries to explain the differences upon indentations 
with the two-dimensional shape of broader Berkovich and more acute cube-
corner and a poorly comprehensible “densification” of material at the steeper 
cubecorner apex. Clearly, the obvious fact is not considered that the material is 
displaced at the faces of the tip that penetrates much deeper than the Berkovich. 
Inverse triangular pyramids are formed in the material with different bases and 
depths. And again, their totally displaced volume must be equal at the same ap-
plied force, as the energy law must not be violated (see also Section 3.5). Thus, 
we cannot agree at all with the lengthy argumentation in [21].  

It appears urgently important to deduce an undeniable mathematical basis for 
the explanation of the remarkable differences between the indenters, despite of 
the same displaced volume (including eventual pile-up volume). There were no 
mathematical formulas for the volumes of Berkovich and cubecorner diamond 
indenters as a function of depth. These pyramids are characterized with “equiv-
alent” cone angles and with the known angles β from centerline to face (e.g. [21]). 
Unfortunately, the reason for different results has never been discussed with re-
spect to indenter volumes. These angles β are 65.27˚ for Berkovich and 35.264˚ for 
cubecorner [22]. They have obviously never been used for the calculation of 
 
Table 2. Influence of indenter volume and side-areas of the indenter pyramids according 
to Equations (13) and (14), as tested with the force-depth curves of Zerodur® in figure 10 
of [23]. 

Force FN 
(mN) 

Berkovich 
h (µm)a) 

Cubecorner 
h (µm) 

Berkovich  
V (µm3) 

Cubecorner 
V (µm3) 

Berkovich 
3A (µm2) 

Cubecorner 
3A (µm2) 

100 0.959 2.0300 7.2011 7.2446 24.8016 18.5443 

200 1.380 2.9167 21.4580 21.4882 51.3570 39.0741 

300 1.718 3.6333 41.4048 41.5357 79.5954 59.4046 

400 1.974 4.1806 62.8046 63.2753 105.0838 78.6493 

500 2.221 4.6944 89.4531 89.5897 133.0267 99.1694 

600 2.449 5.1667 119.9268 119.4075 161.7407 120.1279 

a)The final depths at 600 mN were 2.42769 µm for Berkovich and 5.15639 µm for cube-
corner. 
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Table 3. Comparison of Berkovich and cubecorner indentations from published loading curves; the calculations are with the units 
of the k-values followed by transformation into mN and µm units and rounding from initially 10 significant figures.   

n Material 
k1 
k2 

htrans onset (μm) Ftrans onset (μm) 
Wtransition 

(mNμm/Δh) 
Data Source 

1 
Zerodur 
Berkovich 

141.81 mN/μm3/2 
189.24 

1.54678 248.2246 86.8650 
Ceram Internat, Elsevier, 
2016, 42, 12740, Figure 10 

2 
Zerodur 
Cubecorner 

46.121 mN/μm3/2 
62.230 

3.33355 250.1074 96.4875 

3 
Fused SiO2 
Berkovich 

1.5289 uN/nm3/2 
1.8347 

0.09016 1.19808 0.22610 Hysitron Handbook 

4 
Fused SiO2 
Cubecornera) 

0.4480 μN/nm3/2 
0.5561 

0.18883 1.12375 0.23926 
Int J Mater Res 2005 96, 
1226 

5 
Na2O-Al2O3-SiO2 
Glass Berkovichb) 

1.8868 μN/nm3/2 
2.2632 

0.13679 3.10289 0.388391 
J Amer Ceram Soc 
2018 101, 2930, Figure 2(A) 

6 
Na2O-Al2O3-SiO2 
Glass Cubecorner 

0.4765 μN/nm3/2 
0.6119 

0.36145 3.08279 0.84159 

7 
2C22 Steel stress-free, 
Berkovich 

45.814 mN/μm3/2 
65.225 

0.92967 34.20895 14.4435 
Procedia Engineering 
2011, 10, 3528, Figure 1(b) 

8 
2C22 Steel stress-free, 
Cubecorner 

9.1998 mN/μm3/2 
13.139 

2.38606 33.29274 11.35050 

9 
Nickel 
Berkovich 

127.56 mN/μm3/2 
167.96 

0.60051 52.75485 19.05449 
Philosophical Magazine 
2016, 96, 3442 

10 
Nickel 
Cubecorner 

25.124 mN/μm3/2 
31.417 

1.05640 26.24538 5.899987 

11 
Germaniμm 
Berkovich 

97.083 mN/μm3/2 
128.58 

0.27330 12.53433 4.377296 
Appl Phys Lett 2005, 86, 
131907 

12 
Germanium 
Cubecornerc) 

29.085 mN/μm3/2    

13 
Cu60Zr30Ti10d) 
Berkovich 

2.1803 μN/nm3/2 
2.6791 

0.15718 4.01683 0.969275 
Mater Sci Engin A 2006, 
430, 350 

14 
Vitreloy-105e) 
Cubecorner 

29.652 mN/μm3/2 
36.139 

2.53297 107.9909 28.29528 
Phil Mag 2006, 86, 
5715-5728 

a)Now calculated with all of the 475 data points; b)sodium aluminosilicate glass; c)the published cubecorner loading curve cannot be 
analyzed for k2 due to rough not repairable pop-in; d)a second transition is at about 9 mN and 0.25 µm; e)Zr41Ti14Cu12.5Ni10Be22.5. 

 
the indenter volumes as a function of the measured depths h. We need them to 
relate the normalized Wtransition values from indentations with the different in-
denters and for understanding the differing mechanical parameters. These in-
clude physical hardness, transition onset and transition-energy. Unfortunately, 
published experimental comparative loading curves with good precision for both 
indenters and suitable indentation forces at related or better equal force ranges 
are not very abundant. But the values from Table 3 indicate viable examples for 
the mathematical evaluation. The inclined 3D-sketch of an inverted pyramid in 
Figure 3 with the equal-sided basal triangle on top indicates how the volume  
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Figure 3. Perspective view on a 3D wire model of an inverted straight three-sided pyra-
mid without crossing lines. The triangles of the model are of course not distorted. The 
curve with a point shall indicate that there is actually a right angle at that site.  
 
and side-area of three-sided straight pyramids as a function of the angle β can be 
mathematically described on the basis of elementary geometric formulas, by us-
ing basic trigonometry.  

