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Abstract 
We discuss formulas and techniques for finding maximum-likelihood esti-
mators of parameters of autoregressive (with particular emphasis on Markov 
and Yule) models, computing their asymptotic variance-covariance matrix and 
displaying the resulting confidence regions; Monte Carlo simulation is then 
used to establish the accuracy of the corresponding level of confidence. The 
results indicate that a direct application of the Central Limit Theorem yields 
errors too large to be acceptable; instead, we recommend using a technique 
based directly on the natural logarithm of the likelihood function, verifying 
its substantially higher accuracy. Our study is then extended to the case of es-
timating only a subset of a model’s parameters, when the remaining ones 
(called nuisance) are of no interest to us. 
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1. Introduction 

The mth-order autoregressive models (see [1]) are flexible enough to describe a 
large assortment of stationary time-series data, thus enabling us to make reasona-
bly reliable predictions of future observations. This rests on our ability to accu-
rately estimate parameters of these models, based on a given set of past observa-
tions (see [2]); we also need to establish the model’s smallest order capable of 
achieving adequate agreement with available data. 

We start by reviewing basic formulas for constructing the likelihood function 
(LF) of any such model, whose maximization then results in maximum-likelihood 
(ML) estimates (these are the actual numerical values thus obtained) of the mod-
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el’s parameters (note that the same MLEs, seen as random variables, i.e. func-
tions of yet-to-be taken observations, are called estimators). We then proceed 
with an asymptotic theory of the estimators’ sampling distribution (see [3]), 
and a way of constructing an accurate confidence interval (region) for one (or 
more) of the parameters; this requires abandoning the direct approach suggested 
by Central Limit Theorem and using the sampling distribution of ln LF  instead. 
We also design tests to decide whether it is possible to reduce the number of 
the model’s parameters without adversely affecting its predictive power. Final-
ly, we modify the technique to cover the possibility of estimating only a subset 
of the model’s parameters while ignoring the rest (known as nuisance para-
meters). 

2. Autoregressive Model 

In this model, the ith observation (denoted iX ) is generated by a linear combi-
nation of the last m observations and an extra term iε , independent of these 
and Normally distributed with the mean of zero and standard deviation σ  
( ( )0,σ  in our notation), i.e. by 

( ) ( ) ( )1 1 2 2i i i m i m iX X X Xµ α µ α µ α µ ε− − −= + − + − + + − +       (1) 

where m is a small integer. When 1m =  or 2, the model is called Markov or 
Yule respectively; in all other cases, we refer to it as the AR(m) model. We study 
it in its stationary mode only, meaning that the process has equilibrated before 
we start observing it (this implies, among other things, that all iX  have the 
same Normal distribution). The value of the µ  parameter is arbitrary, σ  is 
positive, while the α  values must meet (for the process to be stationary) three 
specific inequalities, introduced shortly (see [4]). 

Note that, after standardizing the iX  by  

: i
i

XZ µ
σ
−

=                         (2) 

(1) simplifies to 

1 1 2 2i i i m i m iZ Z Z Zα α α ε− − −= + + + +                 (3) 

where ( )0,1iε ∈  . 

2.1. Variance and Serial Correlation 

One can readily establish that the joint distribution of all the iX  ( 1,2, ,i n=  ) 
random variables is multivariate Normal with the same mean of μ and a com-
mon variance which equals to 2σ  further multiplied by a function (5) of the α 
parameters. The (serial) correlation coefficient between iX  and i kX +  is the 
same regardless of the value of i (this follows from being stationary); we denote 
it kρ  (note that k kρ ρ− = ). 

To find the first m values of ρ , we need to solve the following set of linear 
equations (a routine exercise) 

1
for 1

m

k j k j
j

k mρ α ρ −
=

= ≤ ≤∑                    (4) 
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with the understanding that 0 1ρ = , while the common variance is 

1

1
1 m

k k k

V
α ρ

=

=
−∑

                      (5) 

The remaining ρ  values (we need to go up to 1nρ − ) then follow from the 
following recurrence formula  

1
when

m

k j k j
j

k mρ α ρ −
=

= >∑                   (6) 

while the ( )th,k   element of the (n by n) variance-covariance (VC) matrix (which 
we denote by  ) of the iX ’s equals to 2

kVσ ρ − . 
Note that   ,k Vρ  and   remain the same for the iZ  sequence, while σ is 

then equal to 1.  
These formulas are all well established in existing (and extensive) literature; it 

should suffice to quote [5] as our reference. 

