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Abstract 
In the practice of control the industrial processes, proportional-integral-de- 
rivative controller remains pivotal due to its simple structure and system 
performance-oriented tuning process. In this paper are presented two ap-
proaches for synthesis the proportional-integral-derivative controller to the 
models of objects with inertia, that offer the procedure of system performance 
optimization based on maximum stability degree criterion. The proposed al-
gorithms of system performance optimization were elaborated for model of 
objects with inertia second and third order and offer simple analytical expres-
sions for tuning the PID controller. Validation and verification are conducted 
through computer simulations using MATLAB, demonstrating successful per-
formance optimization and showcasing the effectiveness PID controllers’ tun-
ing. The proposed approaches contribute insights to the field of control, of-
fering a pathway for optimizing the performance of second and third-order 
inertial systems through robust controller synthesis.  
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1. Introduction 

Proportional-integral-derivative (PID) control algorithm has gained a wide use 
in control of the technological processes of heavy and light industries, due to its 
simple structure, easy implementation and the advantages that it offers to the au-
tomatic control systems [1] [2]. PID control algorithms are sufficient for many 
control problems, ensuring elimination of steady-state offsets and anticipation 
the future change of signal.  

PID controllers have a long history, with the proportional-integral-derivative 
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algorithm introduced by Minorsky in 1927, and the first industrial equipment 
being a pneumatic one produced by the Foxboro company in 1931. Contempo-
rary PID controllers differ significantly from those functional ones produced 80 
years ago. Today, they can be found in combinations with logic and sequential 
controllers, selectors, and other functional blocks with incorporation the princi-
ples of artificial intelligence [3] [4]. The practice of the automation demonstrates 
that the main challenge in the control processes is the tuning of the PID control-
lers, due to inadequate choice of sampling period, nonlinear behavior of the con-
trol process or actuators, or wrong estimation of the mathematical model, that 
approximates the dynamics of the control process.  

Many methods and algorithms have been proposed and developed based on 
the classic PID control concept over the last 80 years, where the main problem is 
the problem of synthesis the PID control algorithm, which supposes calculation 
of the tuning parameters according to the dynamics of the control process. 
Solving this problem is related to various factors, such as the operating princi-
ples of industrial processes, types of exogenous signals acting on the controlled 
process, technical characteristics, and more [5] [6].  

The incorrect tuning of the PID controller can lead to the bad performance of 
the automatic control system and in the worst case can lead to the instability of 
the system [7] [8] [9] [10]. In this case the ensuring the closed loop system sta-
bility is one of the most important aspect in the synthesis of the control algo-
rithm. Another aspect is related with ensuring the high performance to the au-
tomatic control system, which supposes the fast response, small overshoot, no 
oscillation and the existence of the procedure that permits to vary the perfor-
mance of the system, which will offer the benefits and flexibility in the tuning of 
the controller [11] [12] [13].  

For the last decades the artificial intelligence (AI) becomes to play an impor-
tant role in the domain of control systems, namely the tuning the PID control-
lers for the case of system performance optimization, rejection of disturbances, 
control of nonlinear and complex processes. AI in control systems harnesses the 
power of real-time decision making, adaptability, and optimization, resulting in 
substantial enhancements in performance, cost reduction, and safety improve-
ments across a diverse spectrum of applications. This transformative potential is 
realized by combining traditional AI techniques with cutting-edge metaheuristic 
algorithms. Evolutionary algorithms (EAs) are a subset of meta-heuristic algo-
rithms that are particularly inspired by the process of natural selection and evo-
lution. They are used to find solutions to complex problems by mimicking the 
principles of biological evolution. In the context of control systems, they can be 
used in various ways to optimize the system performance. Although, this strate-
gy has drawbacks as: lack of guaranteed optimality or slow convergence to the 
optimal solutions, hardly can be used as auto-tuning methods, requires a signif-
icant amount of computational resources [14]. 