For the volumes of three-sided Berkovich and cubecorner we use the mathe-
matical formula for the area of the basal equal sided triangle (Atriangle = a231/2/4) 
and for the volume of the pyramid (Vpyr = Atrianglehpyr/3), The central side length 
a-value has to be translated into the hpyr-value of the pyramid with the aid of the 
characteristic β-angle values of the pyramids (β = 65.27˚ for Berkovich and 
35.264˚ for cubecorner).  

For obtaining the requested formula we have to consider that the equal sided 
basal triangle height ( triangle

1 23 2h a= ⋅ ) subdivides in the 1:2 ratio at the center 
of the triangle, so that the short part triangl

1 2
e1 3 3 6h a= ⋅  is used for  

1 2
pyrtan 3 6a hβ = ⋅ . One isolates a and obtains 2 2 2

pyr36 tan 3a hβ= . By substi-
tution of a2 into Atriangle one obtains 2 2

triangle pyr
1 23 3 tanA hβ= ⋅  and with  

triangle pyr 3V A h=  one obtains 1 2 3
pyr p

2
yr3 tanV hβ=  (9). The volumes of Berko-

vich (β = 65.27˚) calculate thus as (10) for Berkovich and (11) for cubecorner (β 
=35.264˚). Figure 3 facilitates the survey of the trigonometric steps.  

1 2 2 3
pyramid pyr3 tanV hβ=                      (9) 

3
Berkovich pyr8.1647816V h=                      (10) 

3
cubecorner pyr0.86600004V h=                      (11) 

Another point is the relation of the side-areas as a function of indentation 
depth that must be considered. The complete side-area 3Aside of the pyramids has 
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not been used previously. We also determine their mathematical formula for 
checking how these depend on the tip angle. We use the mathematical formula 
for the areas of isosceles triangular side faces of the pyramid area that is  

side side 2A ah= . As above we first determine p
2

r
1

y6 tan 3a hβ= . For obtaining 
hside we use 1 2

sidesin 3 6a hβ = ⋅ , isolate hside and substitute a twice to obtain af-
ter shortening out side pyrtan sinh hβ β=  these factors for a and hside are in the 
formula for Aside. This gives 3Aside for the Equations (12), or (13) and (14) with 
the numerical factors, for the complete inserted pyramidal side-faces. 

2 2
side pyr

1 23 3 3 tan sinA hβ β= ⋅                   (12) 

2
Berkovich Berkovich3 26.96756A h=                    (13) 

2
cubecorner cubecorner3 4.50005A h=                    (14) 

We check now the experimental loading data of isotropic Zerodur® with great 
detail (calculation of the irrational numbers with 10 digits before reasonable 
rounding) in order to tell whether the inevitable tip rounding at the apex of 
sharp commercial quality indenters (radii about 50 nm for cubecorner and 100 
nm for Berkovich) can be neglected, due to the always executed necessary 
axis-cut corrections. They can be neglected with this excellent published data. 
Clearly, blunt or broken indenters will not provide useful data; and simulated 
loading curves can be excluded when the calculated displaced volumes are not 
equal between the different pyramids or cones at the same force (but see Section 
3.5).  

The regression data as calculated from the load-depth curves in figure 10 of 
[23] for the calculation of the ceramic Zerodur properties are  

3 2
N-1-Berkovich 141.81 24.578F h= − , 3 2

N-2-Berkovich 189.24 115.82F h= −  and  
3 2

N-1-cubecorner 46.121 30.604F h= − , 3 2
N-2-cubecorner 62.23 128.65F h= − . The index 1 

is before phase-transition, the index 2 after phase transition. The phase-transition 
onset is at 248.2246 mN for Berkovich and 250.1074 mN for cubecorner, which 
is practically the same value. The normalized transition energies are for Berko-
vich 86.8650 mNµm/Δh, and for cubecorner they are 96.4875 mNµm/Δh.  

The corrections for the axis cuts Fa-1 and Fa-2 (2), which also include tip 
rounding, influence the calculation results considerably. They must therefore 
also be reported with the complete regression line equations.  

The indentation onto fused quartz (n3 - n4) with Berkovich (µN, nm) gives 
the regression lines 3 2

N1 1.5289 110.88F h= −  and 3 2
N2 1.8347 372.69F h= − . 

The transition onset is at 1198.0844 µN load. The cubecorner (µN, nm) [24] 
gives by calculation with all of the 475 data points from the loading curve the re-
gression lines 3 2

N1 0.4480 38.762F h= −  and 3 2
N2 0.5561 319.010F h= − . The 

transition onset is at 1123.7482 µN load.  
For sodium aluminosilicate glass (n5 - n6) exist indentations with Berkovich 

and cubecorner in the same paper [19]. The published loading curve (Raw Glass- 
Air side) (µN, nm), as indented with Berkovich give the regression line  

3 2
N-1 1.88868 84.351F h= +  and 3 2

N-2 2.2632 517.82F h= −  with a transition on- 
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set at 3102.8851 µN load. The loading curve (Raw glass-Air side) with cubecorn-
er (only usable up to 5000 of 9000 µN) gives the following regression lines:  

3 2
N1 0.4551 124.09F h= −  and 3 2

N2 0.581 879.33F h= −  and the transition onset 
is at 2605.9316 µN load.  

The Indentation of stress-free steel 2C22 (n7 - n8) has also been studied with 
both indenters (mN, µm) [25]. The published loading curve for Berkovich gives 
the regression lines 3 2

N-1 45.814 1.8582F h= −  and 3 2
N-2 65.225 19.258F h= −  

mN, and the one with cubecorner 3 2
N-1 9.1998 0.6152F h= +  and  

3 2
N-2 13.139 15.134F h= −  mN. 
The indentation of nickel (n9 - n10) from [26] gives the regression lines from 

the published loading curve with Berkovich 3 2
N-1 127.56 6.6057F h= −  and  

3 2
N-2 167.96 25.406F h= −  mN, and the one from cubecorner  

3 2
N-1 25.124 1.0337F h= −  and 3 2

N-2 31.417 7.665F h= −  mN. 
The indentation onto Germanium (n11 - n12) [27] gives the regression lines 

for Berkovich 3 2
N-1 97.083 1.9363F h= −  and 3 2

N-2 128.58 5.8364F h= −  mN. 
The k2-value with Berkovich could not be reasonably determined from the pub-
lished loading curve.  

