
Applied Mathematics, 2023, 14, 764-772 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2023.1411046  Nov. 28, 2023 764 Applied Mathematics 
 

 
 
 

A Class of New Optimal Ternary Cyclic Codes 
over m3  with Minimum Distance 4 

Wenwei Qiu 

School of Mathematics and Information, China West Normal University, Nanchong, China 

 
 
 

Abstract 
As a branch of applied mathematics, coding theory plays an important role. 
Among them, cyclic codes have attracted much attention because of their 
good algebraic structure and easy analysis performance. In this paper, we will 
study one class of cyclic codes over 3 . Given the length and dimension, we 
show that it is optimal by proving its minimum distance is equal to 4, ac-
cording to the Sphere Packing bound. 
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1. Introduction 

Information transmission is an important means of human communication, and 
with the development of technology, coding theory has also been established. In 
the information age, cyberspace security is a very important issue, and crypto-
graphy and encoding play important roles in it. Coding theory is a technique for 
encoding information. During the process of transmitting information, it is in-
evitable that information may be distorted due to some reasons. In this process, 
information cannot correct errors on its own. Therefore, a self-correcting code 
space has been studied, which is called the error-correcting-codes. 

Among error-correction-codes, linear codes are widely studied due to their 
excellent algebraic structure and other characteristics, and cyclic codes are the 
most important among them. Due to their excellent algebraic structure and cyc-
lic properties, they can be easily studied and obtained through algebraic methods, 
and are widely used in various information security systems. 

Let mp
  be a finite field with mp  elements, where p is a prime. A linear 

code   with parameters [ ], ,n k d  over p  is a linear subspace of m
n
p

 , which 
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has the length n, dimension k and minimum Hamming distance d. We say the 
linear code   is a cyclic code if for any codewords ( )0 1 1, , , nc c c c −= ∈  , the 
cyclic shift of the codeword ( )1 0 2, , ,n nc c c− − ∈  . Now we use the polynomial 
ring [ ]p x  and the quotient ring [ ] ( )1n

p x x −  to describe the cyclic code. 
We define a linear code as a cyclic code if for any codeword ( )f x ∈ , which 
can be identified with a polynomial  

[ ] ( )2 1
0 1 2 1 1 ,n n

n pc c x c x c x x x−
−+ + + ⋅ ⋅ ⋅ + ∈ −  

the codeword ( )xf x ∈ . So we can easily know that an nonempty set   in 
n
p  is a cyclic code if and only if   is a principal ring in n

p . We denote any 
cyclic code   as ( )g x= , and ( )g x  is called the generator polynomial of 
 . 

The study of cyclic codes has been the focus of attention in recent years. Be-
cause of its excellent characteristics, it has been widely used in lots of fields. We 
always hope that a cyclic code has better error correction ability. The error cor-
rection ability is closely related to the minimum distance. The larger minimum 
distance it has, the better error correction ability it gets. Therefore, we are very 
interested in the minimum distance of a code. 

Let 3p = , we consider the cyclic code ( ),u v  over the finite field 3 . Ding 
and Helleseth [1] state the theory of the APN monomials and used some of these 
to construct many classes of optimal ternary cyclic codes in 2013. In 2019, by 
giving a new ternary power mapping, Yan and Han [2] considered a related op-
timal ternary cyclic code which ( )1, 3 3 4mu v= = −  in some conditions. Zha 
and Hu [3] proved some new classes of optimal ternary cyclic codes with mini-
mum distance 4 for some given parameters v, 1u =  in 2020. For the given 

( )3 1 2mu = + , Ding and Zhou [4] studied the cyclic code is optimal when 
( )3 1 2sv = +  in some conditions. Similarly, Fan, Zhou and Li [5] proved that  

the cyclic code 
( )1 23 1,2 3 1

2

m
m− + ⋅ + 

 

  is optimal when m is odd in 2016. They also  

discussed the weight distribution of the dual of this code. In 2020, Liu, Cao and 
Lu [6] studied the code ( )2,v , which is constructed by using monomials 2x  
and vx . For ( ) ( )3 1 2 2 3 1m kv = − + + , ( )2,v  is optimal by choosing suitable m 
and k. Recently, by choosing proper u and v, Zha, Hu, Liu and Cao [7] show  
that 

3 1 3 1,
2 2

m m
v

 + − + 
 

  and ( )1,v  have the same optimality. 