This paper presents an approach for synthesis a PID controller for models of 
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objects with inertia, offering the possibility of optimization the system perfor-
mance in terms of settling time and overshoot. The main contributions of re-
search are as follows: 

1) The analytical expressions for synthesizing the PID controller to the model 
of object with inertia second order, in dependency of the model object parame-
ters and imposed value of settling time, offering the high stability degree of the 
system.  

2) The methodology for synthesis the PID control algorithm to the model of 
object with inertia third order, which offers the possibility of variation the sys-
tem overshoot. 

3) By the computer simulation was verified the tuning algorithms to the mod-
els of object with inertia second and third order.  

The rest of this paper is organized as following: Section 2 presents algorithm 
for Synthesis the PID controller with procedure of system performance optimi-
zation. Simulation results are provided in Section 3, and the conclusions are pre-
sented in Section 4. 

2. Synthesis of PID Control Algorithm Based on System  
Performance Optimization Procedure 

2.1. Synthesis of the Control Algorithm to the Second-Order  
Inertial Systems 

In Figure 1, it is presented the structural scheme of the automatic control 
system, where HPID(s) is transfer function of the PID controller. The typical 
structure of the PID controller is described by the following transfer function 
[15]: 

 ( ) ,i
PID p d

kH s k k s
s

= + +  (1) 

where kp—is the proportional tuning parameter, ki—integral tuning parameter, 
kd—derivative tuning parameter of the PID controller [3] [15]. 

The control object is described by the following transfer function with inertia: 

 ( ) ( )( ) 2
1 2 0 1 21 1

k kH s
T s T s a s a s a

= =
+ + + +

, (2) 

where k is the transfer coefficient of the control object, T1, T2—time constants; 
a0, a1, a2—parameters of the control object.  
 

 

Figure 1. Structural scheme of the automatic control system. 
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The characteristic equation of the closed-loop control system is: 

 ( ) ( )3 2 2
0 1 2

1
d p iA s a s a s a s k s k s k

k
= + + + + +  (3) 

One of the method, that is used for tuning PID controllers is maximum stabil-
ity degree method with iterations (MSDI) [16]. This method offers the analytical 
expressions for calculation the tuning parameters that offers the maximum dis-
placement in the complex half-plane of the nearest characteristic equation’s roots 
of the designed system to the imaginary axe Re pi ≤ 0.  

In the paper [17], it was proposed the modified maximum stability degree 
method, which offers the simple analytical expressions for calculation the tuning 
parameters as:  

 
( )22

1 21 1

0 0 1 2

,
2 2p d

T Ta ak k
a ka kT T

+
= = =  (4) 

 2 1 1 2

0 0 1 2

,
2 2i d

a a T Tk k
a ka kT T

+
= = =  (5) 

 1 1 2

2 2d
a T Tk
k k

+
= = . (6) 

In the work [17], was proposed the expression for calculation the maximum 
stability degree of the system for the case when number of the tuning parameters 
is equal or less then the characteristic equation order: 

 1

02
aJ
a

= . (7) 

Based on Equation (7) for calculation the value the stability degree, Equations 
(4) - (6) can be rewritten as  

 1
p

ak J
k

= ⋅  (8) 

 1 ,ik J
k

= ⋅  (9) 

 0 .d
ak J
k

= ⋅  (10) 

The approximately dependency between stability degree of the system J and 
the settling time of the automatic control system ts is presented by the following 
relationship [15] [18]: 

 1 1ln ,s
st

t
J ε

≈  (11) 

where stε  is steady state error of the system. 
For the case, when steady state error will be 0.02stε = , the settling time is 

equal with: 

 4 .st J
≈  (12) 

In this way, to the system can be imposed the value of the settling time, and 
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knowing this value from Equation (12), it can be recalculated the value of stabil-
ity degree: 

4 .
s

J
t

≈  

Equations (8) - (10) can be rewritten as: 

 14
p

s

ak
k t
⋅

=
⋅

 (13) 

 4 ,i
s

k
k t

=
⋅

 (14) 

 04 .d
s

ak
k t
⋅

=
⋅

 (15) 

According to the (13) - (15) expressions the tuning parameters depend on model 
object parameters and imposed value of settling time: 