The loading curve (µN, nm) for the bulk of the Cu60Zr30Ti10 alloy (n13) [28] gives 
the regression lines 3 2

N-1 2.1803 301.72F h= −  and 3 2
N-2 2.6791 1289.7F h= − . 

The transition onset is at 4016.830 mN, and the endothermic transition energy is 
967.275 µNnm/Δh. A further transition onset follows at about 9000 µN load.  

The loading curve of vitreloy (mN, µm) with the cubecorner (n14) [29] gives 
the regression lines 3 2

N-1 29.652 11.605F h= −  and 3 2
N-2 36.139 37.756F h= − .  

Table 3 collects the results primarily from glassy ceramics (n1 - n6) for which 
both Berkovich and cubecorner indentations have been published. For compar-
ison it also contains 2C22 steel alloy (n7 - n8) with an intermediate behavior, 
nickel (n9 - n10) as a crystalline metal, germanium (n11 - n12) with partly un-
suitable data, and the metallic glasses (n13) and (n14) with “free volume” pores 
or shear bands formation even though these are only indented with one indented 
type, each. For glassy vitreloy (n14), here with the Δh normalization, we point to 
the possibility of partial crystallization and shear bands, as formed on the sur-
face. It is one of the entropic metallic glasses with extremely high values of phase 
transition onset force and phase-transition energy. The examples (n13) and 
(n14) are necessary for pointing out that not all super-cooled amorphous mate-
rials solidify without pores or partial crystallization that allow for some pile-up. 
Such complications must also be taken care of. Fortunately, these features can 
now be easily determined by checking whether or not such material exhibits 
pile-up upon indentation or not.  

The algebraically calculated mechanical results from loading curves of primar-
ily glassy ceramics in Table 3 (n1 - n6) confirm the unfitted calculations from 
the regression lines of FN vs h3/2 plots (1) for final applied forces from 2.5 mN 
(fused quartz) up to 600 mN (Zerodur®) or 500 mN (vitreloy-105). This rests on 
the now available volumes of Berkovich and cubecorner indenters as a function 
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of the penetration depth. All phase-transitions in Table 3 are endothermic and 
pile-up is not possible in the isotropic materials (n1 - n6): they have no cleavage 
planes or channels for materials’ slide. The crystalline porous alloy (n13) is an 
evident exception in this respect, due to pile-up formation via the pores. The 
2C22 steel has still the very close correspondence with the phase-transition onset 
of both indenters.  

Importantly, the earlier claimed 1 to 3 ratio of displaced material between 
Berkovich and cube corner ([18] [21]) is clearly disproved. Despite the same dis-
placed volume, the ratios of the physical hardness k1-Berkovich/k1-cubecorner vary for 
the different glassy ceramics between 3.07 and 4.99 in Table 3 (n1 - n6). For 
crystalline nickel it is 5.09. It is thus not constant and cannot be related to the 
tanβ ratio of the indenters (3.0705), due to the different force directions and 
force powers. The phase-transition onset depths of the glassy ceramics vary from 
0.090 or 0.189 µm of fused quartz to 0.137 or 0.362 µm of sodium aluminosili-
cate. But due to the displaced volume equality, the phase-transition onset forces 
are for these ceramics equal between Berkovich and cubecorner. The results with 
the glassy ceramics are particularly remarkable when the strong variations of the 
normalized phase-transition work from 0.23 - 96.5 mNµm/Δh are considered. 
The comparably very low value of fused quartz in connection with the low tran-
sition depth is a serious but mostly still not realized burden of its use as calibra-
tion standard for nanoindentations. Actually it should only be used at forces be-
low 1 mN for correct calibrations with Berkovich indenter and the ISO 14577 
standard requires urgent revision. Conversely, Zerodur would be qualified as an 
indentation standard by its very high normalized transition work of 87 or 96.5 
mNµm/Δh for resisting high mechanical and apparently also thermal stress in 
Ceran® cooking plates. The super-cooled 2C22 steel is with its 14.4 mNµm/Δh 
far away from that. Further published experimental curves are as yet missing. It 
is an interesting consequence of the energy conservation law and certainly an 
important tool for the ceramics industry. 

The very closely identical values for the Berkovich and cubecorner volumes in 
Table 2 indicate that both indenters behave in the same way with the isotropic 
glassy ceramics that does not allow for slide of material that would require cor-
rections for Equations (10) and (11). Corrections for tip rounding of sharp in-
denters and the compression of diamond indenters are also not necessary. These 
are not part of the mathematical Equations (9), (10), and (11) and they are at 
least very similar for both indenters. Our results are very close to the mathemat-
ical precision, because of the excellent mechanical qualities of the ceramics in 
question (e.g. Zerodur®). Any slight deviations are the result of low tip-angle 
precision and lack of the original data set for the data evaluation. We deal here 
with deep indentations and the tested materials are not super-hard. The sharp 
tip apex will stay sharp and its inevitable rounding is corrected together with the 
surface effects by Fa in (2). However, when indenting super-hard materials the 
low elastic compliance of diamond would require correction and the then in-
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creasing tip bluntness would have to be controlled over and over again with 
tapping mode AFM (but please not with the iterative penetration onto fused 
quartz).  

