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Abstract 
This paper presents the mathematical model consisting of conservation and 
balance laws (CBL) of classical continuum mechanics (CCM) and the consti-
tutive theories derived using entropy inequality and representation theorem 
for thermoviscoelastic solids (TVES) matter without memory. The CBL and 
the constitutive theories take into account finite deformation and finite strain 
deformation physics. This mathematical model is thermodynamically and 
mathematically consistent and is ideally suited to study nonlinear dynamics 
of TVES and dynamic bifurcation and is used in the work presented in this 
paper. The finite element formulations are constructed for obtaining the so-
lution of the initial value problems (IVPs) described by the mathematical 
models. Both space-time coupled as well as space-time decoupled finite ele-
ment methods are considered for obtaining solutions of the IVPs. Space-time 
coupled finite element formulations based on space-time residual functional 
(STRF) that yield space-time variationally consistent space-time integral forms 
are considered. This approach ensures unconditional stability of the compu-
tations during the entire evolution. In the space-time decoupled finite ele-
ment method based on Galerkin method with weak form for spatial discreti-
zation, the solutions of nonlinear ODEs in time resulting from the decoupling 
of space and time are obtained using Newmark linear acceleration method. 
Newton’s linear method is used to obtain converged solution for the nonli-
near system of algebraic equations at each time step in the Newmark method. 
The different aspects of the deformation physics leading to the factors that in-
fluence nonlinear dynamic response and dynamic bifurcation are established 
using the proposed mathematical model, the solution method and their valid-
ity is demonstrated through model problem studies presented in this paper. 
Energy methods and superposition techniques in any form including those 
used in obtaining solutions are neither advocated nor used in the present 
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work as these are not supported by calculus of variations and mathematical 
classification of differential operators appearing in nonlinear dynamics. The 
primary focus of the paper is to address various aspects of the deformation 
physics in nonlinear dynamics and their influence on dynamic bifurcation 
phenomenon using mathematical models strictly based on CBL of CCM using 
reliable unconditionally stable space-time coupled solution methods, which 
ensure solution accuracy or errors in the calculated solution are always iden-
tified. Many model problem studies are presented to further substantiate the 
concepts presented and discussed in the paper. Investigations presented in 
this paper are also compared with published works when appropriate. 
 

Keywords 
Thermodynamic Consistency, Dynamic Bifurcation, Static Bifurcation,  
Nonlinear Formulation, Finite Strain, Finite Deformation,  
Thermoviscoelastic, Classical Continuum Mechanics, Conservation and  
Balance Laws, Nonlinear Damping 

 

1. Literature Review, Motivation and Scope of Work 

In this section, we present some basic definitions that are used throughout the 
paper. This is followed by literature review, motivation and scope of work. 

1.1. Bifurcation Phenomenon 

In the static (BVPs) and dynamic (IVPs) finite deformation, finite strain studies 
in structural and solid mechanics, we utilize mathematical models (based on CCM) 
in which contravariant deviatoric second Piola-Kirchhoff stress tensor and cova-
riant Green strain tensor are work conjugate pair. These mathematical models 
are a system of nonlinear PDEs in spatial coordinates for BVPs, and in spatial 
coordinates and time for IVPs. The solutions of these PDEs may exhibit path 
dependency (if irreversibility is present in the physics) and may also exhibit 
sudden change in the amplitude of motion or deformation in the loading path. 
This sudden change in amplitude of motion is called “bifurcation”. Bifurcation 
can happen during loading in case of BVPs in which case we refer to it as “static 
bifurcation”. If the bifurcation occurs in the IVPs, then we refer to it as “dynam-
ic bifurcation”. In this paper, we study nonlinear dynamic response and dynamic 
bifurcation phenomenon in TVE solids without memory with finite deformation 
and finite strain. 

1.2. Static Bifurcation 

In case of BVPs, we are seeking stationary state of the corresponding IVPs i.e., 
the solutions of corresponding IVP when it ceases to change as time elapses. 
Thus, time and time dependent physics is absent in the mathematical descrip-
tion of BVPs. If one constructs finite element formulation using this mathemat-

https://doi.org/10.4236/am.2023.1412047


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2023.1412047 775 Applied Mathematics 
 

ical model based on Galerkin method with weak form (GM/WF), then we realize 
that the resulting finite element formulation only contains stiffness (matrices), 
load vector and vector of secondary variables. This suggests that in case of BVPs, 
if static bifurcation phenomenon (also called snap-through [1] [2] [3] [4] [5]) 
exists (not all BVPs have this phenomenon) it must be purely due to stiffness. In 
other words, in this case the total stiffness must consist of competing aspects in 
it that create instability for certain combination of loading and parameters, so a 
sudden change in deformation state must occur to restore stable configuration, 
which is called static bifurcation. Works published in references [1] [2] [3] [4] [5] 
are examples of “static bifurcation” (also called snap through phenomenon) 
purely related to stiffness. Presence of finite deformation, finite strain, hence 
nonlinearity in the mathematical model is essential for the existence of static bi-
furcation. 

1.3. Dynamic Bifurcation 

In case of IVPs, the PDEs in the mathematical model consist of dependent va-
riables, space coordinates and time. That is, IVPs contain time dependent phys-
ics that evolves as time elapses. The study of the time dependent solution of the 
mathematical model with finite strain, finite deformation with consistent nonli-
near dissipation physics with or without memory (or rhegology) in structural 
and solid mechanics is of course nonlinear dynamics. Solutions of such IVPs 
naturally may also exhibit bifurcation phenomenon. We refer to this as dynamic 
bifurcation. In case of IVPs, compared to BVPs, there are other aspects of the 
physics (due to dynamics) involved that either promote and allow dynamic bi-
furcation to exist or discourage and inhibit existence of dynamic bifurcation. 
One of the main focuses of this work is determination of the factors influencing 
dynamic bifurcation. 

Authors in references [6] presented complete details of the mathematical 
model in 3  for TVES without memory for finite deformation and finite strain 
physics. This model is derived using CBL of CCM and constitutive theories are 
based on entropy inequality and representation theorem [7]-[15]. The resulting 
mathematical model is a system of nonlinear PDEs in space and time in which 
dependent variables naturally exhibit simultaneous dependence on both space 
and time. The finite element formulations for this model were also presented in 
ref [6]. In contrast, the mathematical models in the published works used to 
study nonlinear dynamics are either primarily phenomenological or if based on 
CBL of CCM, contain many phenomenological modifications or adjustments 
that are generally not supported by CCM. We make following observations: 

(1) Energy functional or principal of virtual work are employed almost exclu-
sively as a starting point in the derivation of the mathematical descriptions of the 
deformation physics and for obtaining the solutions of the IVPs using methods 
such as finite element method.  

(2) The Euler’s equation (differential form of the mathematical model) is al-
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most never derived from the integral forms. Instead, energy methods or the 
principle of virtual work are used directly to obtain solutions (based on extre-
mum of the energy functional) either using finite element method or expressing 
solutions in terms of superposition of periodic functions. In these approaches we 
never know the differential form of the actual mathematical model of the physics 
under consideration.  

(3) Constitutive theories are never derived using entropy inequality and re-
presentation theorem in the energy method and in the principle of virtual work. 
This is because these methods have no concept of entropy inequality, hence have 
no basis or mechanism of deriving constitutive theories.  

(4) Phenomenological constitutive theories are often constructed using 1D 
spring and 1D dashpot in suitable series-parallel arrangements. These constitu-
tive theories are purely in time, hence lumped in space. These constitutive theo-
ries have the following drawbacks:  

(a) Lack of dependence on space precludes their use for continuous matter in 
which both space and time are intrinsically coupled during the evolution.  

(b) Phenomenological mathematical models and the constitutive theories in 
time based on 1D springs and dashpots cannot be extended to the deformation 
of continuous matter.  

(c) Since there are no laws or principles that support phenomenological con-
stitutive theories, their extensions to include more comprehensive physics can 
only be done phenomenologically.  

(5) Published work do not adhere to valid and mathematically sound specific 
concepts of space-time coupled or space-time decoupled approaches for obtain-
ing solutions of the PDEs in the mathematical models.  

Keeping these points in mind, we discuss some published works that are rele-
vant in the context of this paper. In applied mathematics, empirical nonlinear 
ODEs in time are used to study their nonlinear dynamic response [16]. 1D spring, 
dashpot and mass based phenomenological mathematical models have been 
used frequently in engineering to study nonlinear dynamics [17]. In reference 
[18], authors use a two-mass oscillator system with 1D springs and dashpots in-
volving two degrees of freedom to study bifurcation and backbone curves. A 
nonlinear second order ODE ( )2 0x x xx f x+ + + =   with  
( ) 3 3 7

3 5 7f x a x a x a x= + + +  is used to investigate backbone curve in ref. [19]. 
Physical significance of this mathematical model in the context of nonlinear 
structural dynamics is neither discussed nor explained in this paper. In reference 
[20], a mathematical model consisting of ODEs in time with constant coefficient 
mass, stiffness and damping matrices is used for identification of nonlinear 
stiffness in backbone curves. This mathematical model is derived based on total 
potential energy of the system (Appendix B), and the equations are transformed 
using modal basis of the linear problem. All nonlinearities are lumped into the 
force vector. Reference [21] uses the same mathematical model as reference [20] 
to investigate the tracking of backbone curves. Reference [22] also uses same 
system of ODEs in time as in reference [20] [21], with nonlinearities lumped in-
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to a vector for identification of backbone curves using control-based continua-
tion. Reference [23] presents nonlinear vibrations of water filled circular cylin-
drical shells. The mathematical models are based on energy functional, and flu-
id-solid interactions intrinsic to the problem are only accounted for by using ki-
netic energy considerations related to the fluid. In reference [24] a phenomeno-
logical model based on 1D nonlinear springs, dashpot and mass (single nonli-
near ODE in time) is used as a basis to study large amplitude vibrations of plates 
and shells. In reference [25], 1D nonlinear spring, dashpot and mass model (a 
single nonlinear ODE) is used to study large amplitude vibrations. In reference 
[25] a system of second order ODEs in time (not derived using CBL of CCM or 
NCCM) is used to study backbone curves in nonlinear mechanical systems. Sys-
tem of ODEs in time similar to references [20] [21] [22] with nonlinearities lumped 
into a vector with periodic function expansion of the solution is considered in 
reference [26] for investigating nonlinear dynamic response. Other works based 
on similar mathematical models and techniques described above can be also be 
found in references [27] [28] [29] [30]. 

In summary, the mathematical models used to investigate large amplitude 
nonlinear dynamics in the presence of damping fall into two categories. The first 
category comprises phenomenological models based on 1D nonlinear springs, 
dampers and masses. The second category consists of linear system of second 
order ODEs with constant coefficient mass, damping and stiffness matrices in 
which all nonlinear effects (which are not explained or defined in many works) 
are accounted for in the non homogeneous part i.e., force vector. To the best of 
our knowledge, there are no published studies on large amplitude nonlinear dy-
namics in the presence of damping that utilizes a mathematical model based on 
CBL of CCM with consistent constitutive theories derived from entropy inequa-
lity and representation theorem without any phenomenological or any other 
modifications. 

In reference [6] authors presented a complete mathematical model for TVE 
solid undergoing finite deformation, finite strain using contravariant second Pi-
ola Kirchhoff stress tensor, Green’s strain and rates of Green’s strain tensor upto 
order n. The constitutive theory for deviatoric second Piola-Kirchhoff stress 
tensor was derived using entropy inequality and representation theorem [7]-[15] 
by considering Green’s strain tensor, rates of Green’s strain tensor and temper-
ature as its argument tensors. The resulting mathematical model consists of a 
system of nonlinear PDEs in both space and time. By using a space-time de-
coupled finite element formulation and Galerkin method with weak form 
(GM/WF) in space, the authors showed that the nonlinear PDEs in the mathe-
matical model can be converted to a system of second order nonlinear ODEs in 
time in degrees of freedom { }δ  and their time derivatives for the spatial dis-
cretization. 

[ ]{ } [ ] [ ]{ } [ ]{ } { } { }
1

n

i i
i

M C K F Pδ δ δ
=

+ + = +∑              (1) 

The mass matrix [ ]M  is a constant coefficient nondiagonal matrix (often 
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called consistent mass matrix as it is consistent with the local approximation of 
the displacement field). [ ]iC 

   is the damping matrix corresponding to strain 
rate [ ]iε  (material time derivative of order i of the Green’s strain tensor [ ]0ε 

  ) 
and [ ]K  is the stiffness matrix. Coefficients of [ ]iC 

   and [ ]K  are up to qu-
adratic functions of the displacement gradients. { }F  and { }P  are load vector 
and vector of secondary variables resulting due to integration by parts due to 
GM/WF used for spatial discretization. These nonlinear ODEs (1) correspond 
precisely to the mathematical model based on CBL of CCM. Evolution i.e., non-
linear dynamics resulting from the solutions of (1) without modifications or ap-
proximation are not available in the published literature. Modified forms of (1) 
based on many assumptions and approximations are obtained and are used to 
study nonlinear dynamics. We discuss one such approach that is common in 
many published works [30] [31] in the following. It can be shown using Equa-
tion (115) in reference [6] that [ ]iC 

   and [ ]K  can be additively decomposed 
into (i.e., consist of): 

[ ] [ ] [ ]
1 2 3
[ ]ii i iC C C C      = + +                             (2) 

 [ ] 1 2 3K K K K     = + +                             (3) 

in which coefficients of [ ]
1 1,iC K       are constant, while the coefficients of  

[ ]
2 2,iC K       and [ ]

3 3,iC K       are linear and quadratic functions of 
{ }
{ }
u
x

 ∂
 
∂  

. 

By substituting (2) and (3) in (1) and regrouping terms, we can obtain: 

[ ]{ } [ ]{ } { }

{ } { } [ ] [ ] [ ]{ } { }

1 1
[ ]

1

2 3 2 3

1
.

n

i i
i

n

i i i
i

M C K

F P C C K K

δ δ δ

δ δ

=

=

   + +   

         = + − + − +        

∑

∑



       (4) 

If we choose { }( ){ }F δ


 to define the right hand side of (4) and choose 1n =  
with [ ] [ ] [ ] [ ]{ } { }1 1

1 1, ,C C K K δ δ   = = =  
 , then (4) is written as: 

[ ]{ } [ ]{ } [ ]{ } { }( ){ }M C K Fδ δ δ δ+ + = 



               (5) 

In (5), the mass, damping and stiffness matrices have constant coefficients. All 
nonlinearities are lumped into { }( ){ }F δ



 in (5). While (5) is equivalent to (4), 
it is not possible to clearly ascertain the factors that influence nonlinear dynam-
ics solely from (5) without the knowledge and further assessment of (4). In (5), 
the nonlinear damping and stiffness physics are lumped together in { }F



, whe-
reas in (4), both linear and nonlinear stiffness and damping terms are clearly 
identifiable. We remark that even though the [ ] [ ],M C  and [ ]K  in (5) have 
constant coefficients, the { } { },δ δ  and { }δ  in (5) are same as those in (4), 
hence they correspond to the solution of (4) i.e. are due to nonlinear system of 
ODEs in time. 

We note that the mass, stiffness and damping matrices in (5) are non diagonal 
matrices. To the best of our knowledge, we have not found published works in 
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which the nonlinearities in { }F  are clearly identified as we have done in the 
subsequent sections of this paper. Additionally, there are no reported solutions 
of (5) in which [ ] [ ],M C  and [ ]K  are all nondiagonal and are not altered us-
ing further assumptions. Instead, we find that the ODEs in (5) are reduced to a 
decoupled system of ODEs in time using the following approach. 

In (5), { } { },δ δ  and { }δ  correspond to nonlinear ODEs in time. We con-
sider linear undamped eigenvalue problem corresponding to linear ODEs in 
time describing linear dynamics with damping. 

[ ]{ } [ ]{ } [ ]{ } { } { }ll l
M C K F Pδ δ δ+ + = +                    (6) 

Let the columns of [ ]Φ  represent the mass normalized eigenvectors of the 
undamped eigenvalue problem corresponding to (6), then (6) can be transformed 
to modal basis using  

 { } [ ]{ }l
xδ = Φ                            (7) 

 and { } [ ]{ }
l

xδ = Φ

                            (8) 

 { } [ ]{ }.
l

xδ = Φ

                            (9) 

This procedure is standard [32]. However, transformation to modal basis us-
ing (7)~(9) cannot be applied to (5) as { } { },δ δ  and { }δ  in (5) are not the same 
as { } { },

l l
δ δ  and { }

l
δ  in (6) and (7)~(9). We can only apply modal basis trans-

formation to the following nonlinear PDEs:  

 [ ]{ } [ ]{ } [ ]{ } { }( ){ }l ll l
M C K Fδ δ δ δ+ + = 



               (10) 

Clearly, (10) are not the same as (5), hence cannot describe nonlinear dynam-
ic behavior in the same manner as (5). Another important and inherent assump-
tion in (10) is that the response { } { },

l l
δ δ  and { }

l
δ  is due to superposition of 

linear modes of vibrations (as evident from (7)~(9)). Superposition only holds 
for linear system, hence certainly cannot be used for the nonlinear dynamics 
under consideration. In the published works (7)~(9) are substituted in (10) and 
(10) is premultiplied by [ ]TΦ  to obtain the following ODEs in time. 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }( ){ }T T T T

l
M x C x K x F δΦ Φ + Φ Φ + Φ Φ = Φ 



 (11) 

If 2
iω  are the eigenvalues of the eigenvalue problem with linear [ ]K  and 

[ ]M , then (11) reduces to 

[ ]{ } [ ] [ ][ ]{ } [ ]{ } [ ] { }( ){ }T T

l
I x C x x F δ+ Φ Φ + Λ = Φ          (12) 

in which [ ]I  identity and [ ]Λ  is a diagonal matrix containing 2 2 2
1 2, , , nω ω ω  

on the diagonal. 
We note that in the modal basis, [ ] [ ][ ]T CΦ Φ  is nondiagonal as is the matrix 

[ ]C  in (7). Rayleigh damping is used to diagonalize the matrix [ ] [ ][ ]T CΦ Φ . 
In the transformation (7)~(9) to modal basis, { } { },x x  and { }x  are modal 
participation factors. This implies the actual response { } { },δ δ  and { }δ  of 
the nonlinear dynamics problem consists of the superposition of the mass norma-
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lized eigenvectors of the linear problem using modal participation factors 
{ } { },x x  and { }x  as in (7)~(9). We discuss this in more details in the follow-
ing. It is assumed that since equation (12) is in modal basis, the mechanism of 
dissipation must be related to the natural modes of vibrations (this assumption 
only holds if ODEs are linear). This leads to consideration of Rayleigh damping. 
We assume that [ ]C  is a linear combination of [ ]M  and constant coefficient 
[ ]K  i.e.  