In previous studies, there are not many studies on cyclic codes with parameter  

( ),u v , 
3 1

2

m

u +
= . In this paper, we study the cyclic code ( ),u v  with the para-

meters which is 13 1 3 7,
2 8

m m+ + + 
 
 

 . We show that the minimum distance of this cyclic  

code is equal to 4 for the given 3 1mn = −  and 3 1 2mk m= − − , according to the 
Sphere Packing bound. It is optimal. Therefore, in the coding theory, we can ob-
tain a new class of ternary cyclic codes whose minimum distance can reach the 
theoretical maximum for the given length and dimension. It can achieve the best 
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error correction effect and ensure that the information is not distorted as much 
as possible in the transmission process. These cyclic codes will have important 
applications in radar, satellite communications and other communication fields. 

2. Preliminaries 

● The notation we use in this paper 
(1) p is prime, and is an odd. Let 3p = . 
(2) , , ,s r m k  are positive integers, m is odd. 
(3) Let SQ be the set of square in 

3m , NSQ be the set of the nonsquare in 

3m . 

(4) In 
3m , we have 

3 1
2

m

α α
+

=  if SQα ∈  and 
3 1

2

m

α α
+

= −  if NSQα ∈ .  

● The p-cyclotomic cosets modulo n, 1mn p= −  
We define the p-cyclotomic coset modulo n containing j as  

{ }2 1, , , , k
jC j pj p j p j−= ⋅ ⋅ ⋅   

and k is the smallest positive integer such that ( )kp j j modn≡ . In this paper, let 
3p = . The cyclic code of length 3 1mn = − . The dimension of this code ( ),u v  is 

determined by k, where vk C= . The dimension of ( ),u v  is equal to ( )n m k− + . 
We now consider the case that 1v C∉  and k m= , so the dimension is equal to 
3 1 2m m− − .  

Theorem 2.1. [8] (Sphere Packing Bound) ( ),pA n d  is the maximum num-
ber of codewords in a code over p  of length n and minimum distance at least 
d, or we use kp  to represent it. Then 

( )
( )0

,
1

n

p
it

i

pA n d
n

p
i=

≤
 

− 
 

∑
 

where ( )1 2t d = −  . 
We can see that by using Sphere Packing Bound, we can get a bound of the 

minimum distance of a cyclic code. Taking the cyclic code to be studied in this 
paper as an example, let 3p = , and when 3 1mn = − , 3 1 2mk m= − − , the min-
imum distance of this cyclic codes can be obtained no more than 4. We obtain 
the upper bound of the minimum distance of this cyclic code. Therefore, we only 
need to prove that the minimum distance of this cyclic code can reach this upper 
bound, and it can be shown that it is optimal. 

The distance d between two codewords ,c c ∈  is defined to be the number 
of coordinates in which ,c c  are different. The minimum distance of a code   
is the smallest distance between distinct codewords. The weight wt(c) of a code-
word c is the number of the nonzero coordinates in c. It has ( ) ( ),d c c wt c c= −  
[9]. If   is a linear code, the minimum distance equal to the minimum weight 
of the nonzero codewords of  . The parity check matrices of a code is a ma-
trices H which satisfied  

T 0Hc =  
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c∈ . The parity check matrices of a code are the generator matrices of its dual 
code. From the definition of dual codes, the parity check matrices of the code 

( ),u v  is define as 

( )

( )

3 12

3 12

m

m

uu u

vv v

π π π

π π π

−

−

 
 
  
 





 

π  is a generator of 
3m
∗ . 

If a linear code   has minimum distance d, there exist two distinct code-
words ,c c ∈ , T 0Hc = , T 0Hc = , satisfied 

1 1 2 2

1 1 2 2

0

0

u u u
d d

v v v
d d

c x c x c x

c x c x c x

 + + + =


+ + + =

  


  


 

,j jc c  is the coordinates of the codeword ,c c , respectively. i j jc c c= − , 

j jc c≠ , j
ix π= , 1 3 1mj≤ ≤ − , 1,2, ,i d=  . 

If the code has minimum distance d, the equations above has solution, if the 
code has not minimum distance d, the equations above has not solution. So we 
can discuss the solution of the equations to find if the code has the codeword of 
weight d. According to the minimum distance 4d ≤  given by the sphere pack-
ing bound, we can prove that 4d = .  

Lemma 2.2. Let ( )3 1 2mu = + , v be an odd, 1v C∉ , and v vC m= = . 
Cyclic code ( ),u v  has parameters 3 1,3 1 2 ,4m m m − − −   if and only if the fol-
lowing equations: 

( )1 1 vvx x+ = ± +                           (1) 

( )1 1 vvx x+ = ± −                           (2) 

( )1 1 vvx x− = ± −                           (3) 

and the equation 

( )1 1 vvx x− = ± +                           (4) 

have no solution in { }3
\ 0,1m . 