We must now discuss the reasons for the differences between Berkovich and 
cubecorner indentations. Unlike equal displaced volumes V, the areas 3Aside of 
the Berkovich are about 1.3 times larger than the areas 3Aside of the cubecorner at 
the same force (Table 2), despite the much deeper penetration of the latter. The 
created polymorph cover upon phase transition will therefore be broader at the 
cubecorner side-areas than at the Berkovich side-areas at the same force. The 
different side face areas (13) and (14) do not change the phase-transition onset 
forces but they are certainly part of the differences between the transition works, 
as performed by Berkovich or cubecorner indentation. But the normalized 
phase-transition energy (8) values do not precisely correspond after division by 
the respective pyramidal surfaces 3Aside (13) and (14). The smaller transition 
energy value with the Berkovich indenter at the isotropic ceramics is thus not 
only due to its larger surface at the same indentation force. The cubecorner has 
to compress the same amount of the transformed polymorph from its smaller 
3Aside-area (Table 2) forming a broader cover over a much longer distance. And 
the polymorph is mostly less compliant than the bulk. Thus, the cubecorner has 
to add more compression energy for the same amount of transformed material 
to the endothermic phase-transition energy than the Berkovich. But this side- 
area influence cannot be the only reason for these differences of the Wtansition val-
ues between the different indenters. 

Perhaps more important than the side-area influence, is the force direction in-
fluence. The three-sided pyramids are three-sided “wedges” with the angle β (Figure 
3). The sideward force component Fside with influence to the phase-transition 
onset calculates with the simple wedge-force formula Fside = FN-onset/2sinβ. For the 
phase-transition onset of e.g. Zerodur with Berkovich the direction of this force 
component is at the angle of 90 − 65.27 = 24.73˚. One calculates  

side-Berkovich 248.2246 2sin 65.27 136.6440 mNF = = . For the cubecorner phase- 
transition onset the direction of that force component is 90 − 35.246 = 54.754˚. 
One calculates side-cubecorner 250.1074 2sin 35.246 217.2346 mNF = =  (1.59 times 
stronger than Berkovich). That is in both cases for every one of the 3 side-faces. 
At the phase-transition onset the cubecorner is roughly twice as deep as the 
Berkovich and the cube corner adds more force, which increases the endother-
mic transition energy over the one from the Berkovich. That is indeed observed 
for the glassy ceramics. The force direction is by far steeper for Berkovich and it 
compresses further down with lower resulting force than the cubecorner that 
compresses in a flatter way with higher resulting force. The graphical analysis 
provides 13.7˚ for Berkovich and 25.5˚ for cubecorner for the direction of the 
resulting force with respect to the indenter central line from the force parallelo-
gram.  

Importantly, its shallower compression direction is now also the straightfor-
ward explanation for the more efficient cubecorner indentations for fracture 
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toughness determinations via cracks, when compared to Berkovich. These ob-
servations and explanations clearly disprove the claim of [21] with compression 
of material at the apex of the cubecorner. Surprisingly, recent authors did not 
consider the force directional action when constructing their theories and simu-
lations that are thus in error. Also the equal phase-transition onset forces for 
glassy ceramics and the different transition energies with the higher value from 
the cubecorner and the lower physical hardness k (1), (2) of the cubecorner are 
so reliably explained and comprehended. It’s the force and the force direction 
from indenters that counts.  

There are no problems with slide compliance in glassy ceramics. We note that 
all of these glasses indent without pile-up. In the absence of pile-up the phase- 
transition force must be equal for both indenters, and the quality of such inden-
tations can be checked with this fact.  

The novel mathematical insights are used without any correction necessity for 
the unprecedented facts and applications for glassy ceramics in Table 3 (n1 - 
n6). These basic insights are also valid for the further materials in Table 3 (n7 - 
n8), but further influences require corrections that are not included in the basic 
mathematical treatment. Pile-up and internal slide along cleavage planes would 
require their being reported, volumetrically measured, and crystallographically 
analyzed. Nothing of that is known yet, so that we need more research for de-
veloping techniques for the necessary corrections. A first partial solution is pre-
sented in Section 3.5.2. The steel in Table 3 (n7 - n8) is a borderline case, where 
the phase-transition onset force is almost the same for Berkovich and cubecorn-
er. But the phase-transition energy value is now larger for Berkovich than for 
cubecorner. The differences with the ceramic examples increase enormously with 
anisotropic crystalline nickel with slide effects in Table 3 (n9 - n10). It provides 
a twofold difference in the phase-transition onset force between the indenters. 
Furthermore, the phase-transition energy is more than 3 times larger for Berko-
vich than for cube corner in that case. For an explanation one should at first 
know the different pile-up volumes for both indenters at the same force. Further 
difficulties with pile-up are discussed in Section 3.5.1. There is an unfortunate 
lack of comparative loading curves in that respect.  

Before the discussion of pile-up in Section 3.5 we have to take care of reliable 
experimental data that must not be simulating fitted ones. The mathematical 
calculation of indenter volumes reveals unexpected further common errors by 
treating the pyramidal indenters as pseudo-cones. Unfortunately, equal base-area 
cones are not equivalent to the pyramids.  

3.4. The Undue Treatment of Pyramids as Pseudo-Cones 

The now available volumes and side-areas of pyramidal indenters open new 
questions for the validity of the widespread use of pseudo-cones with equal base- 
area for the pyramids. ISO 14577 using [5], and so textbooks, and the so guided 
indentation research, including industrial technical applications, still believe in 
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indentation ISO hardness H. Unfortunately, that relies on “projected area”, or in 
refined form “contact area”. The latter is obtained via two iterations with 3 and 
then with 8 free parameters. Furthermore, it became common practice to treat 
the indenting pyramids as pseudo-cones with equal basal-area. This allows for 
easier calculations and huge savings in computer time for iterating simulations 
(e.g. [22] and [30]). The (half) opening angles of the pseudo-cones had been so 
calculated that the projected indentation area is indeed the same as with the 
corresponding pyramids. These almost always used angles are 70.2996˚ for Ber-
kovich and 42.28˚ for cubecorner. But do pseudo-cone pyramids really penetrate 
to the same depths as pyramids? The previous Section 3.3 gives the answer and 
that is no! These so-called “effective” or “equivalent” models for pyramids are in 
fact pyramidal phantoms. Their sideward force component direction angles are 
90 − 70.2996 = 19.7004˚ (instead of 24.73˚) and 90 − 42.28 = 47.72˚ (instead of 
54.736˚) for the Berkovich phantom and for the cubecorner phantom, respec-
tively. This leads to errors in ISO-hardness and ISO-elastic modulus. Both py-
ramidal phantoms would give considerably flatter force direction and force power 
than the respective pyramids at the same applied force FN. The resulting pseu-
do-cone phantom errors of the numerical data are huge. One may compare the 
depth differences at 600 mN load onto Zerodur (Table 3) between Berkovich 
and cubecorner of 2.73 µm, which depends on about 30˚ angle difference of the 
sideward force angle contribution. Here we have 5˚ or 7˚ smaller angles than the 
pyramids, which influences both depth and resulting force, as calculated via (15) 
and (16) at the same applied force FN. Clearly, these “equivalent cones” are not at 
all equivalent to the pyramids. Our evident volume, side-area, and directional 
force effects have never been considered. The false use of the pseudo-cone phan-
toms has therefore never been challenged before.  