 ( )0 1 2, , , , , ,p i d sk k k f a a a k t= . (16) 

2.2. Synthesis of the Control Algorithm to the Third-Order Inertial  
Systems 

It is considered, that control object is described by the following transfer func-
tion: 

 ( ) ( )( ) ( )
( )
( )1

1 2 0 1 1

,
1 1 1 n n

n n n

B sk kH s
T s T s T s A sa s a s a s a−

−

= = =
+ + + + + + + 

(17) 

where 1 2, , , nT T T  are time constants; 0 1 1, , , ,n na a a a−  are the parameters of 
the characteristic equation; k is the transfer coefficient of the control object; n is 
the order of the characteristic equation A(s). 

According to the transfer function of the PID controller (1) and transfer func-
tion of the control object (17), the characteristic equation of the closed loop sys-
tem with PID controller is following: 

 ( ) ( )1 2 2
0 1 1

1 .n n
n n d p iA s a s a s a s a s k s k s k

k
+

−= + + + + + + +  (18) 

It is considered that the characteristic equation has among the roots a pair of 
complex dominant roots, in this way it is proposed into characteristic Equation 
(18) to be done the substitution s J jω= − + , where J is stability degree of the 
system and ω is imaginary part of the dominant complex root. In this way the 
characteristic Equation (18) will become:  

 
( ) ( )( ( ) ( )

( )) ( ) ( )

1 2
0 1 1

2

1

0.

n n
n

n d p i

A J j a J j a J j a J j
k
a J j k J j k J j k

ω ω ω ω

ω ω ω

+
−− + = − + + − + + + − +

+ − + + − + + − + + =



 (19) 

In conformity with maximum stability degree method [19], Equation (19) de-
rives two times and there are obtained the analytical expressions for calculation 
the tuning parameters of PID controller:  
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( ) ( ) ( ) ( ) ( )(

( ) ) ( )

1 1
0 1

1

1 1 1 1

2 2 ;

n n n n
p

n n d

k n a J j na J j
k

a J j a k J j

ω ω

ω ω

+ −

−

= − + − + + − − + +

+ − + − + − +



 (20) 

 
( ) ( )( ( ) ( ) ( )

( )) ( ) ( )

1 2
0 1 1

2

1 1 1

– ;

n n n n
i n

n d p

k a J j a J j a J j
k

a J j k J j k J j

ω ω ω

ω ω ω

+
−= − − + − − − + + − − +

+ − + − + + − +



 (21) 

 
( ) ( ) ( )(

( ) ( ) ( ) )

1
0

2
1 1

1 1 1
2

1 1 2 .

n n
d

n n
n

k n n a J j
k

n n a J j a

ω

ω

−

−
−

= − + − +

− − − − + + −

 (22) 

From Equations (20) - (22), it can be observed that the tuning parameters of 
the PID controller depend on the values of the control object’s parameters and 
the value of the real and imaginary part of the dominant complex roots: 

( )0 1, , , , , , ,p i ndk k k f a a a k J ω=  . 

It is considered the case when control object is described by the transfer func-
tion with inertia third order: 

 ( ) ( )( )( )
( )
( )3 2

1 2 3 0 1 2 3

,
1 1 1

B sk kH s
T s T s T s A sa s a s a s a

= = =
+ + + + + +

 (23) 

where 1 2 3, ,T T T  are time constants; k is transfer coefficient of the system;  

0 1 2 3a T T T= , 1 1 2 1 3 2 3a T T T T T T= + + , 2 1 2 3a T T T= + + , 3 1a = . 
It is known from [20] that the value of maximum stability degree of the sys-

tem is: 

 1

0

.
4
aJ
a

=  (24) 

And from [20], it is known that tuning parameters of the PID controller can 
be calculated based on the following relationships: 

 

1 3

0

3

1 3
2
1 0 2

0

;
2
2 ;

3 8 .
8

p d

i d

d

a ak k
a
ak k

a a

a a ak
ka

 −
=


 = +
 − =


 (25) 