 [ ] [ ] [ ]C M Kα β= +                          (13) 

where α  and β  are functions of iω  (natural frequencies of the linear sys-
tem). Transforming (13) into modal basis, we have: 

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ].T T TC M K Iα β α βΦ Φ = Φ Φ + Φ Φ = + Λ      (14) 

We note that right hand side of (14) is a diagonal matrix containing  
2 ; 1,2, ,i i nα βω+ =   on the diagonals. Thus, [ ] [ ][ ]T CΦ Φ  has been diagona-

lized using (13) in modal basis (14). 
If we assume that iζ  is the dimensionless damping coefficient corresponding 

to frequency iω , then based on 1D spring-mass-damper system, we can write 

[ ] [ ][ ] [ ] [ ] [ ]2 .T
i iC I Iα β ζ ω Φ Φ = + Λ =                (15) 

In (15), the diagonal entries of [ ]C  are given by 2 ; 1,2, ,i i i nζ ω =   in the 
modal basis. Thus, we have: 

2 2i i iα βω ζ ω+ =                         (16) 

Equation (16) can be used to obtain ,α β  from iω  versus iζ  experimental 
data (only two data points are needed to determine α  and β ). By substitut-
ing (15) into (11), we obtain 

[ ]{ } [ ] { } [ ]{ } [ ] { }( ){ } { }( ){ }T2 i iI x I x x F Q xζ ω δ + + Λ = Φ =  



      (17) 

in which [ ]2 i i Iζ ω    is a diagonal damping matrix containing  
2 ; 1,2, ,i i i nζ ω =   on its diagonal. 

Equations (17) represent a decoupled system of “n” second order nonlinear 
ODEs in time. We can also express (17) as follows: 

{ }( )22 ; 1,2, ,i i i i i ix x Q x i nζ ω ω+ + = =
                (18) 

1.4. Remarks 

In arriving at (18) from (5) there are many assumptions involved. 
(1) The nonlinear ODEs cannot be transformed to modal basis as there is no 

modal basis for nonlinear ODEs. We can only transform (6) to modal basis as in 
this case { } { } { }, ,

l l l
δ δ δ   correspond to linear case. However, (6) does not 

represent the nonlinear dynamics physics described by (5).  
(2) Decoupled ODEs in time (18) are exactly same as they appear in linear 

dynamics if the nonhomogeneous part is not a function of { }x . This suggests 
that calculating modal participation factors ix  using nonlinear decoupled 
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ODEs and then using them in (7)~(9) is sufficient for (7)~(9) to yield { } { },δ δ  
and { }δ  of nonlinear problem instead of { } { } { }, ,

l l l
δ δ δ   of linear problem. 

(3) Use of superposition for a nonlinear problem raises the question regarding 
the validity of the resulting solutions { } { },δ δ  and { }δ  obtained using (18) 
and (7)~(9). 

(4) Use of Rayleigh damping itself is highly questionable. We recall that in de-
riving nonlinear ODEs (1), damping or dissipation is considered to be depen-
dent on strain rates in the constitutive theory for contravariant deviatoric second 
Piola-Kirchhoff stress tensor that leads to damping matrices [ ]iC 

   in (1). As-
suming that [ ]1C 

   or [ ]C  is proportional to [ ]M  and [ ]K  in (13) is heu-
ristic and has no physical basis and often leads to wrong evolution and the sta-
tionary state. Therefore, the validity of the resulting ODEs in time (18) is highly 
questionable. Surana et al. [33] [34] have shown that solutions obtained using 
(18) lead to incorrect stationary states in cases where the evolution possess a sta-
tionary state, solution of the corresponding boundary value problem. 

(5) In decoupled system (18), each ODE is precisely a single degree of freedom 
spring, mass, damper system. Thus, it is perhaps not surprising that superposi-
tion of the solutions obtained from (18) using (7)~(9) exhibit similar characte-
ristics as a single mass, spring, damper system. 

(6) We point out that exact form of { }( ){ }Q δ  can be quite complex. What 
form is exactly used in the reported solution of (18) is not available in the pub-
lished works. 

(7) Regardless of many other details, it is conclusive that this approach de-
scribed above (used dominantly in published works) cannot be used to study 
nonlinear dynamic response of continuous system with finite deformation, finite 
strain and consistent mechanism of dissipation.  

2. Scope of Work 

Based on the remarks in Section 1, our view is that the true mathematical de-
scription of the nonlinear dynamics physics for continuous TVE solids with-
out memory is given by CBL of CCM derived using contravariant second Pi-
ola-Kirchhoff stress tensor, Green strain tensor, its rates and consistent constitu-
tive theories derived using entropy inequality and representation theorem. The 
resulting system of nonlinear PDEs can be converted into a nonlinear system of 
second order ODEs (1) by using space-time decoupled finite element processes 
with GM/WF in space for the spatial discretization [6]. Therefore, the solutions 
of original nonlinear PDEs or the solution of the nonlinear ODEs (1) is the solu-
tion that describes the deformation physics of nonlinear dynamics in TVE solids 
with finite deformation physics and nonlinear damping. In this paper, we present 
such solutions. 

When TVE solids are subjected to harmonic excitation resulting in finite de-
formation, finite strain deformation physics, we observe (also reported in many 
published works) the following in the frequency response: 
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(1) Progressively increasing frequency of excitation yields a frequency re-
sponse curve in which there could be a sudden change in the maximum ampli-
tude of motion at or in the neighborhood of a specific frequency. 

(2) Progressively decreasing frequency of excitation also yields a frequency 
response curve in which there could also be a sudden change in the maximum 
amplitude of motion at or in the neighborhood of a specific frequency. 

(3) First, we note that (1) and (2) do not always exist for all choice of parame-
ters that influence the dynamic response. However, if (1) and (2) do exist, then 
the two frequency response curves generally differ except in the range of very 
low and very high frequencies. Secondly, the occurrence of jump (decrease or 
increase) in the maximum amplitude in (1) and (2) generally does not happen at 
the same frequency. 

(4) These frequency response curves and associated backbone curves con-
structed using the information in these, have been reported for both single mass 
and two mass spring, dashpot systems with nonlinear stiffness and damping as 
well from the solutions of decoupled ODEs as in (10) but transformed to (18) 
using linear modal basis. 

(5) The work in this paper focused on many basic aspects of nonlinear dy-
namics including identification of the physics in nonlinear dynamics that can 
result in dynamic bifurcation phenomenon in the frequency response. 

(6) It is shown that using thermodynamically and mathematically consistent 
system of PDEs in space and time resulting from the CBL of CCM and the con-
sistent constitutive theories, the factors influencing nonlinear dynamics cannot 
be illustrated explicitly, though these are implicitly present in the nonlinear 
PDEs. 

(7) The nonlinear system of ODEs resulting from space-time decoupled finite 
element method is the first step in identifying some of the factors influencing 
nonlinear dynamic response. 

(8) It is shown that consideration of finite deformation, finite strain physics in 
corresponding BVPs and the solution of resulting nonlinear algebraic equation 
using Newton’s linear method is essential in explicitly determining some aspects 
of the physics that are implicitly present in item (7). 

(9) The solution of the nonlinear ODEs in item (7) (i.e. Equations (1)) are 
calculated using Newmark linear acceleration method with Newton’s linear me-
thod for each increment of time to obtain a converged solution. Use of Newton’s 
linear method reveals that incremental solution calculation procedure in the 
iterative process contains some of the same physics as in BVP, hence the same 
mathematical form associated with the discretization as in case of BVP discussed 
in (8). This facilitates identification of some aspects of the physics and their in-
fluence on dynamic bifurcation phenomenon in nonlinear dynamics. 

(10) Solutions of model problems are presented using space-time coupled fi-
nite element method. Space time domain is discretized into space-time strips, each 
corresponding to increments in time. The first space-time strip (for 0 t t≤ ≤ ∆ ) 
is discretized using p-version hierarchical space-time finite elements with higher 
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order global differentiability in space and time. PDEs in the mathematical model 
are used to construct space-time variationally consistent space-time integral form 
based on space-time residual functional for the discretization of a space-time 
strip. Space-time variational consistency of the space-time residual functional 
(IVP) ensures unconditionally stable computations [32]. A converged solution is 
obtained for appropriate choice of h and p with minimally conforming approx-
imation space. Residual functional values for the discretization of the order of 

( )810O −  or lower, ensure accurate time evolution. Upon convergence of the 
solution for the first space-time strip, the remaining evolution is computed by 
using subsequent space-time strips and time marching. In this approach, the use 
of space-time variationally consistent space time coupled finite element method 
eliminates some approximations and other issues of convergence that exist in 
space-time decoupled methods. All model problem studies in the paper are pre-
sented using this approach. Model problems are designed in such a way that 
their solutions presented in this paper can be compared with some published 
results as well as with their 1D equivalent models using mass, 1D nonlinear 
spring and 1D nonlinear dashpot when possible. 

3. Determination of Factors Influencing Nonlinear Dynamic  
Response 

Complete mathematical model for finite deformation, finite strain nonlinear 
dynamics of thermoviscoelastic solids (TVES) without memory using contrava-
riant second Piola-Kirchhoff stress tensor and Green’s strain tensor and using 
ordered rate constitutive theory for dissipation based on material derivatives of 
the Green’s strain tensor up to order n has been presented by Surana et al. in 
reference [6]. The derivation of this mathematical model is not presented in this 
paper for the sake of brevity, but the equations constituting the mathematical 
model are given in the following:  

 ( ) ( )0 , CMtρ ρ= J x                       (19) 

 
{ } { } [ ] [ ] { } ( )

2
0

0 02 0 BLM
TbD u

F J
Dt

ρ ρ σ  − − ∇ =   
         (20) 

 [ ] [ ] ( )0 0 BAM
T

σ σ   =                         (21) 

 { } { } [ ] [ ]( ) ( )0
0 tr 0 FLTTDe q

Dt
ρ σ ε + ∇ − =                 (22) 

 [ ] [ ] [ ]0 0 0
e dσ σ σ     = +                           (23) 

 [ ] ( ) [ ] [ ] 10 , CompressibleT
e p J Jσ ρ θ −  =  J               (24) 

 [ ] ( ) [ ] [ ]( ) ( )[ ]10 IncompressibleT
e p J J p Iσ θ θ−  = =            (25) 

Constitutive theories for [ ]0
dσ 
   and { }q  based on integrity  

 [ ] [ ] ( )[ ]0 0

1 1 1 1

M N N M
j i j i

d j i ij
j i i j

I a I I b G c I Gσ σ σ σ σ σ σσ σ
= = = =

     = + + +     ∑ ∑ ∑∑
      

 (26) 
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 { } { } { } { }( ){ }T
1 2q g g g gκ κ

Ω Ω
= − −                  (27) 

Simplified constitutive theories for [ ]0
dσ 
   and { }q  (in Voigt’s notation) 

that are linear in tensors ( [ ] [ ], ; 1,2, ,i i nε ε  =  
 and { }q ) are given by: 

[ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( )0 0
0 0

1 =1
2 tr 2 tr

n n

d i ii i
i i

I I Iσ σ µ ε λ ε µ ε λ ε
=

         = + + + +         ∑ ∑


 (28) 

{ } { }1q gκ
Ω

= −                            (29) 

in which { }u  are displacements, { }bF  are body forces per unit mass, [ ]0σ  is 
contravariant second Piola-Kirchhoff stress tensor, e is internal energy density, 
{ }q  is heat vector, [ ]0

eσ  and [ ]0
dσ  are equilibrium and deviatoric contrava-

riant second Piola-Kirchhoff stress tensors. ( ),p ρ θ  is equation of state, ( )p θ  
is mechanical pressure. ; 1,2, ,iG i Nσ  =  



 and ; 1,2, ,JI j Mσ = 



 are com-
bined generators and invariants of the argument tensors [ ]0ε 

   and  

[ ] ; 1,2, ,i i nε  =  
 of the constitutive tensor [ ]0

dσ 
  , { }g  is a temperature 

gradient tensor (argument tensor of constitutive tensor { }q ), µ  and λ  are 
elastic constants, iµ  and iλ  are dissipation coefficients for strain rate [ ]iε 

  . 
This mathematical model has closure. It consists of thirteen equations BLM(3), 
FLT(1), constitutive theories for [ ]0

dσ 
   (6), { }q  (3) in thirteen dependent va-

riables iu  (3), [ ]0
dσ 
   (6), { }q  (3), θ  (1). We note that ( ),e e ρ θ= . Ω  is 

a known configuration in which all material coefficients are described. For de-
tails of the derivation of the PDEs in the mathematical model, the reader can re-
fer to references [6] [15]. 

If we consider the mathematical model consisting of nonlinear PDEs in the 
CBL of CCM and consistent constitutive theories presented above, then all we 
can infer is that: (1) Green’s strain permits finite deformation and finite strain, 
(2) the nonlinear dissipation mechanism (due to Green’s strain rates) converts 
some mechanical energy into entropy, (3) the inertial terms related to mass in 
general result in a reduction in the stiffness of the system, thereby resulting in 
larger displacements dynamically compared to when the same loads applied 
statically and (4) the presence of dissipation also provides resistance to motion. 

On the other hand, if we consider the nonlinear ODEs (1) resulting from 
space-time decoupled finite element method (with GM/WF in space), then we 
can infer the following: 

(1) Stiffness matrix is the addition of three matrices, namely 1 2,K K        and 
3K   . The coefficients of 1K    are constant while the coefficients of 2K    

and 3K    are linear and quadratic in the gradients of displacements (and the-
reby degrees of freedom), respectively. However, the specific influence of each 
matrix on nonlinear dynamics is not readily apparent. Therefore, at this stage we 
can only say that nonlinear dynamic response is dependent on a constant stiff-
ness matrix and stiffness matrices with coefficients that are linear and quadratic 
functions of displacement gradients. Thus, the total stiffness is nonlinear. Signif-
icant contributions of 2K    and 3K    are essential in nonlinear dynamic 
response. In order for these contributions to be substantial, the applied loads 
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must be sufficiently large so that finite deformation exists, resulting in signifi-
cant contribution of 2K    and 3K   . We also note that 1K    and 3K    
are symmetric but 2K    is nonsymmetric.  

(2) The damping matrices [ ]iC 
   (due to [ ]iε ) are also composed of addition 

of [ ] [ ]
1 2,i iC C   

     and [ ]
3
iC 

  . The coefficients of [ ]
1
iC 

   are constant, while those 
of [ ]

2
iC 

   and [ ]
3
iC 

   are linear and quadratic functions of the components of 
displacement gradient tensor. Matrices [ ]

1
iC 

   and [ ]
3
iC 

   are symmetric but 

[ ]
2
iC 

   is nonsymmetric.  
(3) It is well understood that constant coefficient damping [ ]

1
iC 

   results in 
base elongation and amplitude decay of an applied disturbance, conversion of 
mechanical energy into entropy and offers resistance to motion. We cannot con-
clusively make similar statements for [ ]

2
iC 

   and [ ]
3
iC 

   but intuitively this 
seems plausible. Regardless of their specific form, damping matrix must result in 
some level of dissipation and resistance to motion. The damping material coeffi-
cients in [ ]iC 

   are actual material coefficients from the constitutive theory. 
These play critical role, as discussed in a later section, when Equations (1) are 
compared with phenomenological mathematical models in which there is no 
physics, hence material coefficients are arbitrary.  

(4) Third important aspect is due to presence of [ ]{ }M δ  term in (1). In a 
vibrating system with a low but progressively increasing frequency below the 
first fundamental frequency (as observed in a linear system), the maximum am-
plitude of motion also progressively increases. This indicates that the dynamic 
stiffness of the system is lower than the static stiffness, resulting in an increased 
amplitude of motion compared to the static response for the same applied force. 
In a nonlinear system, this physics may not be as straight forward as in case of 
linear system. However, it is reasonable to assume that there might be some si-
milarities to the observations stated above.  

(5) Is the physics discussed in (1)~(3) and present in (1) sufficient to under-
stand if and when the dynamic bifurcation in nonlinear dynamics can exist? Our 
view is that there is some additional physics and some crucial findings in the so-
lution procedure over and beyond (1)~(3) that play an extremely important and 
crucial role in the existence or lack of dynamic bifurcation in nonlinear dynam-
ics. We note that sudden change (increase or decrease) in the amplitude of mo-
tion at or in the neighborhood of a frequency is akin to the phenomenon of stat-
ic bifurcation. This is accompanied by a sudden release of energy leading to a 
sudden change in the stiffness of the system, hence a sudden jump in the de-
formed state of the matter. If the bifurcation occurs in frequency response, then 
the aspects discussed so far (items (1)~(3)) must be inherently present in the 
mathematical model (1). However, they cannot be explicitly observed in the 
mathematical model itself. In the following, we demonstrate additional physics 
present in (1) that plays significant role in dynamic bifurcation.  

3.1. Static Bifurcation 

Consider balance of linear momenta (equation (10) in ref [6]) for BVPs (finite 
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deformation, finite strain). 