The mathematical volume and side-area of the pseudo-cone phantoms as a 
function of depth calculates again straightforwardly. We use the corresponding 
half-opening angles α = 70.2996˚ and 42.28˚ for Berkovich and cubecorner phan-
tomes, respectively. For the cone volume as a function of depth one starts with 
Vcone = πr2hcone /3 and substitutes the basal r by hcone via tanα = r/hcone) to obtain 
without difficulty Equation (15). For the side-area of cones one uses Aside= πrs, 
where s is the side length. With sinα = hcone/r and tanα = r/h followed by substi-
tutions of r Equation (16) is obtained.  

2 3
pseudocone conetan  3V hαπ=                     (15) 

2 2
pseudocone conetan  sinA hα απ=                   (16) 

Apparently nobody figured out yet that such “equivalent cones” have not the 
same volume at the same force and angle as the pyramids. We test here with the 
pseudo-cone phantom of 70.2996˚ [31] for Berkovich. For cubecorner we test 
with the well-known old 42.28˚ but not with new 40.018˚, as claimed in [22] (for 
avoiding an error of 16.2%). The numerical factors for Vpseudocone in (15) for mi-
micking Berkovich are 8.168037 and for mimicking cubecorner (we test with the 
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42, 28˚ value) it is 0.865836. These numerical volume factors are within at most 
0.04 % indistinguishable between pyramids and pseudo-cones. However, the re-
spective volumes are different after their multiplication with the depth3 values 
that are smaller with the pseudo-cones due to the lower depths (cf Berkovich 
and cubecorner).  

The numerical factors of Apseudocone (16) are 26.02765 for the Berkovich phan-
tom and 3.86100 for the cubecorner phantom. The phantom values are thus 
smaller by 3.5% and by 14.2% respectively than those of the pyramids in Equa-
tion (13) and (14). This would after multiplication with the smaller depths2 ob-
tain smaller expected areas than with the pyramidal indents. Therefore, the 
equalization of pseudo-cone with pyramid and all simulations on that basis are 
in severe error also for that reason. The simulations of [22] are cited above. 
These facts are still not recognized by the simulation groups from [21] [26] [30] 
[31], and many others.  

The incorrect use of pseudo-cone pyramids add to the further flaws of pub-
lished experimental indentations that are now easily recognized by novel straight- 
forward testing. They appear often “influenced” by the hard to understand claims 
of the Oliver-Pharr group [18]. For example, further undue approaches argued 
with images of “broader” Berkovich coverage and “smaller” cubecorner coverage 
with complying material (actually after phase-transition onset it is polymorph). 
Their pressure distribution images [21] are more than questionable. Such claims 
are totally misleading and so are the extremely complicated discussions in that 
paper. 

There were no reasons for challenging the pseudo cone phantom claims in 
2017 [32] [33], and [34]. The unexpected new results exclude the use of the 
so-called “equivalent cone angles” from that time and we apologize for their 
then bona fide use. All applications and conclusions are still correct in these 3 
publications. Only the numerical values that depend on the αcone angles of the 
pseudo-cone pyramids cones require correction.  

3.5. The Pile-Up Influence 

Pile-up upon indentation onto anisotropic nickel could not be corrected in Sec-
tion 3.3, Table 3 (n9 - n10) due to pile-up formation. It is therefore now im-
portant to discuss the pile-up formations and effects. Anisotropic crystals with 
cleavage-planes and channels allow for sliding of materials along these and if 
they end at the indented surface, it is pile-up. Crystals are therefore the more 
compliant the better the force direction angle corresponds with the cleavage 
plane directions. That explains the anisotropy of indentation results upon in-
dentations onto different crystallographic faces. Such sliding costs penetration 
depth that must be corrected for the penetration volume and it differs from ma-
terial to material. Not all cleavage planes and channels end at the indented sur-
face. There is also hidden sliding, and there are larger and smaller cleavage 
planes and channels with different sliding qualities in various directions. Sliding 
is also responsible for the differences between Berkovich and cubecorner inden-
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tations. This complicates the issue and requires detailed crystallography. The 
detailed crystallographic analysis of slide plane influences on not iterated physi-
cal hardness, phase-transition onset, and its energy has already been published 
for silicon onto (001) and (100), or α-iron onto (100), (110), and (111), or Ca-
CO3 (three faces) in [16], or in the case of α-quartz onto 4 different faces. The 
anisotropy is explained with differently orientated channels in [12]. Crystallo-
graphic analysis of their 3D interlocking in crystals is important. One must 
detect the face of the crystal opposite to the skew indenter face. There might be 
channels that are too small for sliding but these facilitate the compliance and al-
so induce anisotropy [12]. Some of these faces and channels end at the indented 
surface, others at the side faces. It might be even possible to find indentation di-
rections on surfaces without exit from these, and sliding might end within the 
crystal. Furthermore, micro-porous materials will also produce pile-up.  

There is no need to consider sink-in [1]. The depth of indentations is always 
measured from the height of the initial flat surface. And sharp pyramids like 
Berkovich or cubecorner indenters penetrate immediately upon contact. Their 
tip rounding can be neglected at sufficiently deep penetrations. Also initial sur-
face effects are cut off by taking care of the axis cut in FN vs h3/2 plots [2] (Sec-
tion 2).  