Based on Equations (22), (24) and (25), the expression for calculation the 
kd—tuning parameter of the derivative component in case of tuning the PID 
controller to the model of object with inertia third order (23) can be presented in 
the following form: 

 
2

21 0 2
0

0

3 8 12 .
8d

a a ak a
ka

ω
−

= +  (26) 

In this way, the tuning parameters of the PID controller for the case then con-
trol object is described by the transfer function with inertia third order are the 
following: 
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1 3

0

3

1 3
2

21 0 2
0

0

;
2
2 ;

3 8 12 .
8

p d

i d

d

a ak k
a
ak k

a a

a a ak a
ka

ω

 −
=


 = +
 − = +


 (27) 

Based on the system of Equations (27) for calculation the tuning parameters 
of the PID controller, it is ensured the high stability degree of the automatic 
control system. If the value of ω is equal with zero, the tuning parameters are 
calculated based on the system of Equations (25) in case of model of object with 
inertia third order—(23), in this care the transient response of the automatic 
control system will be critically damped. 

The approximately dependency between stability degree of the system J and 
the settling time of the automatic control system ts is presented by the following 
relationship [15] [18]: 

 1 1ln ,s
st

t
J ε

≈  (28) 

where stε  is steady state error. 
For the case, when steady state error will be 0.02stε = , the settling time is 

equal with: 

 4 .st J
≈  (29) 

And according to Equations (24) and (29), the settling time can be calculated 
according to the following expression: 

 0

1

16 .s
at

a
≈  (30) 

Due the fact that derivative component from Equation (27) depends on the 
values of the control object parameters and the value of ω, it is possible to vary 
the value of overshoot, by the changing the value of 0ω > . In this way, by the 
changing the ω, it is possible to change the performance of the system, namely 
the rise time and overshoot, keeping the settling time unchangeable. 

3. Applications and Computer Simulations 
3.1. Tuning the PID Controller to the Model of Object with Inertia  

Second Order with Imposed Settling Time 

It is considered, that control object is described by the transfer function with in-
ertia second order: 

 ( ) ( )
( )2

1 .
10 2 1

B s
H s

A ss s
= =

+ +
 (31) 

To the model of object (31), it was tuned the PID controller based on Equa-
tions (13) - (15) for the case of imposing the value of settling time as: ts = 10 s, ts 
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= 20 s and ts = 60 s and the obtained tuning values are presented in Table 1 (No. 
1 - 4). For comparation of the obtained results, it was used the genetic algorithm, 
where the fitness function was settled according to the imposed settling time to 
the system ts = 15 s, the obtained results of tuning are presented in Table 1 (No. 
5). The computer simulation of the automatic control system with PID control-
ler is presented in Figure 2, where the curves numbering correspond with num-
bering from Table 1. 

From Table 1 and Figure 2, it can be concluded that the proposed methodol-
ogy of tuning the PID controller to the model of object with inertia second order 
(31) offers high precision in tuning controller with imposed settling time—ts and 
without overshoot—σ, that was demonstrated through computer simulation (curves 
1 - 4). In case of using genetic algorithm, the value of imposed settling time was 
satisfied, but it was obtained the oscillated transient response of the system with 
high overshoot (curve 5). 
 

 

Figure 2. Transient responses of the automatic control system: 1—PID controller tuned 
by Equations (4) - (6); 2—PID controller tuned by Equations (13) - (15), with 10 sst = ; 
3—PID controller tuned by Equations (13) - (15), with 20 sst = ; 4—PID controller tuned 
by Equations (13) - (15), with 60 sst = ; 5—PID controller tuned by the genetic algorithm, 
with 15 sst = . 

 
Table 1. Tuning parameters of the PID controller and automatic system performance. 