{ } [ ] [ ] { }0
0 0b

xF Jρ σ  + ∇ = ∀ ∈Ω   x                (30) 

A finite element formulation based on integral form of (30), integrated over a 
discretization T e

x x
e

Ω = Ω


 of xΩ  using fundamental lemma of the calculus of 
variations followed by GM/WF yields (also see ref [6]): 

[ ] [ ]{ } { } { }0 d .T
e

e
B P Fσ

Ω
Ω = +∑∫                   (31) 

The following details can be found in ref [6]: 
Displacement gradient tensor d J    is given by  

 
{ }
{ } { } { } { } [ ] [ ]1 2 3 ;d du

J g g g J I J
x

 ∂
    = = = +      ∂  

          (32) 

in which 

{ }
{ }
{ }

1 1,1 2,1 3,1

2 1,1 2,1 3,1

3 1,1 2,1 3,1

, ,

, ,

, ,

T

T

T

g u u u

g u u u

g u u u

 =  

 =  

 =  

                       (33) 

Let  

 { } { } { } { }1 2 3, , .TT T Tg g g g =                        (34) 

Using local approximations for u , we can write:  

 { } [ ] ( ){ }.eg G tδ=                         (35) 

We decompose Green’s strain tensor [ ]0ε  into linear [ ]0
lε  and non-linear 

components [ ]0
nlε  

[ ]{ } { }0

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0.5 0 0.5 0
0 0 0.5 0 0 0 0.5 0 0
0 0.5 0 0.5 0 0 0 0 0

l gε

 
 
 
 

=  
 
 
 
  

          (36) 

or  

 [ ]{ } [ ]{ } [ ][ ] ( ){ }0
l eH g H G tε δ= =                    (37) 

[ ]{ }

{ }
{ }

{ }
{ } { }

{ } { }
{ } { }

{ } { }

1

2

3
0

3 2

3 1

2 1

0 0

0 0

0 01 1
2 20

0

0

T

T

T
nl

gT T

T T

T T

g

g

g
g A g

g g

g g

g g

ε

 
 
 
 
 

 = =   
 
 
 
 
  

            (38) 
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Using (35) in (36)  

 [ ]{ } [ ] ( ){ }0
1
2

nl e
gA G tε δ =                          (39) 

Thus,  

 [ ]{ } [ ]{ } [ ]{ } [ ][ ] ( ){ } [ ] ( ){ }0 0 0
1
2

l nl e e
gH G t A G tε ε ε δ δ = + = +           (40) 

or  

[ ]{ } ( ){ } ( ){ }

( ){ }

0
1
2

1
2

l e nl e

l nl e

B t B t

B B t

ε δ δ

δ

   = +   

    = +     

                 (41) 

where  

 
[ ][ ]

[ ]

l

nl
g

B H G

B A G

  =  


   =    
                         (42) 

[ ] l nlB B B   = +                             (43) 

In (31), { }P  is a vector of secondary variables and { }F  is the load vector 
(due to body forces in case of (30)). We assume that { }F  is conservative and 

{ }eδ  are nodal degrees of freedom for an element e. 
Recall  

 [ ] [ ] [ ]0 0 0
e dσ σ σ     = +                            (44) 

[ ]{ } [ ] [ ]{ } [ ] { }0
0

1
2

l nl e
d D D B Bσ ε δ    = + +     

             (45) 

Using (43) and (45) in (31) we can write 

{ } { } { } [ ] { }1 d 0.
2

Tl nl l nl e

e e
P F B B D B B δ

Ω

         Ψ = + = + + Ω =           
∑ ∫   (46) 

Expanding the integrand in (46), we can write 

{ } { } { } { }1 2 3 e
e e e

e
P F K K K δ      Ψ = + − + +      ∑             (47) 

where  

 [ ]1 d
e
x

Tl l
eK B D B

Ω

     = Ω     ∫                       (48) 

 [ ] [ ]2 1 d
2e

x

T Tl nl nl l
eK B D B B D B

Ω

          = + Ω           ∫             (49) 

 [ ]3 1 d
2e

x

Tnl nl
eK B D B

Ω

     = Ω     ∫                      (50) 

are the element stiffness matrices. 1
eK    is a constant coefficient matrix and the 

coefficients of 2
eK    and 3

eK    are linear and quadratic functions of the coef-
ficients of d J   , hence linear and quadratic in dofs { }eδ . 1

eK    and 3
eK    
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are symmetric but 2
eK    is non-symmetric. As expected, these are exactly same 

as in the case of corresponding IVP [6]. 
We can write (46) or (47) as 

{ }( ){ } { } { } { }( ) { } 0P F Kδ δ δ Ψ − + − =                   (51) 

Equations (51) represent a system of nonlinear algebraic equations. In order to 
find a solution { }δ  that satisfies (51), an iterative method must be employed. 
Specifically, Newton’s linear method can be used to obtain a solution of the non-
linear algebraic Equations (51). 

Let { }0
δ  be the initial solution (assumed or guess), then 

{ }( ){ }0
0.δΨ ≠                            (52) 

Let { }δ∆  be a change in { }0
δ  such that 

{ } { }( ){ }0
0.δ δΨ + ∆ =                         (53) 

We expand ( ){ }.Ψ  in (53) in Taylor series about { }0
δ  and retain only upto 

linear terms in { }δ∆ . 

{ }( ) { }{ } { }( ){ } { }
{ } { }

{ }
0

0 0
0

δ

δ δ δ δ
δ

 ∂ Ψ
Ψ + ∆ = Ψ + ∆ = 

∂  
          (54) 

From (54), we can determine { }δ∆  

{ } { }
{ } { }

{ }( ){ } { } { } { }( ){ }
0

0

1
1

0 0
.

δ
δ

δ δ δ δ
δ

−
− ∂ Ψ

 ∆ = − Ψ = − Ψ Ψ   ∂  
       (55) 

Improved solution { }δ  is obtained using 

{ } { } { }0
.δ δ δ= + ∆                         (56) 

If  

 { }( )i δΨ ≤ ∆                           (57) 

then the solution { }δ  is considered the converged solution. Otherwise, we set 
{ } { }0
δ δ=  and repeat the iteration process from (55)~(57). ∆  is a preset to-

lerance for the computed zero. 
Surana et al. [6] have shown that variation of { }( ){ }δΨ  leads to 

{ }( ){ } [ ] [ ][ ] [ ] [ ][ ]( ) [ ]d .T T e
T T

e ee
B D B G S G K Kδ δ

Ω

 Ψ = − + Ω = − = − ∑ ∑∫  (58) 

Substituting for [ ]B  in (58) from (43) 

( ){ } [ ] [ ] [ ]( )(
[ ] [ ] [ ][ ])

[ ]

.

d

.

T Tl l l nl nl l

e e

T Tnl nl

T
T e

e

B D B B D B B D B

B D B G S G

K K

δ
Ω

           Ψ = − + +           

   + + Ω   

 = =  

∑ ∫

∑

  (59) 

Let  
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 [ ]1 1 1d ;
e
x

Tl l
e e

e
K B D B K K

Ω

         = Ω =         ∑∫              (60) 

 [ ] [ ]( )2 2 2d ;
e
x

T Tl nl nl l
e e

e
K B D B B D B K K

Ω

             = + Ω =             ∑∫
  

   (61) 

 [ ]3 3 3d ;
e
x

Tnl nl
e e

e
K B D B K K

Ω

         = Ω =         ∑∫
  

            (62) 

 [ ] [ ][ ] [ ]d ;
e
x

Te e

e
K G G K Kσ σ σσ

Ω

   = Ω =   ∑∫                (63) 

[ ] 1 2 3, , ,T e e eK K K K          
 

 and eKσ    are all symmetric. T
eK    is called the 

tangent stiffness matrix for element “e”. Assembly of the element equations fol-
lows the usual procedure. [ ]TK  is called tangent stiffness matrix for the discre-
tization. 

Remarks 
(1) In the neighborhood of static bifurcation (load at which amplitude of mo-

tion experiences jump), [ ]TK  is momentarily singular causing instability. At 
bifurcation load, [ ] [ ] [ ]2 3

1 0K K K Kσ   + + + =   
 

). That is, at static bifurcation 
point, compressive or negative [ ]Kσ  is exactly equal to the sum of 1K   , 
[ ]2K


 and 3K  


. Thus, significance of [ ]Kσ  is now rather obvious.  
(2) We note that in calculating the increment solution of { }δ∆  using (55) 

and (59), there are four stiffness matrices involved. 1 2,e eK K      


 and 3
eK  


 have 
constant coefficients, linear and quadratic coefficients of the displacement gra-
dient tensor (or { }eδ , hence { } e

e
δ δ=


). While 1
eK    is same as in (47) but 

2
eK  


 and 3
eK  


 are not the same as 2
eK    and 3

eK    in (49) and (50). 
(3) We also note that in 2

eK  


 and 3
eK  


, the dependence of the coefficients 
on the gradients of displacement (i.e., the degree) is same as in 2

eK    and 
3
eK   . 

(4) The matrix eKσ    (explicitly not present in (47)) is called stress stiffness 
matrix. Its presence in (59) indicates that the presence of stress field influences 
the stiffness of the deforming matter. When the stress field is tensile (positive), 
the resulting eKσ    likewise is positive, hence results in increased stiffness of 
the deforming volume of matter. On the other hand, a compressive stress field 
(negative) will result in a negative eKσ   , causing decrease in stiffness of the 
deforming volume of matter. 

(5) In static and dynamic bifurcation physics, [ ] e
eK Kσ σ =  ∑  plays a cru-

cial role in the mechanism of sudden energy release that leads to bifurcation. 
Without [ ]Kσ , bifurcation cannot be observed in the nonlinear dynamics. Ad-
ditionally, from the derivation of [ ]Kσ , we observe that Kσ    only exists 
when finite deformation, finite strain deformation physics is present in the de-
forming matter. 

(6) We shall see that the matrices (60)~(63) appear explicitly when integrating 
nonlinear ODEs (1) in time using Newmark linear acceleration method with 
Newton’s linear method for a time interval to obtain converged solution, con-
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firming that stress stiffness matrix [ ]Kσ  also controls dynamic bifurcation 
physics in nonlinear dynamics. Static bifurcation cannot exist without [ ]Kσ , 
hence deviatoric second Piola-Kirchhoff stress and Green’s strain as a conjugate 
pair are essential in the mathematical model.  

3.2. Factors Influencing Dynamic Bifurcation Phenomenon in  
Nonlinear Dynamics 

First, we note that factual determination of the factors influencing dynamic bi-
furcation can only be done when we determine how the incremental solution for 
each increment of time is computed. The coefficient matrix in the computations 
must contain all of the details related to the evolution of the dynamic problem. 

In this section we list various aspects of the physics in the mathematical model 
that we have observed so far that are likely to influence nonlinear dynamics in 
general, and in particular, the existence of bifurcation phenomenon in the fre-
quency response. 

(1) Finite deformation, finite strain with dissipation is irreversible physics that 
leads to path (loading path) dependent response. This, of course, is present due 
to the stiffness matrices 1 2,K K        and 3K   , as well as due to similar ma-
trices for the dissipation mechanism. The mechanism of increase or decrease in 
stiffness resulting due to increasing or decreasing deformation and strain is 
present in the stiffness matrices 1 2 3, ,K K K            although quantifying it pre-
cisely is not trivial. At this stage, all we can conclude is that these factors are es-
sential for nonlinear dynamics and the existence of bifurcation physics. 

(2) Dissipation provides resistance to motion, thereby contributes additional 
stiffness to the system. Increasing damping material coefficients increases stiff-
ness of the system and vice versa. Thus, damping physics influences dynamic 
bifurcation physics. Reduced damping physics enhances the likelihood of the 
presence of dynamic bifurcation and vice versa. The presence of dissipation re-
sults in conversion of some mechanical work into entropy, thus heat, resulting in 
change of thermal field. In case of repeated cyclic loading over long periods of 
time, the thermal effects may need to be considered. In the present work, we on-
ly consider isothermal physics. Non-isothermal nonlinear dynamics investiga-
tion will be considered in a follow on paper. 

(3) A tensile stress field results in positive [ ]Kσ , which enhances the total 
stiffness of the medium. On the other hand, a compressive stress field results in 
negative [ ]Kσ  which reduces the total stiffness of the medium. Thus [ ]Kσ  
plays a major and significant role in the static as well as dynamic bifurcation 
physics. 

(4) As discussed earlier, translational inertial physics due to [ ]{ }M δ  results 
in reduction of the stiffness of the medium, thus enhancing the likelihood of the 
existence of dynamic bifurcation physics. 

(5) Thus, nonlinear stiffness, linear and nonlinear damping, change in the 
stiffness due to [ ]Kσ  and the change in stiffness due to [ ]{ }M δ  all play a role 
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in dynamic response. We note that negative [ ]Kσ  and [ ]{ }M δ  lead to a re-
duction in stiffness, while increasing dissipation and increasing nonlinearity 
contribute to an increase in stiffness. Therefore, when generating frequency re-
sponse curves in the nonlinear deformation range, a balance between these two 
mechanisms of stiffness increase and decrease exist at every frequency when the 
motion becomes cyclic. A bifurcation point indicates an imbalance between these 
mechanisms, resulting in a sudden change in the energy and hence a sudden 
change in the amplitude of the motion to restore the balance. When [ ]Kσ  is 
always positive, dynamic bifurcation will require the minimum possible damp-
ing (to reduce stiffness) and enough decrease in stiffness due to [ ]{ }M δ . On 
the other hand, when [ ]Kσ  is negative, [ ]Kσ  along with some decrease in 
stiffness due to [ ]{ }M δ  may result in enough decrease in total stiffness to al-
low for the dynamic bifurcation to exist. We point out that existence of dynamic 
bifurcation physics for some damping can possibly be eliminated by increasing 
damping, which leads to increase in stiffness, and vice versa. A sudden change in 
the state of energy of the deforming volume of matter at a frequency is necessary 
for the static as well as dynamic bifurcation to occur. Thus, [ ]Kσ  plays a cru-
cial role in bifurcation phenomenon. In the absence of [ ]Kσ  (corresponding to 
infinitesimal deformation physics), bifurcation is not possible. Presence of 
[ ]Kσ  requires finite deformation physics, which is essential for the occurrence 
of static or dynamic bifurcation. This highlights the significance of the role 
played by [ ]Kσ  in enabling or contributing to static or dynamic bifurcation 
phenomena. When finite deformation nonlinearities are insignificant, either bi-
furcation cannot occur or its existence may require extremely low values of dis-
sipation and significant weakening of stiffness due to translational inertial phys-
ics ( [ ]{ }M δ ). 

(6) In a continuous system where the response at a material point is influ-
enced by the neighboring material points, the physics of evolution is dependent 
on position and time. This physics cannot be described by a lumped system that 
is independent of position. We discuss this aspect in more detail in a later sec-
tion. 

(7) We summarize the main points in the following:  
(a) For bifurcation to exist, the deformation must be finite in order for the 

nonlinearities in stiffness and damping to be active in the dynamic response. 
(b) Magnitude of the applied force (or disturbance) and dissipation are two 

key elements for the dynamic bifurcation physics in the nonlinear deformation 
range. 

(c) For a given magnitude of the force (when deformation is nonlinear), there 
is a threshold value of dissipation for the existence of dynamic bifurcation. Be-
low this threshold value of dissipation, dynamic bifurcation is always likely, 
while a damping value above the threshold value can eliminate the existence of 
dynamic bifurcation. 

(d) Similarly, for a given damping value, there is a threshold value of the mag-
nitude of applied force (disturbance) for the existence of dynamic bifurcation 
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phenomenon. A force value below this threshold value, the dynamic bifurcation 
can be eliminated. But for forces higher than threshold value, dynamic bifurca-
tion is likely to exist. 

(e) The presence of [ ]Kσ  (which only exists for finite deformation, finite 
strain physics) plays crucial role in the static as well as dynamic bifurcation physics, 
which is always associated with sudden change in energy state and as a result, a 
sudden change in [ ]Kσ . Presence of positive [ ]Kσ  and presence of negative 
[ ]Kσ  leads to dynamic bifurcation curves in the frequency response with dif-
ferent characteristics. 

(f) When dynamic bifurcation exists, frequency response is generally path de-
pendent i.e., progressively increasing frequencies and progressively decreasing 
frequencies will result in different frequency response curves, with the presence 
of bifurcation at different frequencies. 

(g) In a following section we present derivation of the time integration of the 
nonlinear ODEs resulting from the space-time decoupling in which computa-
tions of the incremental solution for a time step contains tangent matrix with all 
necessary details of the factors influencing dynamic bifurcation.  

4. Mathematical Models  

In the following two sections, we consider a 1D phenomenological mathematical 
model used quite frequently in published works and a mathematical model 
based on CBL of CCM. 

4.1. 1D Phenomenological Mathematical Models versus  
Mathematical Models Based on CBL of CCM 

There is a fundamental question that we must address: can 1D phenomenologi-
cal mathematical models with nonlinear damping and nonlinear stiffness ever 
replicate the nonlinear dynamic response of a TVE continuous solid media? This 
is the simplest possible exercise to determine if the phenomenological mathe-
matical models reported in the literature are of any relevance in regard to the 
nonlinear dynamic response of TVE continuous matter. 

Consider the one dimensional phenomenological mathematical model (used 
in many published works) with single degree of freedom u, consisting of single 
mass, nonlinear spring and a nonlinear dashpot in which stiffness and damping 
coefficients are up to quadratic functions of u [16] [25] [26] [30] (later referred 
to as model problem I). 

( ) ( ) ( )2 2
1 2 3 1 2 3 0 sinmu c c u c u u k k u k u u f tω+ + + + + + =           (64) 

In (64), m is mass, 1 2 3, ,c c c  are damping coefficients associated with constant, 
linear and quadratic damping in u. Likewise, 1 2,k k  and 3k  are similar stiff-
ness coefficients. 

Comparing (64) and (1), we note the following: 
(a) Damping coefficients 1 2 3, ,c c c  and stiffness coefficients 1 2 3, ,k k k  are not 

material coefficients in (64). These are a result of the products of the material 
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coefficients for damping and elasticity with the coefficients of damping and 
stiffness matrices. Thus, in this model, we have no idea about the definition of 
the material coefficients and their values as well as the coefficients in the damp-
ing and stiffness matrices that arise due to nonlinear stiffness and dissipation. 