3.5.1. The Common Interpretation of Pile-Up with Iterated Mechanical  
Properties 

It is clear that the pile-up and hidden slide volume has to be added to the in-
verted pyramid volume, so that the mathematical depth requires correction for 
it. But the common ISO 14577 and ASTM guided discussion of the pile-up phe-
nomenon for anisotropic materials does not consider cleavage planes and chan-
nels. It claims friction at the indenter instead. This must again be challenged, as 
it is not intelligible. The published ISO 14577 and ASTM guided publications 
claim that “no significant difference occurs between cubecorner and Berkovich 
measurements”. This has been “tested” for iterated ISO-modulus Er and also for 
iterated ISO-hardness H with the claim: “no fundamental difference is observed” 
[35]. Unfortunately, no experimental loading curves were supplied for obtaining 
not iterated data. The published data for 8 very different materials are within 
experimental error, on the basis of the 3 + 8 free parameters in the two consecu-
tive iterations. This common ISO-ASTM procedure is still commonly used. Un-
fortunately, these claims would seem to include that numerous other mechanical 
qualities might also be without “significant difference”. Also phrases like “Fric-
tion does not significantly influence the simulation of the load-displacement re-
sponse in indentations” [36] do not deny the challenged friction approach. And 
phrases like “Pile-up occurs due to isovolumetric plastic flow parallel to the in-
denter surface when the strain is concentrated directly below the indenter” [37] do 
not explain anything. And so are the strange theories that are connected with it.  

The averaged pile-up height around the indentation in [38] is obtained by 
AFM measurements of the indented surface, but this does not include the vo-
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lume of the pile-up. Pile-up falsifies the ISO hardness H and ISO modulus Er 
enormously (H up to 60% error, sometimes even 80% error, and Er up to 30% 
error), because the “contact depth is falsified”. It is well-known, but most col-
leagues live with it. For example [39] complains it. But ISO-H and ISO-Er values 
are nevertheless used in its finite element simulations. The current argumenta-
tion includes hf/hmax ratio (hf for hmax + hpile-up), strain hardening coefficient n and 
E/σy, averaged pile-up heights (instead of pile-up volumes), “indentation size ef-
fects” (instead of phase-transitions), and work hardening. All of that is published 
instead of considering the papers [1] and [2]. The contents of these were also 
long before discussed in numerous worldwide conferences.  

Unfortunately, the faulty simulations of [39] stimulated the belief in even 
more extended simulations and iterations with finite element analysis. These in-
clude in their calculation not less than the complexity of hf/hmax ratios, ISO- 
hardness H, ISO-modulus Er, contact stiffness S, indentation size effect (ISE), 
pile-up height, strain hardening exponent, strain hardening coefficient, stress 
and strain, yield point, yield strain, yield stress, Poisson’s ratio, equivalent strain 
energy elastic and elastoplastic, tip angle, cone model of Berkovich, deformed 
volume with Johnson’s cavity model, total indentation work, and friction coeffi-
cient with numerous fitting constants [37]. Numerous of these building blocs are 
iterated ones. These more than complicated techniques are included in “inverse 
estimation iteration techniques”.  

Enormous iterations are used for describing the pile-up topography with an 
algorithm, but still not for the pile-up volume. Furthermore, there are different 
contradicting approaches and simulations. None of them help for understanding 
the pile-up events. And none of them invoke cleavage planes and channels of the 
materials. Such simulations did not distinguish between isotropic and aniso-
tropic solids. Thus, all of these enormous diverting simulations and iterations 
are obsolete. 

3.5.2. The Solution with Pile-Up Volume along Cleavage Planes      
Fortunately, the physical hardness k [FN/h3/2] of pyramidal and conical (with 
cones) indentation, which is in accordance with the energy conservation rule [1], 
[2], is not invalidated by any pile-up. The latter is however influencing the steep-
ness of the straight regression line. The failure of the simulations as challenged 
in Section 3.5.1 derives from their inability to take care of cleavage planes and 
channels, of directional force effects, and of phase-transitions. All pile-up con-
siderations must additionally care for “free volume” pores, which also enable 
slide possibilities upon stress. 

We must now more detailed discuss the reasons for pile-up. Cleavage-planes 
and or channels for the sliding of locally stressed materials are always present in 
the anisotropic crystalline matter. Slide possibilities along cleavage planes and 
channels must always be considered. They are revealed from proper crystallo-
graphic analysis and can facilitate the crystals compliance. Ample examples with 
crystal packing images are available in [12] [16], and [40]. 
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In order to prove the slide of material along the cleavage planes for pile-up, we 
looked for a suitable system with only one type of parallel cleavage planes that 
can be checked from different directions. And we determined the volume and 
shape of the pile-up. The organic molecule thiohydantoin crystallizes with pa-
rallel not interlocked molecular sheets in space group (P21/c) and melts at 230˚C. 
It is a particularly suitable example with 66˚ steep unimolecular sheets that have 
the single cleavage plane direction for slide between them. The sheets and thus 
the parallel cleavage planes end on the (110) surface.  

The model in Figure 4 shows the different indentations with a cube corner 
indenter upon ramp scratching (indentation with increasing force along a pre-
defined horizontal distance) in direction (a), (b), (c), and (d) from 0 - 400 µN 
load over a distance of 10 µm. The pile-up can now be freely selected from none, 
equal, and equal with perhaps slightly more than equal, as compared with the de-
pression volume. The last possibility would mean that some broken edges added 
to the pile-up. The impressive interactive color images are freely available in [41].  

The scratch against the sloping (dir. c) (Figure 4) provides almost no pile-up, 
because the sheets are pushed down. The scratch with the sloping (dir. a) pro-
vides pile-up to both sides with a pile-up volume equal or perhaps slightly larger 
than the depression volume. Due to overlapping pile-up it does not leave well 
defined reference edges and corners. The volume can thus not precisely be quan-
tified with AFM and the bearing analysis routine [8] [9] in that case. Most inter-
esting is the scratch along the sheets’ direction. It depends on the orientation of 
the crystal whether all of the pile-up occurs to the left (dir. b) or upon turn of the 
crystal by 180˚ to the right side (dir. d) of the scratch direction onto the (110) 
face. In these cases the pile-up volumes are equal to the depression volume. For 
example, the ratio for the measured dir. b direction is 2.661 µm3 (pile-up) to 
2.588 µm3 (depression). No pileup is formed by normal indentation onto the 
(10-2) faces left or right of the crystal (Figure 4). The sliding migrations from 
the penetrated sheets cannot exit the crystal in these cases. Such internal slide is 
“lost pile-up” that also detracts from the mathematical depth and volume values.  