Proof. It is clear that the distance of the code cannot be 1. The code ( ),u v  has 
a codeword of Hamming weight 2 if and only if there exist two elements 

1 2 3,c c ∗∈  and two distinct elements 1 2 3
, mx x ∗∈  such that 

1 1 2 2

1 1 2 2

0

0

u u

v v

c x c x

c x c x

 + =


+ =
 

Case 1: 1 2 1c c= =  If 1x SQ∈ , 2x SQ∈ , the first equation becomes to  

1 2 0x x+ = , which is impossible because 1 2,x x  are all SQ. If 1x NSQ∈ ,  

2x NSQ∈ , the first equation becomes to 1 2x x= − , let 2
1x a= − , then we have 

2
2a x− = − , 2

2a x=  but 2x  is a NSQ, which is also impossible. If 1x SQ∈ ,  

2x NSQ∈  or 1x NSQ∈ , 2x SQ∈ , the first equation becomes to 1 2x x= , which 
is also a contradiction..  

Case 2: 1 21, 1c c= = −  If 1x SQ∈ , 2x SQ∈  or 1x NSQ∈ , 2x NSQ∈ , the first 
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equation becomes to 1 2x x= , which is a contradiction. If 1x SQ∈ , 2x NSQ∈  
or 1x NSQ∈ , 2x SQ∈ , the first equation becomes to 1 2x x= − . Taking it into 
the second equation we will get 12 0x = , which is a contradiction. 

Thus it does not have a codeword of Hamming weight 2.  
The code ( ),u v  has a codeword of Hamming weight 3 if and only if there ex-

ist three elements 1 2 3 3, ,c c c ∗∈  and three distinct elements 1 2 3 3
, , mx x x ∗∈  

such that 

1 1 2 2 3 3

1 1 2 2 3 3

0
0

u u u

v v v

c x c x c x
c x c x c x
 + + =


+ + =
                      (5) 

Case 1: 1 2 3 1c c c= = = . In this case, let 1 2 1 2 3 1,y x x y x x= = . It follows from 
(5) that  

 1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + + =


+ + =
                        (6) 

{ }1 2, 0,1y y ∉ . If 1 2,y y SQ∈  or 1 2,y SQ y NSQ∈ ∈ , (6) becomes to  

( )1 11 1 vvy y+ = ± +  

If 1 2,y y NSQ∈  or 1 2,y NSQ y SQ∈ ∈ , (6) becomes to  

( )1 11 1 vvy y+ = ± −  

Case 2: 1 2 31, 1c c c= = = − . Similarly, we arrive at  

 1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + − =


+ − =
                        (7) 

{ }1 2, 0,1y y ∉ . If 1 2,y y SQ∈  or 1 2,y SQ y NSQ∈ ∈ , (7) becomes to  

( )1 11 1 vvy y− = ± −   

If 1 2,y y NSQ∈  or 1 2,y NSQ y SQ∈ ∈ , (7) becomes to  

( )1 11 1 vvy y− = ± +  

So if the four equations have no solutions in 
3m
∗ , we get 4d ≥ , according to 

the Sphere Packing bound, the minimal distance of any linear code with length 
3 1m −  and the dimension 3 1 2m m− −  should be less than or equal 4. Hence 

4d = .                                                          □ 
The following Lemma will be used in the sequel of the proof. 
Lemma 2.3. [10] Let ( )f x  be a irreducible polynomial with degree r over 

p . If ( )f x  has a root in mp
 , then |r m .  

3. A Class of Optimal Ternary Cyclic Codes 

In this section, we construct a class of optimal ternary cyclic codes ( ),u v  with 
parameters 3 1,3 1 2 ,4m m m − − −  .  

Theorem 3.1. Let m is odd, 3m ≥ , ( )3 1 2mu = + , ( )13 7 8mv += + .  
( )3 mod 4m ≡ , 9 ,  5m m  . The cyclic code ( ),u v  is an optimal ternary cyclic 

code with parameters 3 1,3 1 2 ,4m m m − − −  .  
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Proof. It is easy to prove that the minimal distance of the code 2d ≥ . By 
lemma 2.2 we can know that it does not have a codeword of Hamming weight 2, 
which means 3d ≥ . Now we prove that the minimal distance of the code 

4d = . 
Now, we prove that the code has no codewords of Hamming weight 3. It has a 

codeword of Hamming weight 3 if and only if there exist three elements  

1 2 3 3, ,c c c ∗∈  and three distinct elements 1 2 3 3
, , mx x x ∗∈  such that  

 1 1 2 2 3 3

1 1 2 2 3 3

0
0

u u u

v v v

c x c x c x
c x c x c x
 + + =


+ + =
                       (8) 

Case 1: 1 2 3 1c c c= = = . In this case, let 1 2 1y x x= , 2 3 1y x x=  It follows 
from (8) that 

1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + + =


+ + =
                         (9) 

{ }1 2, 0,1y y ∉ . 