(b) In the mathematical model (1), each strain rate damping requires two ma-
terial coefficients in [ ]iD  which remain the same for constant, linear, and qua-
dratic damping in displacement gradients. Same is true for stiffness. That is, in 
(64) 1 2,k k  and 3k  are three coefficients associated with constant, linear and 
quadratic stiffnesses in u, where as in model (1), only two material coefficients 
2 ,µ λ





 are needed, which remain the same for constant, linear and quadratic 
stiffnesses in displacement gradients. It is noteworthy that in (64), linear stiffness 
and linear damping only require a single material coefficient each, represented 
by 1k  and 1c , respectively (due to one dimensional nature of the model). But 
in the case of (1), two material coefficients, 2η  and λ , are needed for linear 
stiffness as well as two material coefficients, 2 iη  and iκ , are needed for linear 
damping. 

(c) A mathematical model that is based on CBL of CCM that can possibly be 
viewed closed to (64) will be mathematical model based on CBl of CCM for 1D 
axial rod fixed at left end and subjected to harmonic excitation at the right end. 
In this case, the mathematical model is a reduction of 3D physics in (1) to 1D 
physics, hence contains material coefficients that are different than in model (1). 
In this model based on CBL of CCM, deformation intrinsically depends upon 
space and time. On the other hand, (64) represents a 1D lumped phenomeno-
logical model that is insensitive to spatial position. Does the phenomenological 
model (64) describe physics of nonlinear dynamics of the axial rod subjected to 
harmonic excitation? Other than this fundamental difference between (64) and 
(1), we have also pointed out enough other differences between the two mathe-
matical models to conclude that (64) is not adequate to describe dynamic re-
sponse of any continuous solid media. We present numerical studies in the fol-
lowing section to illustrate many points discussed here. 

(d) In the mathematical model given by (64), stiffness and damping are up to 
quadratic functions of degrees of freedom (u), [ ]Kσ  physics must be intrinsic 
in the quadratic terms (if (64) describes bifurcation physics) but cannot be expli-
citly extracted from it as we have shown in case of model (I) based on CBL of 
CCM. 

(e) Solution of (64) is obtained using Newmark linear acceleration method 
with Newton’s linear method for each time increment. 

4.2. Mathematical Models Based on CBL of CCM  
(Model Problem II) and Solution Methods  

The solutions of the PDEs in the mathematical model describing evolution de-
rived using CBL of CCM can be obtained using different methods of approxima-
tion amongst which finite element method is the most suitable method due to its 
sound mathematical foundation. We can possibly consider space-time coupled 
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finite element method based on space-time residual functional or space-time 
decoupled finite element method in which we generally use Galerkin method 
with weak form for spatial discretization to convert PDEs in the mathematical 
model to ODEs in time (nonlinear in this case) which are then integrated in time 
to obtain the solution. Merits and short comings of both finite element methods 
can be found in reference [32] and are briefly described in the following. 

Space-time coupled finite element method maintains simultaneous depen-
dence of solution on space and time (physics), hence uses space-time finite ele-
ments in which time can be viewed as another independent variable. Space-time 
coupled finite element method in which the space-time integral form is based on 
space-time residual functional is space-time variationally consistent, hence yields 
unconditionally stable computational processes during the entire evolution. In 
the most effective use of this method, a space-time strip or slab for an increment 
of time is discretized into space-time finite elements. Upon obtaining a con-
verged solution for the first space-time strip, the solution is computed for second 
space-time strip for the next increment of time using initial conditions from the 
first space-time strip. This is continued till the final desired time is reached. In 
this method, we time march only after obtaining converged solution for the cur-
rent space-time strip or slab. This ensures accuracy of the entire evolution. When 
the approximation spaces are minimally conforming [32] the space-time residual 
functional provides accurate measurement of error in the solution. The method 
potentially has the capability to provide the time accurate computed solutions 
and is used for obtaining solutions of PDEs in this paper. 

In the space-time decoupled finite element method, we consider a discretiza-
tion in space using Galerkin method with weak form. In this method, local ap-
proximation functions are functions of spatial coordinates and the nodal dofs 
are functions of time. Use of this local approximation for the spatial discretiza-
tion and the integral form in space based on Galerkin method with weak form 
yields ODEs in time in the degrees of freedom. These ODEs are then integrated 
in time to obtain the solutions for the dofs. In this method, error due to de-
coupling of space and time are difficult to measure. For discretization in space, 
we can obtain correct or converged solution of ODEs in time, but this may not 
be the solution of IVP if the discretization and use of p-level in space is not ade-
quate. In general for IVPs in 3 , space-time coupled method becomes cum-
bersome while space-time decoupled methods though more approximate than 
space-time coupled methods, but remain simple to use. In the present work, we 
only consider an IVP in 1 , hence space-time coupled method is practical, sim-
ple to use and provides full control over the accuracy of the computed evolution. 

The mathematical model for nonlinear dynamics of TVE solids without 
memory, derived using CBL of CCM, consists of a system of nonlinear partial 
differential equations in independent variables ix  and time t. In this paper, this 
mathematical model is referred to as ‘‘Model A”. By using space-time decoupled  
finite element formulation over a discretization T e

x x
e

Ω = Ω


 of spatial domain  
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xΩ  and by using GM/WF (with some integration by parts in space), the nonli-
near PDEs can be reduced to a system of nonlinear ODEs in time. This reduced 
system of ODEs in time is referred to as ‘‘Model B”. Thus, we can study solu-
tions of nonlinear dynamics problem for TVE solids either by considering the 
mathematical model A or the mathematical model B. The methods of obtaining 
solutions of the mathematical model A and B differ significantly and are dis-
cussed in the following: 

4.2.1. Solutions of PDEs in Space and Time (Model A): Space-Time  
Coupled Finite Element Method 

For simplicity of presenting details of the solution method, let us consider iso-
thermal physics. Then the mathematical model from the CBL of CCM only con-
sists of balance of linear momenta and constitutive theories for [ ]0

eσ  and 
[ ]0

dσ . Using [ ] [ ] [ ]0 0 0
e dσ σ σ     = +      , BLM can be written as: 

{ } { } [ ] [ ] [ ] { }
2

0 0
0 02 0.

T Tb
e d

u
F J

t
ρ ρ σ σ

∂      − − + ∇ =     ∂   
        (65) 

in which  

 [ ] ( )[ ]0 , .e p Iσ ρ θ  =                        (66) 

Here, ( ),p ρ θ  is the equation of state for compressible matter (thermody-
namic pressure). 

[ ] [ ] [ ] [ ]( )[ ] [ ] [ ]( )[ ]0 0
0 0

1 1
2 tr 2 tr

n n

d i ii i
i i

I I Iσ σ µ ε λ ε η ε κ ε
= =

         = + + + +         ∑ ∑


 (67) 

We can substitute (66) and (67) in (65). The resulting equation constitute a 
system of PDEs in displacements iu . The mathematical model (65)-(67) con-
sists of three balance of linear momenta equations and six equations from the 
constitutive theory for [ ]0

dσ 
  ), resulting in a total of nine equations in iu  and 

[ ]0
d ijσ , nine dependent variables. Equations (65) and (67) hold for ( ),i xtx t∀ ∈Ω  
the space time domain of the IVP defined by (65) and (67). We divide space-time  
domain into space-time strips ( )i

xt xt
i

Ω = Ω


. ( )i
xtΩ  is a typical ith space-time strip  

for [ ]1,i it t t +∀ ∈ ; 1i it t t+ − = ∆ . Consider a discretization ( )( )Tn
xtΩ  of nth space- 

time strip ( )n
xtΩ  into p-version hierarchical space-time finite elements with 

higher order global differentiability local approximations. 

( )( ) .
Tn e

xt xt
e

Ω = Ω


                        (68) 

e
xtΩ  is the space-time element “e”. We calculate converged solution for a 

space-time strip and time march to obtain entire evolution. 
Let { }e

hφ  be local approximation of iu , [ ]0
d ijσ  (equal order, equal degree) 

over e
xtΩ  (see reference [23] for details). Then { } { }e

h h
e

φ φ=


 is approximation  

of { }φ  over ( )( )Tn
xtΩ . By substituting { }hφ  in the nine PDEs (equations (65) 

and (67)), we obtain nine residual equations ; 1,2, ,9iE i =   for ( )( )Tn
xtΩ  in 
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which iE  are the residual functions from the PDEs. Let { }eδ  be the degrees  
of freedom in the local approximation { }e

hφ , then { } { }e

e
δ δ=


 are the degrees  

of freedom for { }hφ  approximation of { }φ  over ( )( )Tn
xtΩ . The space-time re-

sidual functional I over ( )( )Tn
xtΩ  is constructed using 

{ }( ) ( ) ( ) ( ) { }( )
9 9

1 1
, ,Tn ext xt

e e e e
i i i i

e e
I E E E E Iδ δ Ω  Ω 

 = = = 
 

∑ ∑ ∑ ∑      (69) 

in which e
iE  are the residual functions obtained from (65) and (67) when { }e

hφ  
are substituted in them. Functional I(.) is a nonlinear function of { }δ . Follow-
ing reference [32], we proceed as follow. If I(.) is differentiable in { }δ , then 

{ }( )Iδ δ  is unique and { }( ) 0Iδ δ =  is a necessary condition for an extremum 
(minimum in this case) of I(.) i.e., the following holds. 

( ) ( ) ( ) ( )

{ }( ){ } { }( ){ }

9 9

1 1
2 , 2 ,

0

T Tn n
xt xt

e e
i i i i

e

e

e

I E E E E

g g

δ δ δ

δ δ

   Ω  Ω    

 
= =  

 

= = =

∑ ∑ ∑

∑
          (70) 

We can show that the Euler’s equations resulting from (70) are in fact the 
same as PDEs in (65) and (67). Therefore, a { }δ  yielding extremum of (70) is 
also a solution of Euler’s equation i.e., PDEs (65) and (67). Since PDEs are non-
linear, { }( ){ }g δ  in (70) is a nonlinear function of { }δ . We use Newton’s li-
near method with line search to obtain solution { }δ  from (70). 

Let { }0
δ  be an assumed (or guess) solution, then 

{ }( ){ }0
0g δ ≠                           (71) 

Let { }δ∆  be incremental change in { }0
δ  such that  

 { } { }( ){ }0
0g δ δ+ ∆ =                        (72) 

We expand ( ){ }.g  in (72) using a Taylor series expansion about { }0
δ  and 

retain only upto linear terms in { }δ∆ : 

{ } { }( ){ } { }( ){ } { }
{ } { }

{ }
0

0 0
0.

g
g g

δ

δ δ δ δ
δ

 ∂
+ ∆ = + ∆ = 

∂  
         (73) 

From (73), we can solve for { }δ∆ : 

{ } { }
{ } { }

{ }( ){ } { }
{ }( ){ }

0
0

1
12

0 0
.

g
g I g

δ
δ

δ δ δ δ
δ

−
− ∂

 ∆ = − = −   ∂  
        (74) 

Following reference [6] [32] 2Iδ  is obtained using 

( )
9

2

1
, e

xt

e e
i i

e
I E Eδ δ δ

Ω

 
 
 

∑ ∑                    (75) 

Improved solution is given by (using line search [32]) 

{ } { } { } { }( ) { }( )* *
0 0

; 0 2 such that I Iδ δ α δ α δ δ= + ∆ < < ≤        (76) 

If  

https://doi.org/10.4236/am.2023.1412047


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2023.1412047 797 Applied Mathematics 
 

 { }( )ig δ ≤ ∆                           (77) 

then { }δ  is the converged solution. Otherwise, we set { } { }0
δ δ=  and repeat 

(74)-(76). 
Benefits and highly meritorious feature of STRF finite element method are 

well documented in [32]. In (77), Δ is a preset tolerance for the computed zero. 
The entire solution is computed by using converged solution for the current 
space-time strip and time marching using subsequent space-time strips [32]. 

4.2.2. Solutions of Nonlinear ODEs in Time (Model B): Space-Time  
Decoupled Method 

In this section, we consider solutions of system of nonlinear ODEs (1) resulting 
from space-time decoupled finite element method with GM/WF in space for a 
spatial discretization. For simplicity, we consider 1n = , hence we can write (1) 
as (using [ ]C  for [ ]1C 

  ) 

[ ]{ } { }( ) { } { }( ) { } { } { }M C K F Pδ δ δ δ δ   + + = +   
            (78) 

following reference [6], [ ]C  and [ ]K  defined by: 

[ ] [ ] 1 d
2e

x

T Tl nl l nl

e
K B B D B B

Ω

          = + + Ω              
∑ ∫          (79) 

 [ ] [ ]1
1 d
2e

x

T Tl nl l nl

e
C B B D B B

Ω

          = + + Ω              
∑ ∫          (80) 

[ ]M  is the usual consistent mass matrix (defined in ref [6] with constant coeffi-
cients). 

The coefficients of [ ]K  and [ ]C  are up to quadratic functions of the gra-
dients of displacements iu . 

We present details of Newmark linear acceleration method for obtaining solu-
tion of (78) in the following. The nonlinear ODEs in time (78) can be integrated 
numerically using a variety of methods [32]. In solid and structural mechanics, 
the decoupling of space and time is done using Galerkin method with weak form 
in space. The ODEs in time generally contain mass, stiffness and damping ma-
trices as in (78). Wilson’s θ-method and Newmark’s constant average accelera-
tion method and linear acceleration methods are well established time integra-
tion methods for (78). For good accuracy of computed solutions (no amplitude 
decay and base elongation), the integration time step generally needs to be much  

smaller than 1 2
20 ω

 π 
 
 

 (the time period is divided in twenty increments). For  

such time steps, accuracy of Wilson’s θ-method and Newmark methods are 
comparable but Newmark method is more straight forward, as in this method, 
we consider equilibrium at t t+ ∆  and not at t tθ+ ∆  as in Wilson’s θ-method, 
hence used in the present work. Secondly, since the ODEs ((78)) are nonlinear, 
for every increment of time we need to perform iterations to converge to the 
correct solution. Newton’s linear method has quadratic convergence, hence is 
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meritorious to use. Thus, the choice of Newmark linear acceleration method 
(more accurate than constant average acceleration [32]) with Newton’s linear 
method. 

In the following, we refer to { } { },δ δ  and { }δ  as displacements, velocities 
and accelerations (since { }δ  are degrees of freedom associated with displace-
ments and { } { },δ δ   are first and second time derivatives of { }δ ). Details of 
Newmark linear acceleration methods are given in ref [32] for a system of linear 
second order ODEs. We present the details of Newmark linear acceleration me-
thod for a system of nonlinear second order ODEs (78) in the following. 

Let { }t
δ , { }

t
δ  and { }

t
δ  be known solutions at time t and { }t t

δ
+∆

 (or 
( ){ }t tδ + ∆ ), { }

t t
δ

+∆
  (or { }

t t
δ

+∆
 ) and { }

t t
δ

+∆
  (or ( ){ }t tδ + ∆ ) be unknown 

solution at time t t+ ∆ . Let the acceleration be linear between t to t t+ ∆ . If τ  
is time measured from time t, then based on linear acceleration assumption in 
interval [ ],t t t+ ∆ , we can write  

 { } { } { } { }( ).t t t t ttτ

τδ δ δ δ
+ +∆
= + −

∆
                       (81) 

Integrating (81) with respect to (w.r.t) τ  and using 0τ =  to determine 
constant of integration, we can obtain the following for velocity at t τ+ . 

{ } { } { } { } { }( )
2

.
2t t t t t ttτ

τδ δ τ δ δ δ
+ +∆
= + + −

∆
                   (82) 

Integrating (82) w.r.t τ  and using 0τ =  to determine constant of integra-
tion, we can obtain the following for displacement { }t τ

δ
+

 i.e., we consider the 
following. 

{ } { } { } { } { } { }( )
2 3

2 6t t t t t t ttτ

τ τδ δ τ δ δ δ δ
+ +∆
= + + + −

∆
             (83) 

In Newmark linear acceleration method, we satisfy (78) at t t+ ∆  i.e., 

[ ]{ } { }( ) { } { }( ) { } { } { }.
t t t t t tt t t t

M C K P Fδ δ δ δ δ
+∆ +∆ +∆+∆ +∆

   + + = +   
   (84) 

In (84), the coefficients of [ ]K  and [ ]C  are up to quadratic functions of 
{ }t t
δ

+∆
. In (82) and (83), we substitute tτ = ∆  to obtain 

{ } { } { } { }2 2t t t t t t

t tδ δ δ δ
+∆ +∆

∆ ∆
= + +                     (85) 

 { } { } { } { } { }
2 2

.
3 6t t t t t t t

t ttδ δ δ δ δ
+∆ +∆

∆ ∆
= + ∆ + +               (86) 

From (86), we determine { }
t t

δ
+∆

  and then substitute it into (85) to deter-
mine { }

t t
δ

+∆
 . 