No. 
Imposed settling 

time, s. 
kp ki kd ts, s. tr, s. σ, % 

1 - 0.2 0.1 1 39.143 39.143 - 

2 10 0.8 0.4 4 9.86 9.86 - 

3 20 0.4 0.2 2 19.68 19.68 - 

4 60 0.133 0.0667 0.667 59.86 59.86 - 

5 15 17.782 5.833 6.108 14.9 0.803 53.5 
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3.2. Tuning the PID Controller to the Model of Object with Inertia  
Third Order with Optimization the Overshoot Value 

It is supposed that control object is described by the transfer function with iner-
tia third order: 

 ( ) ( )
( )3 2

1 .
108.7 80.43 18.39 1

B s
H s

A ss s s
= =

+ + +
 (32) 

Next, to the model of object (32) is proposed to be tuned the PID controller 
based on the relationships (25):  

1 3

0

3

1 3
2
1 0 2

0

1.4313
2
2

0.0963

3 8
3.9193.

8

p d

i d

d

a a
k k

a
a

k k
a a

a a a
k

ka

 −
= =


 = =

+
 −

= =


 

Next, it was proposed to be optimized the performance of the automatic con-
trol system. Due to this, it was proposed to be used relationships (27) and by 
varying ω, it was possible to obtain the different values of the rising time (tr) and 
percentage of the system overshoot (σ).  

The obtained values of the tuning parameters of the PID controller are pre-
sented in Table 2 and in Figure 3, there are presented the transient responses of 
the automatic control system with PID controller for different values of the ω, 
where: curve 1—the PID controller with 0ω = ; curve 2—the PID controller with 

0.03ω = ; curve 3—the PID controller with 0.07ω = ; curve 4—the PID con-
troller with 0.1ω = . Curve 5 from Figure 3 was obtained for the case of using 
genetic algorithm, where fitness function was designed so as to be obtained ape-
riodic transient response.  
 

 

Figure 3. Transient responses of the automatic control system: 1—PID controller tuned 
by Equations (27), with 0ω = ; 2—PID controller tuned by Equations (27), with 0.03ω = ; 
3—PID controller tuned by Equations (27), with 0.07ω = ; 4—PID controller tuned by 
Equations (27), with 0.1ω = ; 5—PID controller tuned by the genetic algorithm, with 

0σ = . 
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Table 2. Tuning parameters of the PID controller and automatic system performance. 

No. ω kp ki kd ts tr σ, % 

1 0 1.43 0.096 3.91 30.5 30.5 0.0 

2 0.03 1.86 0.125 5.093 21.17 21.2 1.21 

3 0.07 3.76 0.253 10.31 20.03 6.25 7.37 

4 0.1 6.19 0.41 16.968 18.86 4.083 16.57 

5  3.157 0.184 9.703 12.5 12.5 0 

 
For 0.12ω ≥ , the system has overshoot bigger than 20%, that it is not favora-

ble for the performance of the automatic control systems. 

4. Conclusions 

In this paper, two approaches for synthesis the PID controller are presented, that 
offer the system performance optimization.  

The first approach of tuning PID controllers to the second-order inertial mod-
els, allows the imposition of a settling time on the automatic control system, en-
suring that the system operates without overshoot. This method was developed 
based on the maximum stability degree criterion, providing the optimal stability 
degree for the system. The proposed method was verified through computer si-
mulation for the case of tuning the PID controller with different imposed values 
of settling time and it demonstrated good results and high precision in perfor-
mance ensuring. The obtained results were compared with genetic algorithm, 
that permitted to obtain the transient response of the system with imposed set-
tling time, but gave high overshoot in comparation with proposed algorithm of 
tuning, which permits to vary the settling time without overshoot.  

Another approach to tuning the PID controller allows for the variation of the 
percent overshoot. The obtained results were verified by computer simulation 
for the case of tuning the PID controller to the model of object with inertia third 
order, so as this method permits to control the oscillation degree of the system. 

The proposed methodology for tuning PID controllers offers the possibility, 
through simple analytical expressions, to tune PID controllers in such a way that 
the system achieves a desired settling time, or degree of oscillation. By employ-
ing this methodology, engineers can easily and analytically determine the ap-
propriate tuning parameters, providing a systematic and efficient way to achieve 
the desired performance in terms of settling time or oscillation degree for the 
controlled system. 
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