Now we consider the following four cases. 
Case 1.1: When 1 2,y y SQ∈ , (9) follows to  

 1 2

1 2

1 0
1 0v v

y y
y y
+ + =

 + + =
                       (10) 

The Equation (10) leads to  

( )1 11 1 vvy y+ = +   

Let 2
1y a= , Then we have  

( )
1 13 7 3 7

24 81 1
m m

a a
+ ++ +

+ = +   

By taking the eight power of both sides of the equation, we can get  

( )
1

1
8

3 7 3 7241 1
m

m

a a
+

++
+ 

 + = +
 
 

  

If a SQ∈ , let 2a t= , and if t also SQ∈ , we have  

( )
1

1
8

3 73 74 21 1
m

m

t t
+

+ +
+  

 + = +
 
 

 

It becomes to  

( ) ( )10 84 51 1t t+ = +  

Expand it, we can get  
36 35 30 25 20 15 10 5 42 2 2 0t t t t t t t t t+ + + + + + + + =  

Because 0t ≠ , we have  
32 31 26 21 16 11 62 2 2 1 0t t t t t t t t+ + + + + + + + =  

It can be factorized over 3  by Magma to  
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( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

− + − + + + − + − + + + −

× − − − + − =
 

if 1t = , it means 1 1y = , is impossible, and by lemma 2.3, we get it has no root 
in { }3

\ 0,1m .  
If a SQ∈ , let 2a t= , and if t NSQ∈ , we have  

( ) ( )10 84 51 1t t+ = −  

By following the same steps, we get  
32 31 26 21 16 11 6 1 0t t t t t t t t− − − − − − − + =  

It can be factorized over 3  by Magma to  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

+ + + + − − − − + − + + +

× + + − + + =
 

By the same reason, it has no root in { }3
\ 0,1m .  

If a NSQ∈ , 2a t= −  and t SQ∈  or t NSQ∈ , it is similar to the above case, 
we omit it here.  

Case 1.2: When 1 2,y NSQ y NSQ∈ ∈ , (8) follows to  

1 2

1 2

1 0
1 0v v

y y
y y
+ + =

 + + =
                       (11) 

The Equation (11) leads to  

( )1 11 1 vvy y+ = − −   

Let 2
1y a= − , Then we have  

( )
1 13 7 3 7

24 81 1
m m

a a
+ ++ +

− = − +   

By taking the eight power of both sides of the equation, we can get  

( )
1

1
8

3 7 3 7241 1
m

m

a a
+

++
+ 

 − = +
 
 

  

If a SQ∈ , let 2a t= , and if t also SQ∈ , by the similar steps, we directly ob-
tain  

( ) ( )10 84 51 1t t+ = −  

As before, with the help of Magma, we get the same equation  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

+ + + + − − − − + − + + +

× + + − + + =
 

if 1t = − , it means 1 1y = − , but 1 1y = −  is not the solution of ( )1 11 1 vvy y+ = − − , 
and by lemma 2.3, we get it has no root in { }3

\ 0,1m   
If a SQ∈ , let 2a t= , and if t NSQ∈ , we have  
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( ) ( )10 84 51 1t t+ = +  

By following the same steps, we get  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

− + − + + + − + − + + + −

× − − − + − =
 

By the same reason as before, it has no root in { }3
\ 0,1m . 

If a NSQ∈ , 2a t= −  and t SQ∈  or t NSQ∈ , it is similar to the above case, 
we omit it here.  

Case 1.3: When 1 2,y NSQ y SQ∈ ∈ . It is similar as before, we omit it here.  
Case 1.4: When 1 2,y SQ y NSQ∈ ∈ . It is similar as before, we omit it here.  
Case 2: 1 2 31, 1c c c= = = − . By the similar calculation as Case 1, we can prove 

that the equation  

1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + − =


+ − =
                       (12) 

also has no solution in { }3
\ 0,1m . We omit the details of the proof. 

By the Lemma 2.2, we have finished the proof.                        □ 
Example 
Let 3m = , ( )3 1 2mu = + , ( )13 7 8mv += + . Let α  be the generator of 

3m
∗  

with 3 2 1 0α α+ + = . Then ( ),u v  is a ternary cyclic code with parameters [26, 
20, 4] and generator polynomial 6 5 4 32 2x x x x+ + + + .  

4. Conclusions 

In this paper, based on the Sphere Packing Bound, we show that for the fixed 
length and dimension, with the help of factorization by Magma, by discussing 
the solutions of some correlative equations on 

3m , the ternary cyclic code  
13 1 3 7,

2 8

m m+ + + 
 
 

  has the minimum distance 4, according to the Sphere Packing 

bound. It is optimal. 
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