{ }
( )

{ } { } { } { }2
6 6 2

tt t t t t ttt
δ δ δ δ δ

+∆ +∆
= − − −

∆∆
                (87) 

and 

{ } { } { }( ) { } { }3 2
2t t tt t t t

t
t

δ δ δ δ δ
+∆+∆

∆
= − − −
∆

               (88) 
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Substituting (87) and (88) in (84) and regrouping terms gives 

( )
[ ] { }( ) { }( ) { }

{ } { }
( )

[ ] { }( ) { }

[ ] { }( ) { } [ ] { }( ) { }

2

2

6 3

6 3

6 2 2 .
2

t t t t t t

t t t t t t t

t t t tt t

M C K
tt

F P M C
tt

tM C M C
t

δ δ δ

δ δ

δ δ δ δ

+∆ +∆ +∆

+∆ +∆ +∆

+∆ +∆

 
    + +   ∆ ∆  

 
  = + + +  ∆ ∆  

∆      + + + +      ∆   
 

 (89) 

Equation (89) is a system of nonlinear algebraic equations in { }t t
δ

+∆
. We use 

Newton’s linear method to obtain solution { }t t
δ

+∆
 of (89). Details are given in 

the following. 
We rewrite (89) as follows: 

{ }( ){ } [ ] { }( ) { }( ) { }

{ }( ) { } { } { }

( )
[ ]{ } [ ]{ } [ ]{ }

{ } { }

2

2

6 3

3 2
2

6 6 2

0.

t t t t t t t t

t t t t t

t t t

t t t t

g M C K
tt

tC
t

M M M
tt

F P

δ δ δ δ

δ δ δ δ

δ δ δ

+∆ +∆ +∆ +∆

+∆

+∆ +∆

    = + +    ∆∆ 
∆  − + +   ∆ 

 
 − + +
 ∆∆ 

− −

=

 

    (90) 

Let { }0

t t
δ

+∆
 be initial or known guess of { }t t

δ
+∆

 at 0t =  (commencement 
of evolution), then 

{ }( ){ }0 0.
t t

g δ
+∆

≠                           (91) 

Let { }t t
δ

+∆
∆  be incremental change in { }0

t t
δ

+∆
 such that 

{ } { }( ){ }0 0.
t t t t

g δ δ
+∆ +∆

+ ∆ =                      (92) 

We expand ( ){ }.g  in (92) using Taylor series expansion about { }0

t t
δ

+∆
 and 

retain only up to linear terms in { }t t
δ

+∆
∆  

{ } { }( ){ } { }( ){ } { }
{ }

{ }

{ }
0

0 0 0.
t t

t t t t t t t t
t t

g
g g

δ

δ δ δ δ
δ

+∆

+∆ +∆ +∆ +∆
+∆

 ∂
+ ∆ = + ∆ = 

∂  
 (93) 

From (93), we can solve for { }t t
δ

+∆
∆  

{ } { }
{ }

{ }

{ }( ){ } { } { } { }( ){ }0

0

1
10 0 .

t t

t t

t t t t t t
t t

g
g g g

δ
δ

δ δ δ δ
δ +∆

+∆

−
−

+∆ +∆ +∆
+∆

 ∂
 ∆ = − = −   ∂  

 (94) 

We refer to the coefficient matrix { }gδ  as tangent matrix [ ]TH , equation 
(105) that controls determination of incremental solution. Improved solution 
{ }t t
δ

+∆
 is obtained using 

{ } { } { }0 .
t t t t t t

δ δ δ
+∆ +∆ +∆

= + ∆                  (95) 

We check for convergence of the Newton’s linear method. 

https://doi.org/10.4236/am.2023.1412047


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2023.1412047 800 Applied Mathematics 
 

If  

 { }( )ig δ ≤ ∆                             (96) 

then { }t t
δ

+∆
 is the converged solution. Otherwise, we set { } { }0

t t t t
δ δ

+∆ +∆
=  and 

repeat (94)-(96) till (96) is satisfied. Δ in (96) is a preset tolerance for the com-
puted zero. 

We still need { }( ){ }t t
gδ δ

+∆
 in (94) to compute { }t t

δ
+∆

∆ . This is obtained 
using (90). First, we note 

[ ]{ }( ) [ ]t t
M Mδ δ

+∆
=                         (97) 

 { }( ) { }( ) [ ] { }1 d
e
x

T

t t t t
e

C Bδ δ δ δ σ
+∆ +∆

Ω

 
   = Ω   

 
∑ ∫             (98) 

 { }( ) { }( ) [ ] [ ]{ }0 d
e
x

T
dt t t t

e
K Bδ δ δ δ σ

+∆ +∆
Ω

 
   = Ω   

 
∑ ∫            (99) 

in which 

{ } [ ] { }1
1

1
2

l nl
d t t

D B Bσ δ
+∆

    = +     
               (100) 

 and [ ]{ } [ ] { }0 1 .
2

l nl
d t t

D B Bσ δ
+∆

    = +     
              (101) 

Following [24], we can derive the following 

[ ] { } [ ] [ ][ ] [ ] [ ]( )
[ ]

1 1
1d d

e e
x x

T T T

e e

e
T T

e

B B D B G S G

C C

δ σ
Ω Ω

   
    Ω = + Ω    
   

 = = 

∑ ∑∫ ∫

∑
 (102) 

 
[ ] [ ]{ } [ ] [ ][ ] [ ] [ ][ ]( )

[ ]

0 d d
e e
x x

T T T

e e

e
T T

e

B B D B G S G

K K

δ σ
Ω Ω

   
   Ω = + Ω
   
   

 = = 

∑ ∑∫ ∫

∑
 (103) 

[ ]TC  and [ ]TK  are tangent damping and stiffness matrices for spatial discre-
tization. 
[ ]S  is given by 

[ ]
11 12 13

22 23

33Symm
S

σ σ σ
σ σ

σ

 
 =  
  

I I I
I I

I
                 (104) 

1S    is obtained by replacing [ ]0
d ijσ  in (104) by 1

ijσ  (defined in (100)). 
By substituting (102) and (103) into (98) and (99), and then using these in 

{ }( ){ }t t
gδ δ

+∆
, we obtain the following expression in which  

{ } { } { } { }3 2
2t t t

t
t

δ δ δ δ∆
= + +
∆

   : 

https://doi.org/10.4236/am.2023.1412047


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2023.1412047 801 Applied Mathematics 
 

{ }{ } [ ] [ ] [ ] { }( ){ } [ ]2
6 3 .T T Tt t t t

g M C K C H
t

δ δ δ δ δ
τ+∆ +∆

 = + + − = ∆∆
  (105) 

The matrix [ ]TH  is called tangent matrix. 
We still need { }( ) { }t t

Cδ δ δ
+∆

 
 

 . 

{ }( ){ } [ ] { }1
1 d
2e

x

T Tl nl l nl e
t t

e
C B B D B Bδ δ δ δ δ

+∆
Ω

            = + + Ω                
∑ ∫  (106) 

 
[ ] { }

[ ] { }

1

1

1
2

1 d .
2

e
x

Tnl l nl e

e

T Tl nl nl e

B D B B

B B D B

δ δ

δ δ

Ω

        = +           

       + + Ω          

∑ ∫ 



           (107) 

Let [ ] { } { }1
1
2

l nlD B B δ σ    + =     
  

Then { } [ ]( ) { } [ ] { } [ ] [ ][ ]
TT TT Tnl

g gB A G G A G S Gδ σ δ σ δ σ     = = =      and  

 

[ ] { }

[ ] [ ]{ }( )
[ ] { }( )

1

1

1

1
2

T Tl nl nl e

T Tl nl e
g

T Tl nl e
g

B B D B

B B D A G

B B D A t

δ δ

δ δ

δ

       +           
      = +       
      = +       







            (108) 

where { } [ ]{ }e et G δ= 

  

{ }( ) { } [ ] [ ] ( )[ ] { }( )( )1 d

.

x

T TT l nl
gt t

e

e

e

C G S G B B D A t

C C

δ δ δ δ
+∆

Ω

       = + + Ω     

   = =      

∑ ∫

∑





 

 

(109) 

Substituting (109) in (105), we have { }( ){ }t t
gδ δ

+∆
, hence { }t t

δ
+∆

∆  can be 
calculated using (94). 

Remarks 
Since, now we know the dependence of incremental solution on ‘tangent ma-

trix’ [ ]TH , we can discuss various physics in [ ]TH  that influences nonlinear 
dynamic response and dynamic bifurcation. 

(1) We note that for an increment of time, incremental solution calculation 
(in Newton’s linear method) using (94) requires { }gδ  defined in (105). { }gδ  
in (105) is the coefficient matrix that must be inverted to obtain incremental so-
lution. Thus, the time response of a nonlinear dynamic system and dynamic bi-
furcation depends upon [ ]TH . 

(2) Now we can conclusively determine the influence of various physics 
through [ ]TH  on nonlinear dynamic response and the dynamic bifurcation 
phenomenon. 

(3) Nonlinear dynamic response depends upon symmetric mass matrix [ ]M , 
tangent damping matrix [ ]TC  and tangent stiffness matrix [ ]TK  (as well as 
the last term in (105) containing variation of [ ]C ). We recall that  

 [ ] [ ] [ ] [ ] [ ]1 2 3TK K K K Kσ= + + +
 

                 (110) 
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Coefficients of [ ]1K  are constant and those of [ ]2K


 and [ ]3K


 are linear and 
quadratic functions of dofs { }δ . [ ]Kσ  is the stiffness due to stress field. We 
note that the presence of finite deformation, finite strain physics is essential for 
dynamic bifurcation to exist, as in the absence of these [ ]2K



, [ ]3K


 and [ ]Kσ  
are all zero. Negative [ ]Kσ  (due to compressive field) and positive [ ]Kσ  (due 
to tensile stress field) are likely to result in different dynamic response, hence 
different dynamic bifurcations. 

(4) Tangent damping matrix [ ]TC  has identical structure as [ ]TK  only the 
material coefficients are different. 

[ ] [ ] [ ] [ ] [ ]1 2 3TC C C C Cσ= + + +
 

                   (111) 

Matrix [ ]Cσ  is similar to [ ]Kσ . It uses [ ]iD  as opposed to [ ]D . Thus, in 
calculating [ ]iD , 2µ  and λ  in [ ]D  are replaced by 2 iµ , iλ  corres-
ponding to strain rate [ ]iε 

  . Thus, constant, linear and quadratic damping as 
well as [ ]Cσ  influence nonlinear dynamics. In general, dissipation provides re-
sistance to motion, reduced amplitude of motion, thus more stability. Hence, 
increasing dissipation presence is likely to inhibit existence of dynamic bifurca-
tion. 

(5) Presence of [ ]M , hence translation inertial physics results in lowering of 
the stiffness of the system. Thus, the increasing influence of this physics increas-
es likelihood of the existence of dynamic bifurcation. 

(6) Static bifurcation in BVPs only depends upon [ ]Kσ  (precisely in the 
same form as defined here). Thus, we see that static bifurcation and dynamic bi-
furcation are totally two different physical phenomena. Static bifurcation is not a 
necessary condition for dynamic bifurcation (also shown later in the model 
problem studies) as there is obviously no connection between the two. 

5. Model Problems and Their Solutions 

We consider two model problems and present their solutions obtained using 
space-time coupled method based on space-time residual functional [32]. The 
first model problem is a 1D phenomenologically constructed mathematical 
model for finite deformation, finite strain nonlinear dynamics using a mass, a 
nonlinear spring and a nonlinear dashpot (64), which is reproduced here for 
convenience.  

Model problem I:  

 ( ) ( ) ( )2 2
1 2 3 1 2 3 0 sinmu c c u c u u k k u k u u f tω+ + + + + + =          (112) 

In this mathematical model, both stiffness and damping are up to quadratic 
functions of the degrees of freedom u. This mathematical model is lumped in 
space; hence does not contain space coordinates. This is obviously nonphysical 
for a continuous system. 

Model problem II: 
A mathematical model that appears somewhat parallel to (112), but based on 

CBL of CCM, is considered in this model problem. 
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We consider a TVE axial rod of length L fixed at 1 0x =  (left end) and sub-
jected to harmonic excitation ( )0 sinf tω  at 1x L=  (right end), as shown in 
Figure 1(a). If all points in each cross section of the rod deform in 1x  direction 
by the same amount, we can idealize the rod as a line, as shown in Figure 1(b). 
For simplicity, we consider isothermal physics. Thus, balance of linear momenta 
in 1x  and the constitutive theory for deviatoric second Piola-Kirchhoff stress 

[ ]0
11dσ  are the only two equations that constitute the mathematical model, as-

suming equilibrium stress [ ]0
eσ  to be zero. We can write the following for BLM 

and the constitutive theory (in Lagrangian description using Equations (19)-(29)): 

[ ]
2

01
0 0 1 112

1 1

1 0 BLM ,b i
d xt

uu F x t
x xt

ρ ρ σ
  ∂∂ ∂

− − + = ∀ ∈Ω   ∂ ∂∂   
    (113) 

 [ ] ( ) [ ]( ) [ ]( )0
11 0 11 111

2
n

d i i
i

cσ µ λ ε ε
=

= + +∑                (114) 

 [ ]( )
2

1 1
0 11 1 1

1
2

u u
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                     (115) 

 [ ]( ) [ ]( )111 11
; 1,2, , .i i i n

t
ε ε −

∂
= =
∂

                   (116) 

We substitute (115) and (116) into (114), then [ ]0
11dσ  from (114) into (113) to 

obtain a single PDE in 1u  (letting 2 Eµ λ+ = ) 
22

1 1 1 1
1 0 0 12

1 1 1 1

2
1 1

=1 1 1

11
2

1
2

0.

b

in

i i
i

u u u uAu f F E
x x x xt

u uc
x xt

ρ ρ
      ∂ ∂ ∂ ∂∂    − = − − + +      ∂ ∂ ∂ ∂∂      

    ∂ ∂∂  − +    ∂ ∂∂     
=

∑    (117) 

 

 
Figure 1. 1D axial rod, spatial domain and discretization (Model Problem II). 

https://doi.org/10.4236/am.2023.1412047


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2023.1412047 804 Applied Mathematics 
 

5.1. Space-Time Decoupled Finite Element Method  
(for Model Problem II) 

We construct a space-time decoupled finite element formulation (117). Let 
T e
x x

e
Ω = Ω



 be spatial discretization of xΩ  (Figure 1(c)). 
Let ( )( )1 ,

e

h
u x t  be local approximation of 1u  over e

xΩ . Then  

( )( ) ( )( )1 1, ,
e

h h
e

u x t u x t=


 is the approximation of 1u  over T
xΩ . The integral  

form of (117) over T
xΩ  based on fundamental lemma of the calculus of varia-

tions using test function v is given by: 

( )( )1 , 0T
xh

A u f v
Ω

− =                         (118) 

or 

( )( ) ( )( )1 1, , 0.T ex x

e

h h
e

A u f v A u f v
Ω Ω

− = − =∑               (119) 

We consider scalar product ( )( )1 ,
e
x

e

h
A u f v

Ω
− , where 

( ) ( ) ( ){ }1 .e e
h

u N x tδ =                         (120) 

( )N x    is approximation functions matrix and ( ){ }e tδ  are time dependent 
nodal degrees of freedom for an element e. The total degrees of freedom { }δ  
for T

xΩ  are given by: 

{ } { }.e

e
δ δ=


                          (121) 

Using (121) in the integral form for an element “e” with domain e
xΩ , and 

following reference [23], i.e., using GM/WF in space for e
xΩ  followed by as-

sembly of element equations based on (119), we obtain the following (similar to 
(1)) 

[ ]{ } [ ] [ ]{ } [ ]{ } { } { }
1

n

i i
i

M C K Pδ δ δ σ
=

+ + = +∑              (122) 

where [24] 

[ ] 1 2 3
i i i iC C C C     = + +                           (123) 

 [ ] 1 2 3 .K K K K     = + +                          (124) 

1
iC    and 1K    have constant coefficients where as coefficients of 2 2,iC K        

and 3 3,iC K        are linear and quadratic functions of displacement gradients  

( 1

1

u
x
∂
∂

 in this case). System of second order ODEs in (122) based on CBL of CCM  

(with GM/WF for spatial discretization) are a set of coupled nonlinear ODEs in 
time. In (112), 1 2 3 1 2 3, , , , ,c c c k k k  are purely hypothetical or phenomenological, 
whereas in (122), 2 ,i iη κ  used in [ ]iC  and 2 ,η λ  used in [ ]K  are actual 
material coefficients of TVE solid matter. At this stage, it might appear that we 
can study the trends in the physics of (122) by using phenomenological model 
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(112). 
We make some remarks: 
(1) For a continuous system, mathematical models are always PDEs in space 

and time. It is only after decoupling space and time using GM/WF in space for a 
spatial discretization T

xΩ  of xΩ  that we obtain a system of nonlinear ODEs 
in that contain degrees of freedom { }δ  and { } { },δ δ   corresponding to the 
spatial discretization T

xΩ . Thus, in the system of ODEs in time (122) informa-
tion at spatial locations are preserved. In other words, system of ODEs in time 
(122) is a reflection of preservation of spatial information contained in original 
PDEs in (122) after decoupling space and time. This is always the case for con-
tinuous matter. For continuous system with a spatial discretization, space-time 
decoupling will never result in a single ODE such as (112). 

(2) Based on the discussion in (1), it is conclusive that (112) cannot describe 
the same physics as (122). 

(3) We note that, when integrating (112) using Newmark’s linear acceleration 
method we take the inverse of the tangent matrix [ ]TH  defined by (105) i.e., 
inverse of the following matrix for calculating incremental change (or improve-
ment) in the assumed solution: 

[ ] [ ] [ ] [ ] { }( ) { }2
6 3

T T T t t
H M C K C

t
δ δ δ

τ +∆
 = + + −  ∆∆

          (125) 

Matrices [ ]TC  and [ ]TK  are derived considering 1n = , which corresponds 
to [ ]1C  and [ ]K  in (122). [ ]TC  and [ ]TK  consist of 

[ ] [ ]1 2 3
i i i iC C C C Cσ     = + + +     

 

                  (126) 

 [ ] [ ]1 2 3[ ]K K K K Kσ   = + + +   
 

                  (127) 

1 1, , , ; 2,3i iC K C K i        =       


 and [ ] [ ],C Kσ σ  are all symmetric. 1C    and 
1K    have constant coefficients but coefficients of 1 2,C K      



 and 3 3,C K      


 
are linear and quadratic in displacement gradients. [ ]Kσ  describes the influ-
ence of stress field on the stiffness. [ ]Cσ  likewise has similar structure as that 
of [ ]Kσ  (as shown earlier). 

(4) Thus we note that (123), (124) and (125), (126) are equivalent in terms of 
influencing stiffness of the volume of matter. [ ]Cσ  and [ ]Kσ  are implicitly 
contained in (123) and (124) but can be explicitly observed in (126) and (127). 
Thus, in the following, we can view [ ]K  in (122) is due to constant, linear and 
quadratic functions of displacement gradients as well as due to [ ]Kσ , the in-
fluence of stress field on stiffness. Similar view holds for damping matrices [ ]iC . 
Compressive stress field results in negative [ ]Kσ , causing a reduction in stiff-
ness. On the other hand, tensile stress field resulting in positive [ ]Kσ  will 
cause an increase in stiffness. Explicit appearance of [ ]Kσ  provides additional 
information regarding influence of stress on total stiffness. This can only be ob-
served and extracted explicitly in this mathematical model based on CCM and 
the approach of obtaining the solution presented here. 