 

 
Figure 4. Two geometric models at 0˚ and 180˚ orientation of the 66˚ skew monolayer 
sheet packing of thiohydantoin, indicating the four different indentation orientations for 
the ramp scratches with cubecorner indentation; the model is redrawn in part from [41]. 
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This model is fundamental and convincing due to only one skew cleavage 
plane direction between unimolecular sheets. Further examples for pile-up to the 
right or to the left hand side, just by turning the crystals by 180˚, are known 
from [41] and [42] for anthracene or for tetraphenylethene with their skew clea-
vage plane directions. These examples rest on their proper crystal structure ana-
lyses.  

The situation is more complicated for crystals with more than one type of 
cleavage directions. All of them require identification and indentation in the re-
spective directions. Such as yet missing studies with crystalline materials will 
open the possibility to develop the corrections of the undeniable mathematical 
formulas for indenter volume and side-face. Practical applications will become 
unavoidable with that endeavor.  

It is essential to always calculate the pile-up volumes (not only the average 
height) with the bearing analysis routine [8] [9] on the basis of the plane through 
the respective corners. Unfortunately, such volume calculations are as yet not 
performed at the expense of only image topologies with AFM or of their simula-
tion by using finite element calculation routines. Our striking results with thi-
ohydantoin, anthracene, and tetraphenylethene disprove the validity of conclu-
sions from pile-up height simulations. It’s the volume that counts! 

In fact most crystalline materials of all types are much more complicated than 
thiohydantoin, anthracene, and tetraphenylethene with numerous cleavage planes 
in different directions for sliding materials. All of these must be studied by in-
dentations onto various faces to experimentally check their efficiency (angle and 
width). It might also be possible to find directions without pile-up. Hidden slid-
ing occurs when cleavage planes or sufficiently wide channels cross the indenta-
tion direction.  

A special case is remote pile-up about 50 to 200 µm from the indentation cen-
ter. The Vickers impression onto crown glass at 50 N load is an example where 
these are symmetrically in line at right angle [23]. Clearly, there is materials slide 
along submicron cracks, as formed upon stress relief. In the case of flint glass 
such submicron cracks are unsymmetrical and so are the long-range pile-up 
features. Both glasses are amorphous and brittle though.  

We remind here another long-range crack initiation and completion with the 
detection of the two-step nucleation in NaCl that happened upon depth-sensing 
Vickers indentation with the polymorph after its 5th phase-transition at 24.43 N 
load [17]. At 28.5 N load and 6.1 mm (!) from the indentation center occurred a 
mini-thin crack trace. It was detected at 5000X magnification with the 3D digital 
microscope. This tiny micro-crack nucleated a 5 µm short pre-crack with 1.68 
µm width. Upon the further load the crack resumed from the continued mi-
cro-crack and completed without pile-up, while the load was continuously in-
creased. At 29.8 N load the macroscopic crack was 8.5 µm wide. At 50 N load af-
ter 5.8 mm length the crack was 11.2 µm wide and 3.12 µm deep at the exit from 
the sample end. Clearly, long-range release of the stress due to the compacting 
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imposed by the indenter can be released along micro-cracks. Depending on the 
material there can be crack nucleation (crystal) or distant pile-up (glass).  

Long-range pile-up is also possible with porous materials (e.g. the metallic 
glass Cu60Zr30Ti10 with pores in Table 3 (n13). Isotropic materials like Zerodur 
or fused quartz help themselves by phase transition with polymorphs around the 
indenter.  

The compression of the diamond indenter that is not corrected for, does not 
visibly affect the use of (9), as shown by the results of Table 3. Also the amorphous 
to amorphous phase-transitions (from floppy to rigid [4]) do not affect the re-
sults. But in case of pile-up we do not know yet. Again, phase transitions are not 
seen in FN vs h loading curves but only in there-from calculated FN vs h3/2 plots.  

All of the here presented unprecedented facts can not be recognized by fitting 
simulations. Unfortunately they are thus unthinkable by the common ISO 14577- 
ASTM standards that are still confined to the Oliver-Pharr iterations of 1992. 
And these are not obeying the energy conservation law (see [1] [2]).  

Further comparisons of Berkovich and cubecorner indentations onto crystal-
line materials with forces well beyond the phase-transition onset are badly re-
quired.  

4. Conclusions  

The consideration of volume, side-area, and resulting force direction of pyra-
midal or conical indenters straightforwardly replaces numerous incorrect com-
mon dogmas with easy self-evident unprecedented cognition. This paper de-
scribes novelties from the mathematical treatment of indentations in great detail, 
so that it can be easily reproduced. Poor experimental data that do not give 
straight line FN vs h3/2 plots or fitted false linear FN vs h2 ones can be and must be 
excluded from consideration. Also, instrumental miscalibration, or denial of 
phase-transitions from [5] is still falsifying all of the 6 common calibration 
standards as reveled in [12]. Incredibly, the long revealed phase transitions from 
all of them are still disregarded in the ISO 14577-ASTM standards! ISO-H and 
ISO-Er are unphysical and thus very dangerous characterizations of technical 
materials. Only undeniable calculation rules characterize phase transition onsets 
(depth and force) and transition energies. The advanced normalization of phase- 
transition energies per Δh = (hpolymorph − honset) allows for mathematical compari-
son of Berkovich and cubecorner energies. The reliability of the precise calcula-
tions has been shown. They do not increase experimental errors by rounding 
errors. 