2.2. ML Estimation 

To construct the corresponding multivariate probability density function (PDF), 
which becomes the likelihood function (denoted LF) when the iX ’s are re-
placed by actual observations, we need the inverse of   and also its determi-
nant. There is a general formula for elements of the inverse; getting the deter-
minant is more difficult (note that symbolic computation on large matrices is 
practically impossible). Nevertheless, there is a way of bypassing this problem 
(see [6]) by finding the PDF of 1 2, , , mZ Z Z , 1 2, , ,m m nε ε ε+ +  

  first (a simple 
exercise, since symbolic inversion and determinant computation of an m by m 
matrix becomes feasible) and then transforming it to get the PDF of the original 
set (equally simple: substitute (2) and divide by nσ ); this yields ln LF  of the X  

sequence (while ignoring the constant ( )ln 2
2
n

− π  term), namely 

( ) ( ) ( )
2

1 1
, 1 1 1, ln det

ln
2 2

m n m
i j i j i ji j i m ji j

Z Z Z Z
n

α
σ

− −
−= = + =

+ −
− − +
∑ ∑ ∑ 

  (7) 

where   is now the VC matrix of only the first m terms of the iZ  sequence; 
the second sum is the standard Normal PDF of the ε  subsequence, after solv-
ing (3) for iε  and substituting. 

As an example, we select (rather arbitrarily) 3m = , 50µ = , 0.6σ = , 1 2.7α = , 

2 2.52α = −  and 3 0.81α =  and generate a random sequence of 300 consecutive 
and equilibrated observations using the corresponding AR(3) model of (1), and 
the following Mathematica code. 

 

 
 

The first line generates a sequence of 100n +  independent values from the 
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( )0,0.6  distribution—the iε  of (1); the second line (and its continuation) 
converts them to the iX  of the same formula, using 3m = . The extra 100 ob-
servations were needed to allow the process to equilibrate (the first 100 iX ’s are 
then deleted); the last line displays the resulting AR(3) sequence in Figure 1. 

Using the generated sequence as data from an AR(3) model whose five para-
meters are unknown and to be estimated, we proceed to 

• solve (4) for the first 3 (m in general) ρ’s, 
• compute V using (5), 
• and the corresponding inverse of the   matrix (denoted A), 
• standardize the observation in the manner of (2), 

• build the 2
n

−  multiple of (7) while excluding its last term (the result is 

called L). 
This is done (one line for each bullet) by the following continuation of the 

previous computer program: 
 

 
 

In addition to computing L we have also printed V, as its denominator pro-
vides a useful set of if-and-only-if conditions for the process to be stationary (all 
of its three factors must be positive). 

Now, we need to either maximize ln LF  (a difficult task), or make each of its 
derivatives (with respect to every parameter) equal to zero and solve the corres-
ponding set of normal equations; the latter approach is easier, faster and more 
accurate; it involves the following steps: 

• compute the five ( 2 m+  in general) derivatives of L (the first two lines of 
the code below); multiply each by σ2, thus making them free of σ (with the ex-
ception of the σ derivative which, when multiplied by σ3 becomes linear in σ2); 
denote the results dμ, dσ and dα (the last being a set of m expressions), 

 

 
Figure 1. Randomly generated data based on AR(3) model. 
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• similarly (line three), differentiate the extra 
( )1ln det
n

−
 term of (7) with 

respect to each α parameter, denoting the answer dV (a collection of m functions 
of only the α parameters), 

• set the initial value of μ to 1
n

ii X n
=∑ , of σ (arbitrarily) and of each α to 0, 

and start the following iteration (performed by Mathematica’s routine ite): 
• solve 

d dV
µ α

α =                             (8) 

for a new, updated set of α values (the second line of ite; its first line is only prepa-
ratory—note its continuation) where d

µ
α  implies that dα is evaluated using the 

current value of μ, while dV
α  is similarly evaluated using the current set of α val-

ues; the corresponding equations for the new α’s are thus linear and easy to solve, 
• solve 

0d
α

µ =                              (9) 

to get a new value of μ, where the evaluation is now done using the updated α’s 
(third line of ite); the equation is linear in μ and thus trivial to solve, 

• finally, solve  

, 0d
µ α

σ =                            (10) 

for σ, where the evaluation is done using the new values of both μ and α (fourth 
line of ite; the final line just combines the updated values of μ, σ and α’s into a 
single output); the equation is linear in σ2 (its positive root yields the updated σ), 

• repeat the iteration till the new values of the five parameters no longer change 
(a total of five iterations normally suffice to reach an adequate accuracy); this is 
done by the last line of the subsequent code, which also returns the resulting ML 
estimates.  