(5) In model problem I, explicit realization of [ ]Kσ  is not possible. However, 
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the presence of 2u  in stiffness and damping as well as extraction of [ ]Kσ  and 
[ ]Cσ  in model problem II from the linear and quadratic terms in displacement 
gradients in the stiffness and damping matrices, suggest that positive and nega-
tive values of [ ]Kσ  and [ ]Cσ  must be associated with positive or negative 
values of 3k  and 3c . At this stage, it is intuitively plausible to assume that a 
negative 3k  will result in reduction of stiffness (similar to negative [ ]Kσ  in 
model problem II) and positive 3k  will result in increase of stiffness (similar to 
positive [ ]Kσ ) in model problem II. 

(6) It is worth pointing out that in case of model problem II, the applied exci-
tation causes compression, hence will only result in negative [ ]Kσ . In this 
model problem, there is no mechanism of positive [ ]Kσ  as it would require a 
tensile stress field in this rod. However in case of model problem I, we can study 
dynamic bifurcation physics for both tension and compression simply by 
choosing positive or negative 3k  as this model is not sensitive to the physics as 
model problem II is.  

5.2. Space-Time Coupled Finite Element Method  
(Model Problem II)  

The mathematical model (113)-(116) is a system of first order PDEs that facili-
tate specifications of BCs and ICs. This form is also more convenient for using 
space-time coupled finite element method on a space-time strip in conjunction 
with time marching to obtain entire evolution for [ ]0,t τ∈ . Considering zero 
body forces and 1n =  (for simplicity): 

[ ]( ) [ ]( ) [ ]( )
2

0 0 01 1 1
0 11 11 112

1 1 11

0d d d
v u u
t x x xx

ρ σ σ σ
 ∂ ∂ ∂ ∂ ∂

− + − = ∂ ∂ ∂ ∂∂ 
       (128) 

 [ ]
2

0 1 1 1 1 1
11 1

1 1 1 1 1

1 0
2d

u u v u vE C
x x x x x

σ
    ∂ ∂ ∂ ∂ ∂ − + − + =    ∂ ∂ ∂ ∂ ∂    

         (129) 

 1
1 0.uv

t
∂

− =
∂

                          (130) 

Equations (128)-(130) are three nonlinear PDEs in [ ]0
1 11 1 1, , ,du v xσ  and t. 

Space-time coupled finite element method is used to obtain their solution using 
space-time integral form based on space-time residual functions (details are 
presented in Section 4.2.1). 

Remarks 
(1) Space-time residual functional I for ( )( )Tn

xtΩ , the discretization of nth thn  
space-time strip provides a measure of accuracy of the solution (or the error in 
the solution). When I tends to zero, the computed solution approaches theoreti-
cal solution. For each space time step, I of the order of ( )810O −  or lower is 
achieved to ensure accurate evolution for each space-time strip. 

(2) This feature (described in (1)) is missing in space-time decoupled methods. 
Accuracy of the solutions of ODEs in time can be measured or quantified but the 
error due to discretization in space and those due to decoupling of space and 
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time cannot be quantified. As a result, it is difficult to assess the accuracy of the 
evolution of the PDEs in the space-time decoupled method. 

(3) In the present work, we only consider space-time coupled finite element 
method based on space-time residual functional (STRF) due to high accuracy 
and unconditional stability [32] of the method.  

6. Static Bifurcation  

The purpose of these studies is to demonstrate the influence of matrix [ ]Kσ  
due to stress field on the total stiffness and the resulting deformation. We study 
conditions under which bifurcation physics can exist. We consider model prob-
lem I as well as model problem II. BVP associated with model problem I (using 
(64)) is given by: 

( )2
1 2 3k k u k u u F+ + =                       (131) 

in which F is the applied force. 
Model problem II for BVP can be written (in the absence of body forces) as 

[ ]01
11

1 1

1 0
d

u
x x

σ
  ∂∂

+ =   ∂ ∂  
                     (132) 

 [ ] ( ) [ ]( ) [ ]( )0
11 0 011 11

2d Eσ µ λ ε ε= + =                 (133) 

 [ ]( )
2

1 1
0 11 1 1

1
2

u u
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                     (134) 

Numerical Solutions of Model Problem I and Model Problem II 

Model problem I: 
First, we consider model problem I, a cubic nonlinear algebraic equation. We 

vary the force F and calculate corresponding u for each value of F using New-
ton’s linear method. We choose 0 2.5F≤ ≤  for all studies. In the first study, we 
choose 1 2 3 1k k k= = = . For this choice, we have tension in the spring resulting 
in positive [ ]Kσ  (when compared with axial rod). In the second case, we 
choose 1 2 1k k= =  and 3 1k = − , simulating a negative [ ]Kσ  (in analogy to 
axial rod). 

Force F versus u graphs are shown in Figure 2. When 3k  is negative, the re-
lationship between F and u shows progressively increasing displacement u with  

increasing F. Additionally, the derivative d
d

u
F

 
 
 

 also increases as F increases for 

all 1.3F ≤ . 
When 3k  is positive, increasing F results in progressively increasing positive 

[ ]Kσ , resulting in progressively decreasing displacement u. When 3 1k = − ,  
d
d

u
F

 
 
 

 increases as F increases for all 1.3F ≤ . In the vicinity of 1.3F =  (bet-  

ween 1.3F =  and 1.4F = ), u increases more sharply with increasing F indi-
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cating progressive loss of stiffness due to negative [ ]Kσ . Between 1.3 1.4F≤ ≤  
we observe static bifurcation (a sudden drop in the value of u from largest posi-
tive to negative). The precise value of u at bifurcation can be determined if we 
differentiate (131) with respect to F. 

2
1 2 3

d 1
d 2 3

u
F k k u k u
=

+ +
                    (135) 

d
d

u
F

 in (135) is infinity (condition for bifurcation) when 

2
1 2 32 3 0.k k u k u+ + =                      (136) 

 

 
(a) 

 
(b) 

Figure 2. (a) Model problem I: Force F versus u1 plot for 3k−  and 3k+ ; (b) Model problem II: [ ]0
11dσ  

versus u1.  
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Using 1 21, 1k k= =  and 3 1k = −  we obtain solutions 0u =  and 4
3

u = . 

Clearly, 0u =  is not admissible, hence d
d

u
F

 becomes infinite at 4 1.3333
3

u = = , 

approximately the same value of u at which bifurcation happens in Figure 2(a). 
Static bifurcation in tension is not possible, and we do not observe one either 

in Figure 2(a). Values of u at which bifurcation occurs in model problem I is not 
possible to achieve in the axial rod (shown below) model problem, pointing un-
realistic stiffness physics at bifurcation in model problem I when 1 2 1k k= =  
and 3 1k = − .  

Model problem II 
Solution of model problem II consisting of (131)-(134) can be obtained using 

finite element method based on GM/WF or using finite element method based 
on residual functional (see [6] [32] and Section 4.2.2). Finite element based on 
residual functional (unconditionally stable for nonlinear differential operators) 
is used to calculate solution of (131)-(134) using u1 and [ ]0

11dσ  as dependent va-
riables. A dimensionless rod of one unit is considered, fixed at left end ( 1 0x = ) 
and subjected to [ ]0

11dσ  at 1 1x = . Solutions are calculated for [ ]0
110.5 2dσ− < ≤ . 

Graph of [ ]0
11dσ  versus u1 is shown in Figure 2(b). This graph is similar to a 

scaled graph of force F versus u1. 
For [ ]0

11 0dσ ≥ , the positive [ ]Kσ  contributes to progressive increase in the 
stiffness of the rod as [ ]0

11dσ  increases. This results in progressively reduced dis-
placement u1 for the same increment of [ ]0

11dσ  during loading. 
On the other hand, when [ ]0

11dσ  is negative, the negative [ ]Kσ  contributes 
to a reduction in the total stiffness of the rod. This reduction in stiffness leads to 
progressively larger displacement for the same increment of [ ]0

11dσ  during 
loading. 

In the vicinity of [ ]0
11 0.5dσ = − , there is total loss of stiffness. As a result, 

computations fail beyond [ ]0
11 0.5dσ < − . We note that when loading is compres-

sive, there is total loss of stiffness in the rod for some value of [ ]0
11dσ  but unlike 

in model problem I, there is no static bifurcation. On the other hand in model I, 
there is no complete loss of stiffness but bifurcation exists. Existence of different 
physics in static loading in model problems I and II does influence the dynamic 
response and dynamic bifurcation as static stiffness remains the same in dynam-
ic case. 

7. Remarks 

(1) Increase and decrease in total stiffness due to positive and negative [ ]Kσ  
is clearly observed in model problem II. In case of model problem I, there is no 
[ ]Kσ , but 3k  is assumed to simulate [ ]Kσ . 

(2) In model problem II, the occurrence of static bifurcation, as observed in 
model problem I, cannot be simulated under compressive loading. This is be-
cause the static bifurcation physics does not exist in model problem II. 

(3) Main points of these studies are  
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(a) to demonstrate influence of [ ]Kσ  on stiffness, hence deformation and 
possible static bifurcation. 

(b) Differences and similarities between model problems I and II: Since in 
model problem I, there is no space coordinate, u can be arbitrarily small or large. 
Thus, in model problem I, finite deformation physics can be simulated easily as 
it is purely phenomenological. Thus, existence or lack of static bifurcation phys-
ics is easier to simulate. We show from the studies using model problem II (in a 
later section) that u (or u1) beyond a certain value (about 0.2 units in compres-
sion for a rod of one unit length) becomes non-physical. Is the total loss of stiff-
ness in axial rod in compression, onset of static bifurcation? Perhaps we can argue 
either way. But, we observe no distinct static bifurcation in model problem II.  

(c) Due to application of ( )0 sin tσ ω  at the free end of the rod, the rod expe-
riences a steady compression. As a consequence, [ ]Kσ  is negative. Thus in 
model problem II, we can only study negative 3k  physics of model problem I.  

8. Numerical Studies for Model Problems I and II: Dynamic  
Response and Dynamic Bifurcation 

8.1. Path Dependency in Nonlinear Dynamics 

We discuss some points here that are helpful when analyzing the results of the 
model problems. In the absence of dissipation, the nonlinear dynamics physics is 
a reversible process. A reversible process cannot exhibit path dependency. For 
example, in static bifurcation, solutions are independent of the size of increment 
of load [1] [2] [3] [4] [5]. The same is true in nonlinear dynamics of inviscid 
media. Introduction of dissipation causes conversion of some mechanical work 
into entropy that is not reversible upon unloading. The entropy production is 
obviously path dependent. Thus, in nonlinear dynamics of TVES (without 
memory), path dependency is inherent. The severity of path dependency is of 
course dependent on entropy production. Higher entropy production leads to 
stronger path dependency. Since the mechanical work depends upon magnitude 
of 0F  (model problem I) or 0σ  (model problem II) and dissipation or dissi-
pation coefficient c, appropriate combination of 0F  (or 0σ ) and c is necessary 
to cause sufficient entropy generation that will result in visible path dependency. 
As a guide, low values of c with higher values of 0F  (or 0σ ) and higher values 
of c with low values of 0F  ( 0σ ) is likely to result in milder path dependency. 
We shall observe this in the model problem studies. In case of linear PDEs, pres-
ence of irreversibility does not introduce path dependency (Figure 8(a), Figure 
8(b)). For path dependency, the mathematical model has to be nonlinear with 
presence of irreversibility.  

In the following sections we present numerical studies for model problems I 
and II.  

8.2. Model Problem I: Numerical Studies  

Evolution for model problem I is calculated using Newmark linear acceleration 
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method with Newton’s linear method for each increment of time to obtain con-
verged solution. Since (64) is a second order nonlinear ODE in time; we use fol-
lowing ICs.  

 ( ) ( ) [ ] [ ]1 1 1,0 0; ,0 0 0, 0,1u x u x x L= = ∀ ∈ =         (137) 

Choice of 0 1 2 3 1 2 3, , , , , ,f c c c k k k  and ω  are discussed in the following. We 
consider [ ]1, nω ω ω∈  in increments of 0.1. For a circular frequency ω , t∆  is  

chosen as 1 2
20 ω

 π 
 
 

 i.e., t∆  is 1
20

 of the time period of ω . Computation of  

 

 
(a) 

 
(b) 
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(c) 

Figure 3. (a) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.2c c c= = = ,

0 0.014f = ; (b) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.1c c c= = = , 

0 0.014f = ; (c) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.08c c c= = =  

0 0.014f = .  

 
evolution is commenced at 1ω  and continued till the response becomes cyclic 
(not necessarily periodic). At this point, maximum value of u is recorded for 1ω . 
Frequency 1ω  is changed to 2ω  maintaining the final state of deformation at 

1ω  as initial state at 2ω . Computations are continued till the response is cyclic 
for 2ω . At this point, maximum value of u is recorded for 2ω . This process is 
continued for progressively increasing frequencies till we reach nω . This fre-
quency sweep from 1 nω ω→  is referred to as L R→  (or 1 nω ω→ ). To de-
termine any path dependencies in the frequency response, the computations are 
started at nω  with progressively decreasing frequencies in the same manner as 
for 1 nω ω→ . We refer to these computations with progressively decreasing 
frequencies as right to left L R←  (or nω  to 1ω , 1 nω ω← ). 

Choice of 1 2 3, ,c c c  and 1 2 3, ,k k k  is arbitrary as these are not related to any 
particular physical model. But, their choices undoubtedly influence the frequen-
cy response curve. We do not have any particular experimental frequency re-
sponse in mind that we want to match using appropriate choices of 1 2 3, ,c c c  
and 1 2 3, ,k k k . Thus, in most studies we adhere to the unit values for these pa-
rameters. In model problem II, the material coefficients in [ ]iC  and [ ]K  are 
actual material coefficients, but after space-time decoupling, they are multiplied 
by the approximation functions, their derivatives, etc. As a result, if one chooses 
only one ODE from the space-time decoupled mathematical model, then surely 
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we expect 1 2 3, ,k k k  and 1 2 3, ,c c c  to have different values than the material coeffi-
cients. Unfortunately, in model problem I, we do not have any basis to decide 
their numerical values other than 1 2 3k k k= = , 1 2 3c c c= = . However, there is one 
exception: if we want to simulate negative [ ]Kσ  and capture the physics simi-
lar to compression in the axial rod, we need to choose a negative value for 3k . 

8.2.1. Case (a): Simulations for Negative [ ]Kσ  i.e., k3 1= − . 

We choose 1 2 1k k= =  but 3 1k = −  to simulate negative [ ]Kσ  (as in case of 
axial rod). In this section, we present two studies. In the first study, we choose a 
fixed 0f  and progressively reduce 1 2 3c c c= =  till computations are no longer 
possible due to singular coefficient matrix. In the second study, we choose fixed 
values of 1 2 3c c c= =  and vary 0f  till computations cease due to singular coef-
ficient matrix in the computations. These studies are aimed at determining if bi-
furcation is possible when 3 1k = −  with the choice of coefficients ic  and ik  
considered here. 

In the first study, we choose 0 0.014F =  and perform computations for pro-
gressively decreasing 1 2 3 0.2,0.1,0.08c c c= = = . The evolutions are computed 
for progressively increasing frequencies 1 nω ω→  ( L R→ ) as well as for progres-
sively decreasing frequencies L R←  (or 1 nω ω← ) of excitation in increment  

of 0.1. We choose integration time step 1 2
20

t
ω
π ∆ =  

 
. Evolution is computed  

for 25 cycles of each frequency. We remark that due to negative shift caused by 
compression, the positive and the negative peaks may differ, especially in the 
nonlinear range when deformation is finite. For each frequency, we record 
maximum negative as well as maximum positive peak values after the response 
becomes cyclic. In the frequency response graphs, absolute values of peaks are 
reported. Figures 3(a)-(c) show frequency response for progressively changing 
frequencies from L R→  and L R←  for 1 2 3 0.2,0.1,0.8c c c= = = . Maxi-
mum positive peaks as well as absolute value of maximum negative peaks are 
shown in the graphs. In the second study we choose 1 2 3 0.1c c c= = =  and pro-
gressively increase 0 0.025,0.03,0.035f =  and compute frequency response for  

L R→  ( 1 nω ω→ ) and L R←  ( 1 nω ω← ) using 1 2
20

t
ω
π ∆ =  

 
 integration  

time steps. For each frequency, we compute 25 cycles, found sufficient for the mo-
tion to be cyclic. Figures 4(a)-(c) show frequency response for 1 2 3 0.1c c c= = =  
and 0 0.025,0.03f =  and 0.035.  

Discussion of results 
(1) From Figures 3(a)-(c) we note that progressively reduced values of 

1 2 3c c c= =  for fixed 0f  yield progressively increasing maximum amplitude 
due to progressively reduced resistance to motion. The positive and the negative 
peak differ almost insignificantly. We do observe path dependency for all three 
values of 1 2 3c c c= = . Path dependency increases with reducing values of  

1 2 3c c c= = . For 0 0.014f =  and 1 2 3 0.2,0.1,0.08c c c= = =  we observe no bi-
furcation in Figures 3(a)-(c). We remark that for 0 0.014f = , choice of  
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1 2 3 0.08c c c= = =  is limiting value of damping. Below this value, computations 
fail. Computed solutions show no existence of dynamic bifurcation for these 
choices of damping coefficients and 0f . This study confirms that presence of 
dynamic bifurcation requires appropriate combination of various aspects of the 
physics such that an unstable condition exists which forces a sudden change to 
restore stability. Evidently, in this case the choices of parameters only lead to 
stable deformation configurations. 

 

 
(a) 

 
(b) 
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(c) 

Figure 4. (a) Model problem I: Frequency ω versus maximum amplitude u1 response for 

1 2 3 0.1c c c= = = , 0 0.025f = ; (b) Model problem I: Frequency ω versus maximum amplitude u1 re-
sponse for 1 2 3 0.1c c c= = = , 0 0.030f = ; (c) Model problem I: Frequency ω versus maximum am-
plitude u1 response for 1 2 3 0.1c c c= = = , 0 0.035f = .  