Isotropic ceramics proceed without complications. They are particularly use-
ful for understanding the differences between pyramidal or conical indentations. 
The formulas for the volumes, side-areas for pyramids and for cones as functions 
of penetration depth, and the angle dependent force directions are straightfor-
wardly deduced and used. The sidewise wedge-type force of the indented cube-
corner is 1.59 times stronger than the one of the Berkovich indenter at the same 
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applied force. Thus, cubecorner with higher force, flatter resulting force direc-
tion, and lower side-area is better for fracture toughness determinations than 
Berkovich at the same applied force. 

The undeniable mathematical formulas are experimentally realized for ce-
ramics lacking pile-up. The previous widely acknowledged claims of 3-times 
larger displaced volume for cubecorner as compared to Berkovich at the same 
indentation force is mathematically and physically disproved without using any 
iteration.  

The very widespread mimicking of pyramids with “equivalent” cone angles 
for the same projected indentation area is in severe error (depth, force, angle, 
hardness, etc) and must be urgently cancelled. The straightforward considera-
tion of basic physics and mathematics identifies the chimera. 

The occurrence of pile-up with anisotropic crystalline material creates inden-
tation volumes with different amounts for Berkovich and cubecorner. The pile- 
up requires a completely new understanding. The previous view of pileup claiming 
friction of indenter with material and the unintelligible nebulous claims of mate-
rials “slip” are straightforwardly rejected. Both pile-up to the surface and hidden 
“pile-up” within the materials use cleavage planes or channels or cracks for slid-
ing under the mechanical stress. Several of these paths in different directions and 
with different widths produce different results on different faces (anisotropy) 
and with different indenters (force direction). That is demonstrated using the 
new insights from this paper and by stressing the crystallographic techniques. 
Pile-up is definitely not produced by friction with the indenter. The non-ap- 
preciation of the crystallographic facts by the ISO 14577-ASTM indenter com-
munity led to extremely complicated iterative worthless simulations that are not 
helpful for materials mechanics. Iterative pile-up simulations are extremely dan-
gerous when applied to technical materials. These facts are experimentally con-
firmed with indentations including pile-up volume measurement. Pile-up man-
agement has been exemplified using skew single cleavage plane orientations in 
crystals.  

The new insights from the indenter volume and side-area formulas have nu-
merous practical applications. The arithmetic equations are valid both for iso-
tropic and for anisotropic materials, covering physical hardness, initial surface 
effects, and phase-transition-onsets, -forces, and -energies. The comparison of 
Berkovich and cubecorner indenters at the same force has the physical indenta-
tion hardness (mN/µm3/2) always smaller with the cubecorner, due to the deeper 
penetration. Only the ratio variations cannot be judged without further experi-
mental data.  

For isotropic materials the necessary phase-transition onset forces are equal 
for Berkovich and cubecorner, but the phase-transition energies are larger for 
the cubecorner due to its smaller β-angle (center line to side face) with flatter 
direction of the higher resulting force from the smaller side-area. For anisotropic 
materials the comparison of the different indenters is less predictable, because 
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pile-up and internal sliding volume has to be added to the impression volume, 
and the applied force to depth ratio is decreased. Different resulting forces meet 
the existing cleavage planes and channels at a different angle. Much more expe-
rimental research is required for finding appropriate predictive rules. The neces-
sity to measure any pile-up volume (not only AFM topography) and to reveal 
cleavage planes, channels, and pores is stressed.  

The previous errors and the ones from non-consideration of phase-transitions 
must and can be corrected with the novel insights from this publication. But 
there is presently a lack of comparative indentions with different indenters onto 
crystalline materials with applied forces beyond their phase-transition onsets. 
Further research on these lines will help for a safer daily life. 

5. Outlook 

The present author asked ISO officials for early revision of ISO 14577, but that 
takes time for various non-mathematical reasons. 

The unprecedented use of volume, side area, and force direction of pyramidal 
and conical indentations open numerous unexpected fields of research and un-
explored applications. The background is undeniable calculation rules, but never 
simulative fitting of experimental data on the basis of incredibly difficult “theo-
ries”, which still violate the energy conservation law from the beginning.   

The here described first novel results require further development with new 
experiments and development of computer programs beyond the common Ex-
cel® features. Fast data calculation in huge comparable indentation series will 
enable the development of technical materials with much better and physically 
correct mechanical properties. The data validity checks remain with the FN vs 
h3/2 plot. Examples are improved light alloys with systematically changing com-
positions for much better mechanical properties, particularly in view of phase- 
transition unsteadiness under load. 

The indentation science and the involved industry must try to discard iterative 
simulations and try to correct the characterization of technical materials. It must 
no longer trust in unphysical though still enforcing ISO 14577-ASTM hardness 
and modulus with their numerous there from deduced and perpetuated unphys-
ical materials parameters. We remind here the broken propellers-blades in front 
of the turbines hitting the fuselage of airliners, and also the hundreds of 
grounded airliners since 2019 with cracks at the fuselage, including cracks even 
at the pickle forks between wings and fuselage, most likely due to constructions 
with TiAlX alloy. And there were still several catastrophic airliner accidents. The 
TiAlX alloys exhibit comparably low phase-transition onset forces and energies, 
forming polymorph interfaces as sites for crack nucleation upon mechanical 
stress. Considerably improved alloys have to be immediately developed on the 
physical and mathematical basis, not only for the aviation industry.  

Furthermore, unsolved problems promise unexpected new advancements and 
applications. The mathematical comparison of physical hardness (k-value FN/h3/2) 

https://doi.org/10.4236/ampc.2021.1111019


G. Kaupp 
 

 

DOI: 10.4236/ampc.2021.1111019 238 Advances in Materials Physics and Chemistry 
 

between different indenters requires further investigations with new compara-
tive indentation experiments. The angle β (Figure 3) must certainly play an im-
portant role in that endeavor. Correction of the indentation volume with the 
pile-up volumes on all different materials surfaces can be helpful for structural 
decisions. Such studies promise important new materials properties that are not 
at all available by iterations. 

It is to be hoped that young researchers, who are not caught with extremely 
complicated simulations and iterative data fittings, will continue with using un-
deniable self-explaining mathematics for the indentation research. By doing so, 
they will reveal further physical effects that are responsible for the transition 
energy differences between Berkovich and cubecorner. Further pyramidal or 
conical indenters for anisotropic materials should be included. 
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