 
(2) From Figures 4(a)-(c), we note that for fixed 1 2 3 0.1c c c= = = , progres-

sively increasing values of 0 0.025,0.03,0.035f =  results in progressively in-
creasing maximum amplitude of motion, as expected. For 0 0.025f =  (Figure 
4(a)) positive and negative peaks for each path show some differences. Positive 
peaks and the negative peaks for L R→  and L R←  are relatively close to-
gether. At 0 0.030f =  these differences increase (Figure 4(b)). We also note ex-
istence of mild bifurcation (more rapid changes) that is more pronounced in 
both peaks for L R←  path. L R→  path also shows mild bifurcation but at a 
different frequency than for L R←  path. Path dependency can be clearly ob-
served. For 0 0.035f =  (Figure 4(c)) distinct dynamic bifurcation is observed 
to the left of the peaks. In this case, there is virtually no path dependency i.e., 
L R→  and L R←  paths yield same frequency response. We also point out 
that in this case also for 1 2 3 0.1c c c= = =  computations fail if 0f  is increased 
beyond 0.035. 

(3) Studies in (1) and (2) show that when 3 1k = −  mild dynamic bifurcation 
can be simulated but more distinct and sharper change in peaks is difficult to 
simulate due to the fact that for very low values of damping and for very high 
value of 0f  (both needed for dynamic bifurcation) computations fail. 

(4) We recall that static bifurcation for this model problem I, with 1 2 1k k= =  
and 3 1k = −  occurs when 1.3 , 1.4u f≤ ≤ . Displacement value of u in this 
range is not possible for the choices of coefficients considered here for model 
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problem I. 
(5) In this phenomenological model, we do not have any basis for choosing 

1 2 3, ,k k k  and 1 2 3, ,c c c , hence the reason for choosing the values given in the 
studies presented here.  

(6) We note that for negative [ ]Kσ , bifurcation occurs to the left of the peak 
in all studies.  

8.2.2. Case (b): Simulations for Positive [ ]Kσ  i.e., k3 1= : Model  
Problem I  

We consider solutions of model problem I for positive [ ]Kσ  i.e., 3 1k = . In this 
case, the influence of the stress field is to increase total stiffness. We choose 

1 2 3 1k k k= = =  in all studies presented in this section and consider different 
choices of 1 2 3c c c= =  and 0f . In this case, increasing stress field, increasing 
non linearity and increasing dissipation all contribute to increase in stiffness. 
The only mechanisms of reduction in stiffness is dynamic motion i.e., inertial 
physics and reduced dissipation. In the vicinity of bifurcation point, an unbal-
ance between the two is followed by sudden change in the energy state causing 
dynamic bifurcation. As shown earlier in the static bifurcation studies, an axial 
rod in tension can never experience total loss of stiffness at any loading that 
produces positive [ ]Kσ . Furthermore, in case of axial rod, model problem II, 
positive [ ]Kσ  cannot be simulated due to ( )0 sinf tω  acting at the free end 
(right) of the rod. This is another difference in the two model problems that 
confirms the fact that model problem I is not representative of model problem 
II. 

In the first study, we choose damping coefficients 1 2 3 0.1c c c= = =  and 

0 0.1,0.05,0.01f = . For each value of 0f , frequency response is obtained for the 
frequencies 1 nω ω→  ( L R→ ) and for 1 nω ω←  ( L R← ) in increments of 
0.1. For each 0f , at each frequency, positive and negative peaks are recorded  

when the motion is steady and cyclic. Integration time step 1 2
20

t
ω
π ∆ =  

 
 is  

used in all calculations. Evolution is computed till completion of 25 cycles for 
each frequency for motion to be repetitive cyclic motion. Frequency responses 
for this study are shown in Figures 5(a)-(c) for 0 0.1,0.05f =  and 0.01. 

(1) Figure 5(a) shows frequency response for 0 0.1f = . For L R→  path, 
positive and negative peaks differ. Negative peaks being always higher, but both 
naturally show bifurcation at the same frequency. Negative peak always being 
higher, hence results in more distinct appearances of dynamic bifurcation. For 
L R←  path, we also observe dynamic bifurcation (not as distinct as in case of 
L R→ ) but at a different frequency than for L R→ . Path dependency can be 
clearly observed in all three figures. 

(2) Frequency response for 0 0.05f =  and 0.01f =  are shown in Figure 
5(b) and Figure 5(c). We observe no existence of dynamic bifurcation for both 
force values. Low force values result in very mild nonlinearity, thus eliminating 
possibility of the existence of dynamic bifurcation. In Figure 5(b) and Figure 
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5(c), we observe no path dependency and the differences between the negative 
and positive peaks reduce with progressively reducing force. The results indicate 
only mild nonlinearity, not sufficient for dynamic bifurcation and path depen-
dency. 

(3) This study shows that for a fixed dissipation physics, existence of dynamic 
bifurcation at higher value(s) of f0 can be eliminated by lowering f0 values, thus 
reducing presence of nonlinearity and stiffness. Likewise, for a fixed dissipation 
physics progressively increasing f0 could likely result in dynamic bifurcation 
phenomenon.  

 

 
(a) 

 
(b) 
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(c) 

Figure 5. (a) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.1c c c= = = , 

0 0.1f = ; (b) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.1c c c= = = , 

0 0.05f = ; (c) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.1c c c= = = , 

0 0.01f = .  

8.2.3. Case (c) 
In this second study, we keep 1 2 3 1k k k= = =  and 0 0.3f =  fixed and choose 

1 2 3 1.0,0.5c c c= = =  and 0.1 i.e., progressively reducing dissipation. Frequency 
response for all three values of damping for L R→  and L R←  frequency 
range are shown in Figures 6(a)-(c). From Figure 6(a) and Figure 6(b), we 
note that for 1 2 3 1c c c= = =  and 0.5, negative and positive peaks for L R→  
and L R←  are almost identical but we clearly observe path dependency i.e., 
L R→  and L R←  frequency response are different for both damping coeffi-
cient values. We also note absence of bifurcation for both damping coefficient 
values. Clearly, much higher peak amplitudes are observed for 0.5 damping 
coefficient compared to 1.0. Figure 6(c) shows frequency response for  

1 2 3 0.1c c c= = = . First, we note that maximum amplitude in this case is roughly 
four times that of for 1 2 3 1.0c c c= = = . We clearly observe bifurcation for both 
L R→  and L R←  loading paths. Negative peaks are always higher than 
positive (as explained earlier) and both peaks show presence of bifurcation in 
case of L R→  bifurcation occurs at a higher frequency compared to L R← . 
Both positive and negative peaks at bifurcation in case of L R→  are higher 
than the corresponding peaks for L R← . As expected, since the positive 3k  
implies positive [ ]Kσ , the bifurcation occurs to the right of the peak amplitude. 

In this study, we clearly see the role of 1 2 3c c c= =  in the bifurcation physics. 
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For fixed magnitude of excitation force, progressively reduced values of damping 
enables existence of bifurcation. Progressively reducing damping results in en-
hanced motion, hence increased nonlinearity that influences [ ]Kσ  due to 
stress field. 

 

 
(a) 

 
(b) 
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(c) 

Figure 6. (a) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 1.0c c c= = = , 0 0.3f = ; 
(b) Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.5c c c= = = , 0 0.3f = ; (c) 
Model problem I: Frequency ω versus maximum amplitude u1 response for 1 2 3 0.1c c c= = = , 0 0.3f = .  

8.3. Model Problem II: Numerical Studies 

We consider dimensionless form of model II (Equations (128)-(130)). First, we 
write (128)-(130)) using hat ( ∧ ) on all quantities indicating that they have their 
usual dimensions or units. 

[ ]( ) [ ]( ) [ ]( )
2

0 0 01 1 1
0 11 11 112

1 1 11

ˆ ˆ ˆˆ ˆ ˆ ˆ 0ˆ ˆ ˆ ˆˆ d d d
v u u
t x x xx

ρ σ σ σ
 ∂ ∂ ∂ ∂ ∂

− + − = ∂ ∂ ∂ ∂∂ 
        (138) 

 [ ]
2

0 1 1 1 1 1
11 1

1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ1ˆˆ ˆ 0
ˆ ˆ ˆ ˆ ˆ2d
u u v u vE c
x x x x x

σ
    ∂ ∂ ∂ ∂ ∂ − + − + =    ∂ ∂ ∂ ∂ ∂    

           (139) 

 1
1

ˆˆ 0ˆ
uv
t

∂
− =
∂

                           (140) 

We introduce the following reference quantities (with subscript zero or “ref”) 
and dimensionless quantities: 

( )

[ ]
[ ]

0 1 1 1
0 1 1

0 0 0 0ref

0
00 11

0 11
0 0 0

2
0 0 0 0 0

0

ˆ ˆ ˆ ˆ
; ; ;

ˆˆ
; ;

ˆ
; ;  we choose 0.001 

d
d

u v xu v x
L v L

L Et E
v E

cE v c
c

ρρ
ρ

σσ
σ

σ ρ ρ

= = = = 

= = = 



= = = = 


              (141) 
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Using (141) in (138)-(140), we obtain the dimensionless form of the equations 
(138)-(140). 

[ ]( ) [ ]( ) [ ]( )
2

0 0 01 1 1
0 11 11 112

1 1 11

ˆ 0d d d
v u u
t x x xx

ρ σ σ σ
 ∂ ∂ ∂ ∂ ∂

− + − = ∂ ∂ ∂ ∂∂ 
       (142) 

 [ ]
2

0 1 1 1 1 1
11

1 1 1 1 1

1 0
2d

u u v u vE c
x x x x x

σ
    ∂ ∂ ∂ ∂ ∂ − + − + =    ∂ ∂ ∂ ∂ ∂    

          (143) 

 1
1 0uv

t
∂

− =
∂

                          (144) 

( ) ( ) ( ), 0, 0,xt x tx t L τ∀ ∈Ω =Ω ×Ω = ×  in which 1E =  if we choose 0
ˆE E=  

and 0 0

0 0 0 0 0 0 0 0

ˆ ˆv cc c cc c
L v L v L Reσ ρ ρ

   
= = = =   
   

 

c is dimensionless damping coefficient. Re is Reynolds number. We calculate 
solutions of (142)-(144) using space-time finite element based on space-time re-
sidual functional for a space-time strip with time marching. Figure 7(a) shows 
schematic of the rod of dimensionless length L (=1). Figure 7(b) shows space- 
time domain [ ] [ ]0, 0,xt x t L τΩ = Ω ×Ω = × ; τ  being final value of time. A disc-  
retization ( )i

xt xt
i

Ω = Ω


 of the space-time domain xtΩ  into space-time strips 

; 1,2,i
xt iΩ =   is shown in Figure 7(c). 

Figure 7(d) shows a discretization ( )( )1 T
e

xt xt
e

Ω = Ω


 of the first space-time  

step using p-version nine node space-time finite elements with hierarchical local 
approximations of higher degree and higher order global differentiability in 
space and time. Figure 7(e) shows BCs 1 0u = , 1 0v =  at 1 0x =  [ ]0,t t∀ ∈ ∆ , 
ICs: 1 0u = , 1 0v =  at 0t =  [ ]1 0,x L∀ ∈ . BCs at 1x L=  consists of  

[ ] ( )0
11 0 sind tσ σ ω= . Using [ ]0

11dσ  values of the degrees of the freedom are calcu-
lated for the element nodes at 1x L=  and for [ ]0,t t∈ ∆ . For the second 
space-time strip, these dofs are calculated for [ ],2t t t∈ ∆ ∆  and so on. This 
process enables application of [ ] ( )0

11 0 sind tσ σ ω=  at 1x L=  in time accurately. 
In this process, a change in ω is done at a value of time t when [ ]0

11 0dσ = , so that 
change in ω does not cause unnecessary discontinuity in the application of 

[ ]0
11dσ  at 1x L=  in time. Convergence studies using mesh refinement and 

p-level increase confirm that a 10 element discretization with p-level of 9 in 
space and time with global differentiability of order one ( 2k = , order of the ap-
proximation space) are sufficient to obtain space-time residual functional I for 

( )( )1 T

xtΩ  of ( )810O −  or lower indicating accurate evolution for ( )( )1 T

xtΩ . 
Evolution is continued using time marching till steady cyclic response is reached  

for each frequency. We use integration time step of 1 2
20

t
w
π ∆ =  

 
. Evolution is  

computed for 20 cycles of each frequency. This is found to be adequate enough 
to reach cyclic response. During the entire evolution, I values of ( )810O −  are 
observed confirming accurate evolution. 
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Figure 7. Schematic, discretization, BCs, and ICs for an axial rod (model problem II). 
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As in case of model problem I, here also there is a negative shift (due to com-
pression of the rod) in the peak positive and negative values observed in the cylic 
response, we record and report both. In this model problem [ ]Kσ  is always 
negative. 

8.3.1. Case (i) 
First, to demonstrate validity and accuracy of computations we present frequen-
cy response for linear dynamic study corresponding to linear stiffness and linear 
damping. All nonlinear terms in (142)-(144) are set to zero. Figure 8(a) shows 
frequency response for 0.003c =  and 0 0.03σ =  (low damping, low force) in 
which the peak is at first fundamental frequency of the linear system, positive 
and negative peaks responses are identical confining small deformation, small 
strain physics. We observe no path dependency i.e., L R→  and L R←  fre-
quency responses are the same. 

Figure 8(b) shows frequency response for 0 0.003σ =  and damping values 
of 0.003c =  and 0.0035. For 0.0035c = , we observe lower peak values. Fre-
quency response for 0.003c =  and 0.0035c =  only differs in the vicinity of 
the peak (but stay symmetric with respect to peak values in both cases) as ex-
pected. These studies are included to show that the computed evolution in the 
entire frequency range is accurate (residual functional I values ( )810O −  or 
lower). These studies confirm that when the mathematical model is linear, pres-
ence of irreversibility does not introduce path dependency in the solution. 

8.3.2. Case (ii): Progressively Reduced Damping for a Fixed 0σ   

In this study we choose a fixed value of 0σ  and compute frequency response 
for progressively reduced damping coefficient c until further reduction in the 
damping coefficient leads to singular matrices or lack of convergence of the 
Newton’s linear method. We choose 0 0.03σ =  and  

0.01,0.005,0.003,0.002c = .  
Figures 9(a)-(d) show frequency response for 0.01,0.005,0.003c =  and 0.002. 

For all four values of damping, ( L R→ ), ( L R← ) frequency response are 
shown using positive and negative peaks. In Figures 9(a)-(c), we observe that 
for each value of 0.01,0.005,0.003c =  that L R→  and L R←  yield same 
frequency response for negative as well as positive peaks, negative peak always 
being higher than positive peaks. With progressive reduction in c, we also ob-
serve increase in peak values of the response. Frequency response for 0.002c =  
in Figure 9(d) shows distinct bifurcation to the left of the peak (due to negative 
[ ]Kσ ). Here also higher negative peak amplitude show more distinct drop in 
magnitude than positive peaks, but we clearly observe bifurcation in both posi-
tive and negative peaks. This study confirms that for a fixed 0σ  value, total lack 
of bifurcation at higher damping can be changed to distinct bifurcation by lo-
wering the damping value. We remark that in some cases this process may result 
into failure of computations or lack of convergence of Newton’s linear method 
for lower value of damping before existence of bifurcation can be established.  
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(a) 

 
(b) 

Figure 8. (a) Model problem II: Frequency ω versus maximum amplitude u response for linear stiffness and linear 
damping (c = 0.003); (b) Model problem II: Frequency ω versus maximum amplitude u response for linear stiffness and 
linear damping ( 0.0035c =  and 0.003c = ). 
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For this choice of 0σ , we could observe bifurcation before the computations 
cease. In Figure 9(d) we observe that L R→  and L R←  frequency response 
show mild path dependency. This phenomenon of mild path dependency has 
also been reported in ref [26]. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 9. (a) Model problem II: Frequency ω vs Amplitude u response for 0.01c =  and 0.005c = ; (b) 
Model problem II: Frequency ω vs Amplitude u response for 0.01c =  and 0.005c = ; (c) Model problem II: 
Frequency ω vs Amplitude u response for 0.003c = ; (d) Model problem II: Frequency ω vs Amplitude u 
response for 0.002c = .  

8.3.3. Case (iii): Progressively Increasing 0σ  for a Fixed Damping c 

In this study, we choose a fixed value of damping coefficient 0.003c =  and de-
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termine frequency response for progressively increasing 0 0.025σ = , 0.030, 0.045 
and 0.055. The objective of this study is to demonstrate that for a fixed value of 
damping, presence of dynamic bifurcation is possible if 0σ  is increased beyond 
a threshold value. Details of computations and of generating frequency response 
curve remain the same as discussed in earlier studies. Figures 10(a)-(d) show  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 10. (a) Model problem II: Frequency ω vs Amplitude u response for 0 0.030σ =  and 0.025; (b) 
Model problem II: Frequency ω vs Amplitude u response for 0 0.030σ =  and 0.025; (c) Model problem II: 
Frequency ω vs Amplitude u response for 0 0.045σ =  and 0.055; (d) Model problem II: Frequency ω vs 
Amplitude u response for 0 0.045σ =  and 0.055.  

 
frequency response for 0 0.025σ = , 0.035, 0.045, 0.055. In Figure 10(a) and 
Figure 10(b) for 0.025σ =  and 0.030, L R→  and L R←  frequency re-
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sponse are almost the same for positive as well as negative peak and there is no 
evidence of dynamic bifurcation. As usual, negative peaks are higher than the 
positive peaks. In Figure 10(c), for 0 0.045σ = , we observe onset of dynamic 
bifurcation, more evident in the negative peak than the positive peak, but we 
observe lack of path dependency i.e., L R→  and L R←  frequency response 
are almost same. In Figure 10(d) for 0 0.055σ =  we clearly observe bifurcation 
to the left of the positive and negative peaks, negative peak showing more dis-
tinct bifurcation due to larger maximum amplitude of motion. Since path de-
pendency is due to irreversibility caused by damping, the path dependency is 
mild due to low damping value. It is combination of damping and force that de-
termine irreversibility. High damping but low force and low damping but high 
force, both are likely to result in low irreversibility, hence milder path depen-
dency. 

In this study, we have seen that for a fixed c (0.003 in this study) there is a 
threshold value of 0σ  at which distinct bifurcation is observed. We clearly see 
that path dependency is not a necessary condition for the existence of bifurca-
tion. Larger maximum amplitudes in Figure 10(c) and Figure 10(d) indicate 
that stronger nonlinearity, hence stronger influence of [ ]Kσ  is essential for bi-
furcation to exist. We also observe that positive peaks are not as effective as neg-
ative peaks in illustrating existence of bifurcation. 

9. Nonlinear Dynamics of Continuous Solid Media When  
[ ]Kσ  Is Positive 

In the model problem studies for axial rod (model problem II) subjected to 
harmonic excitation, [ ]Kσ  due to stress field is always negative resulting in 
reduction of total stiffness. In the type of applications, where [ ]Kσ  is negative, 
the inertial physics due to linear acceleration and [ ]Kσ  both result in reduc-
tion in stiffness. On the other hand, the stiffness matrices (all three of them) and 
dissipation mechanism offer resistance to the motion. Thus in such applications 
(in which [ ]Kσ  is negative), dynamic bifurcation is due to lack of balance be-
tween the two competing mechanism of stiffnesses. When there is unbalance 
between these two stiffness mechanisms, a state of instability, balance is restored 
by sudden change in energy state resulting in sudden change in the magnitude of 
motion. This of course is dynamic bifurcation. We have seen that when [ ]Kσ  
is negative, the dynamic bifurcation is always to the left of the peak amplitude in 
the frequency response in case of model problem I as well as model problem II. 

In many applications such as nonlinear dynamics of bending of fixed-fixed 
beams, bending of clamped plates, the midplane is always in tension, resulting in 
positive [ ]Kσ , just like in case of axial rod where [ ]Kσ  is always negative for 
excitation at the end of the rod, in such applications [ ]Kσ  is always positive 
due to midplane always being in tension during dynamic motion. Positive [ ]Kσ  
of course increases total stiffness. Thus, in this case reduced damping and in-
creased inertial physics due to linear acceleration are the mechanisms that result 
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in reduction of the total stiffness. When there is a lack of balance between the 
stiffness reduction and other mechanism causing increase in stiffness, dynamic 
bifurcation occurs to restore the balance. Based on negative [ ]Kσ  studies and 
studies for positive 3k  in case of model problem I, we expect that when [ ]Kσ  
is positive, dynamic bifurcation will occur to the right of the peak values (nega-
tive as well as positive). Dynamic bifurcation studies for beams, plates and shells 
using mathematical models based on CBL of CCM and solution methods de-
scribed in this paper are in progress and will be reported in a forthcoming paper. 

10. Summary and Conclusions 

(1) The CBL of CCM derived using contravariant second Piola-Kirchhoff stress 
and Green’s strain tensor augmented with consistent constitutive rate theories 
for deviatoric contravariant second Piola-Kirchoff stress tensor in terms of Green’s 
strain tensor and its rates up to order n completely define finite deformation, fi-
nite strain nonlinear dynamics of TVE solids. Unfortunately, the factors influen-
cing nonlinear dynamics and in particular dynamic bifurcation are difficult to 
establish from this mathematical model. 

If we substitute constitutive theory for [ ]0
dσ  in BLM and only consider iso-

thermal physics, then we obtain three PDEs in displacements iu  from the bal-
ance of linear momenta. If we decouple space and time and consider integral 
form for a spatial discretization using fundamental lemma of the calculus of var-
iations followed by Galerkin method with weak form in space, then we obtain a 
system of nonlinear ODEs (1) in time in { } { },δ δ  and { }δ , the degrees of 
freedom for the spatial discretization and their first and second time derivatives. 
This is for the first time (due to GM/WF in space) we realize the concept of mass 
[ ]M , stiffness [ ]K  and damping [ ]iC  matrices. Only [ ]M  is symmetric. [ ]K  
and [ ]iC  are nonsymmetric and are often referred to as secant stiffness and 
damping matrices. We have shown that [ ]eK , the stiffness matrix for element e, 
can be decomposed into 1 2,e eK K        and 3

eK    (Equations (48)-(50)), 1
eK    

with constant coefficients and 2 3,e eK K        with coefficients that are linear and 
quadratic functions of { }eδ , dofs for an element e. The same decomposition can 
be applied to each of [ ]iC 

  . At this stage, we have little more information, and 
nonlinear dynamics now depends upon stiffness [ ]K  and damping matrices 

[ ]iC 
   whose coefficients are constant, linear and quadratic functions of dofs 
and of course on constant coefficient mass matrix [ ]M . But, still this informa-
tion is not sufficient to completely determine precisely the factors influencing 
dynamic bifurcation in nonlinear dynamics. 

(2) The 1D phenomenological mass, spring, damper model (model problem I), 
Equation (64) is supposedly 1D equivalent to the model discussed in (1) (for 

[ ]1C  only). This of course is not a valid representation of mathematical model 
(1). We remark that mathematical model (64) is a lumped model in space, thus 
cannot possibly describe deformation physics of a continuous solid media in 
which space and time are intrinsically coupled and always present. We point out 
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that in mathematical model (1), the nonlinear coupled ODEs contain dofs and 
their derivatives that correspond to spatial positions. This is an essential feature 
of space-time decoupled description for a continuous media in which spatial de-
tails are preserved in the ODEs in time. This establishes without doubt that study 
of nonlinear dynamics using (64) may be interesting, but cannot possibly describe 
nonlinear dynamics of a continuous solid media. 

(3) We have shown that when integrating (1) in time using a time integration 
method such a Newmark linear acceleration method and employing Newton’s 
linear method to obtain a converged solution for each time increment, we ob-
serve the appearance of tangent matrix [ ]TH  whose inverse controls the in-
cremental changes in the solution in Newton’s linear method. That is, computa-
tion of incremental solution in the computation of evolution requires inverse of 
[ ]TH , the tangent matrix defined by (105). Thus, the dynamic solution depends 
on [ ]TH  that consists of symmetric [ ] [ ], TM C  and [ ]TK . [ ]TK  in terms of 
sum of 1 2 3, ,K K K          

 

 and [ ]Kσ  and likewise [ ]TC  is the sum of  
1 2 3, ,C C C          

 

 and [ ]Cσ . [ ] 1 1, ,M K C        have constant coefficients. Coef-
ficients of 2 2,K C      

 

 are linear functions of { }δ  and those of 3K  


 and 
3C  


 are quadratic functions of { }δ . [ ]Kσ  is the stiffness matrix due to pres-
ence of stress field. We note that 2 3 2, ,K K C          

  

 and 3C  


 are not the 
same as 2 3 2 3, , ,K K C C                resulting from decoupling of space and time 
in which 2 2,K C        are not symmetric. It is only after applying Newmark linear 
acceleration method with Newton’s linear method that we realize dependence of 
the solution on [ ]TH  and thus on the new [ ]2 3 2 3, , , ,K K C C Kσ              

   

 and 
[ ]Cσ  matrices. Concept of [ ]Kσ  in this approach is instrumental in under-
standing bifurcation physics. Going back to (64), linear and quadratic stiffness 
terms maybe viewed as synonymous to 2K    and 3K    in (1), but they fail to 
explain the physics due to [ ]Kσ . It is worth noting that [ ]TK  is also realized 
in finite deformation, finite strain BVPs. Confirming that [ ]TK  does not de-
pend upon BVP or IVPs, it describes the physics resulting in different forms of 
stiffness contributions due to linear and nonlinear strain measure in Green’s 
strain tensor that contribute to the total stiffness and plays crucial role in static 
as well as dynamic bifurcations. Compressive stress field resulting in negative 
stresses causes negative [ ]Kσ , hence reduces total stiffness. On the other hand, 
tensile stress field will result in positive [ ]Kσ  which would increase the total 
stiffness of the medium. 

(4) Now we can identify the factors influencing nonlinear dynamics and dy-
namic bifurcation physics. Stiffness matrices 1K    2K  



, 3K  


 (all symme-
tric) contribute to total stiffness. Influence of the degree of nonlinearity is re-
flected in 2K  



 and 3K  


. For large finite strain and large finite deformation, 
3K  


 plays significant role in influencing the stiffness. Dissipation mechanism 
(due to all damping matrices) provides resistance to motion, thus opposing the 
likelihood of dynamic instability (dynamic bifurcation). In order words, low 
damping assists existence of dynamic bifurcation and vice versa. The stiffness 
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matrix [ ]Kσ  due to the stress field plays critical role in dynamic bifurcation, 
negative [ ]Kσ  enhances likelihood of the existence of dynamic bifurcation whe-
reas positive [ ]Kσ  helps in inhibiting the likelihood of dynamic bifurcation 
due to increased stiffness. The last factor influencing dynamic bifurcation is in-
ertial physics due to accelerations ( [ ]{ }M δ ) which results in reducing stiffness, 
hence aids in the likelihood of the existence of dynamic bifurcation. Thus, in 
summary, on one hand, damping and stiffnesses 1 2 3, ,K K K          

 

 and on the 
other hand inertial physics due to acceleration and negative [ ]Kσ  are two 
competing mechanisms in nonlinear dynamics and dynamic bifurcation physics. 
In stable dynamic response there is a balance between these two mechanisms. 
Any unbalance between these two mechanisms must result in sudden change in 
the deformation physics to restore stable balance, this of course is dynamic bi-
furcation. When [ ]Kσ  is positive, it enhances stiffness, hence in this case damp-
ing, stiffnesses and [ ]Kσ  equilibrate with inertial physics due to acceleration 
and the imbalance between these two mechanisms results in dynamic bifurcation. 
Thus, it is obvious that the nature of dynamic bifurcation for positive [ ]Kσ  and 
negative [ ]Kσ  must be different. We have demonstrated this in the model 
problem studies that this indeed is the case. In case of negative [ ]Kσ  due to 
compressive stress field (model problem II, also model problem I with 3 1k = − ) 
dynamic bifurcation is always to the left of the peak. When [ ]Kσ  is positive, 
the dynamic bifurcation is to the right of the peak (shown for model problem I 
with 3 1k = ). 

(5) There are many concerns regarding the validity and rigor of some of the 
mathematical models and solution techniques used to study nonlinear dynamics 
and dynamic bifurcation physics of continuous solid media. Some of these are 
summarized in the following. 

(a) We have established that 1D phenomenological mathematical model like 
(64) cannot possibly describe the nonlinear dynamics and dynamic bifurcation 
physics of a continuous solid media. 

(b) We have clearly demonstrated that 3 1k = −  and 3 1k =  in (64) do not 
correspond to negative [ ]Kσ  and positive [ ]Kσ . Derivation of [ ]Kσ  in time 
integration of ODEs (1) with Newton’s linear method clearly demonstrates this. 

(c) The nonlinear ODEs (1) resulting from the CBL of CCM after using space- 
time decoupled finite element method with GM/WF for the spatial discretization 
contains degrees of freedom { }δ  and their time derivatives { } { },δ δ   that 
correspond to the nonlinear problem. These cannot be transformed using modal 
basis determined from the linear form of ODEs (1) in which [ ]K  is constant. 
We have presented details in this paper to show that forcing this transformation 
on (1) followed by use of Rayleigh damping (see reference [33] [34]) for issues 
with Rayleigh damping) leads to a system of decoupled ODEs that neither de-
scribe linear dynamics nor nonlinear dynamics. Hence, our view is that all non-
linear dynamic studies based on this approach are not supported by the mathe-
matical models based on CBL of CCM followed by rather straight forward 
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space-time coupled or space-time decoupled methods of obtaining their solu-
tions, like we have presented in this paper. 

(d) Transformation of (1) to modal basis using linear modes of vibrations de-
rived using linear form of (1) is obviously flawed mathematically, but there is 
another significant issue in this approach. In this approach, the solution of a 
nonlinear problem reduces to superposition of linear modes of vibrations using 
modal participation factors that are determined using nonlinear ODEs in the 
participation factors, equation (31). Superposition of any sort cannot be enter-
tained for a nonlinear problem. This is another serious and fundamental prob-
lem in this approach. 

(e) In many published works trigonometric series with undetermined coeffi-
cients are used as solutions of the mathematical models in nonlinear dynamics. 
These solutions are obviously based on superposition which is not valid for a 
nonlinear system. Furthermore, the trigonometric functions are chosen such 
that their linear combination with undetermined coefficients satisfies the neces-
sary BCs and ICs. The values of the undetermined coefficients are established 
based on the fact that this solution must be in agreement with some measured 
experimental response of interest. This approach is more like establishing an 
analytical expression using the mathematical model that matches experimental 
results, in other words, similar to curve fit to the experimental data. From the 
solutions of ODEs and PDEs, we know that the solution consists of the sum of 
complementary and particular solutions. Complementary solution has undeter-
mined coefficients (as many as supported by BCs and ICs depending upon BVP 
or IVP) and satisfies homogenous form of the equations. Undetermined coeffi-
cients in the complementary solution are determined by ensuring that the total 
solution satisfies all BCs and ICs. In this approach, the solution of the mathe-
matical model has nothing to do with experimental measurements i.e., it is com-
pletely independent of the experiment. A comparison of the solution calculated 
using this approach with the experimental measurements is now helpful in de-
termining if the mathematical model and the experiment are addressing the 
same physics (of course barring errors in either approach). 

(f) We have shown in model problem II that static bifurcation does not exist 
for axial rod. Upon increasing compressive force at the right end, eventually 
negative [ ]Kσ  becomes equal to the stiffness ( 1 2 3K K K     + +      ) resulting 
in total loss of stiffness, hence failure of computations. But, the static bifurcation 
does exist as we have shown in the paper. Nonetheless, dynamic bifurcation does 
exist in the axial rod problem. Thus, static bifurcation is not a necessary condi-
tion for dynamic bifurcation to exist. On the other hand in model problem I, we 
have static bifurcation at 1.3u =  when 3 1k = −  and we also have dynamic bi-
furcation as well, confirming that in some applications both static and dynamic 
bifurcation can exist. 

(g) We draw some conclusions and make some final remarks based on the 
theory and model problem studies for model problem II based on CBL of CCM 
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and consistent constitutive theories.  
(i) In this paper, we have identified factors influencing dynamic bifurcation, 

(b) we have shown that both in the static bifurcation and the dynamic bifurca-
tion are controlled by tangent stiffness matrix [ ]TK . 

(ii) In static bifurcation, negative [ ]Kσ  is essential (compression). Positive 
[ ]Kσ  can never result in static bifurcation. Since inertial physics due to accele-
ration is absent in static bifurcation, it is a balance between [ ]Kσ  and the rest 
of the stiffnesses. 

(iii) Dynamic bifurcation can occur with positive and negative [ ]Kσ  as in 
this case in addition to [ ]Kσ  the inertial physics due to acceleration (lowering 
stiffness) is present. 

(iv) When [ ]Kσ  is negative, dynamic bifurcation occurs to the left of the 
peak and when [ ]Kσ  is positive, the dynamic bifurcation occurs to the right of 
the peak. 

(v) Static bifurcation is not a necessary condition for dynamic bifurcation to 
exist. 

(vi) Phenomenological 1D models in time such as (64) can never describe the 
nonlinear dynamics of continuous solid media. 

(vii) We have shown that in the study of nonlinear dynamics and dynamic bi-
furcation physics of TVE solids, the mathematical models must consist of CBL 
of CCM and the constitutive theories derived using entropy inequality and the 
representation theorem. This is the only mathematical model that is thermody-
namically and mathematically consistent in the study of nonlinear dynamics. 

(viii) The space-time coupled and the space-time decoupled finite element 
methods presented in the paper are two viable and mathematically sound ap-
proaches of obtaining solutions of the mathematical models is the best approach 
for obtaining solutions of IVPs in nonlinear dynamics without introducing any 
approximation in them. 

(ix) A space-time coupled finite element method based on space-time residual 
functional, the space-time integrals are space-time variationally consistent [32]. 
This methodology leads to unconditionally stabled computations during the en-
tire evolution. This method when used for a space-time strip with time marching 
(presented in this paper) is highly efficient. In this approach, use of minimally 
conforming approximation spaces in space and time and with appropriate 
choices of h and p, the space time residual functional can be ensured to be of the 
order of ( )810O −  or lower, ensuring that the equations in the mathematical 
model are satisfied accurately at each point in the space-time domain. This en-
sures that calculated evolution is almost time accurate. This approach is used in 
calculating harmonic response for model problem II, thus the reported solutions, 
through numerical, undoubtedly ensure time accuracy and satisfy equations in 
the point wise sense. 

(x) In space-time decoupled methods, approximations due to space-time de-
coupling, stability and accuracy of time integration schemes and over all inabili-
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ty of this approach to quantitatively judge if the equations (PDEs) in the ma-
thematical model are satisfied in the point wise sense, makes this approach less 
attractive and in fact inferior to space-time coupled finite element method based 
on space-time residual functional discussed and used here. 

(xi) The solutions of nonlinear PDEs with irreversible physics exhibit path 
dependency. In nonlinear dynamics of TVES (without memory) some mechani-
cal work is used or converted into entropy production (due to dissipation phys-
ics). Thus, solutions of IVPs in TVES with finite deformation, finite strain will 
always exhibit path dependency. Severity of path dependency depends upon en-
tropy production, hence for some choice of parameters, it is possible that signif-
icant path dependency may not be observed in the solution.  

The paper presents thermodynamically and mathematically consistent ma-
thematical models for nonlinear dynamics and dynamic bifurcation physics and 
method of obtaining their solution that are almost time accurate and have no is-
sues of stability. Model problem studies using model problem II (CBL of CCM) 
illustrates all of the features discussed in item (viii) and (ix). Whether the solu-
tions obtained using this approach match experimentally measured response is 
another issue. If they do, we have a computational tool that avoids experiments. 
If they do not, then obviously either the physics considered in the two differs or 
there are other sources of errors that are contaminating the results. We remark 
that in the computational approach based on (viii) and (ix), the only source of 
confusion can be, lack of consideration of some physics in the mathematical 
model that is present in the experiment. Computational technique in (ix) has no 
flaws when the space-time residual functional is ( )810O −  or lower for each 
space-time strip. In view of the consistent mathematical model based on CBL of 
CCM and rigorous computational infrastructure, we have discussed and pre-
sented in the paper for studying nonlinear dynamics and dynamic bifurcation 
physics, phenomenological mathematical models and questionable methods of 
obtaining their solutions can be completely avoided. 
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