To do this, we need to further extend the previous Mathematica code by: 
 

 
 

thus obtaining the ML estimates of μ, σ and the three α’s (in that order). 
An interesting observation: the last term of L (whose numerator is a sum of 

squares of differences between predicted and actual values of the Z sequence) 
always results in 1 when evaluated using the ML estimates returned by sol; this 
can serve as a verification of the program working correctly. 
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2.3. Asymptotic Distribution 

The general version of central limit theorem (CLT) tells us that the sampling 
distribution of ML estimators is approximately Normal, with the asymptotic 
means equal to the parameters’ true values. To get the distribution’s VC matrix, 
we utilize the theory of Fisher information matrix and 

• divide ln LF−  by n, getting 

1 1
2

2

0 1 0

1ln
2

n n km m
i i

m k
i i i k

j j j k
j k j

Z Z Z
n n

σ α α α= =

− −
+

+
= = =

+ +∑ ∑∑ ∑ ∑           (11) 

where 0 1α = − ; this follows from (7), 
• find the matrix of second derivatives (with respect to each pair of parameters) 

of this expression, 
• find the expected value (indicated by  ) of each element of this matrix, re-

membering that 

( ) ( )0 and ,i i i k kZ Z Z Vρ+= =                  (12) 

• take the corresponding n →∞  limit, 
• invert the resulting matrix, 
• and further divide by n.  
Leaving out further details, this yields the following results: ML estimators of 

μ and σ are, asymptotically (i.e. when n is large) independent of each other and 
of the α estimators, with standard deviation given by 

1

and
21 m

kk

n
n

σ σ
α

=
−∑

                     (13) 

respectively, while the α part of the asymptotic VC matrix is 

( )
( )

22
2 1 21

2
1 2 2

2
3 1 2 3 2 1 3

2 2 2
1 2 3 1 2 3 1 2 3

2
2 1 3 1 2 3 3

1 11 , / and
1 1

1
1 /

1

n
n

n

α α αα
α α α

α α α α α α α
α α α α α α α α α
α α α α α α α

 − − −−
 − − − 

 − − − − −
 − − + − − − − 
 − − − − − 

           (14) 

in the case of Markov ( 1m = ), Yule ( 2m = ) and AR(3) model, respectively. 
Note that each VC matrix is both symmetric and slant-symmetric (i.e. the same 
when flipped with respect to either diagonal). They have been found by the first 
line of the following Mathematica code (by specifying the value of m first). 

When executed at the end of the last program (where m was already set to 3), 
the second line establishes the standard error (using (13) and (14), with parame-
ter estimates replacing their true values) of each of the previously computed ML 
estimates; note that they are all within two standard errors of their true values. 
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Using these results, we can then compute the standard error of the expected 
value of the next (yet to happen) observation, established based on (1), the last m 
observations, and our estimates of μ and the α’s. 

3. Confidence Regions 

To construct a confidence region (CR) for true values of all 2m +  parameters 
of an AR(m) model, we could directly use their asymptotic Normal distribution 
of the previous section (see [7] [8] and [9]). Nevertheless, it is more accurate (in 
terms of establishing the correct level of confidence), and also notably easier, to 
utilize the theorem which states that  

true2 ln 2 lnMLELF LF−                     (15) 

has, to a good approximation, the chi-squared distribution with 2m +  degrees 
of freedom (notation: 2

2mχ + ). Here, the first term of (15) involves the maximum 
value of ln LF  achieved by the ML estimates, while the second term assumes 
evaluating the same ln LF  using the true values of the parameters. The proof of 
a similar statement can be found in [10]; the necessary modifications are quite 
simple and need not be elaborated on. The theorem’s accuracy is demonstrated 
in Figure 2, which compares the empirical histogram of 105 randomly generated 
values of (15) to the PDF of 2

3χ , using a Markov model with 10µ = , 1.7σ = , 

1 0.9α =  and 300n = . 
Even though the agreement is not quite perfect (it quickly improves with in-

creasing n), both the accuracy and simplicity of this approach greatly outweigh 
those of CLT (Figure 6 demonstrates the error of the basic Normal approxima-
tion: it is far less accurate than what we see in Figure 1). 

Utilizing this asymptotic distribution, we then make (15) equal to a selected 
critical value of 2

3χ ; solution to this equation yields the CR boundaries. To 
show how it is done in the case of the above Markov model, we run the program 
of our original example while changing its first three lines to 

 

 
 

This returns a set of data displayed in Figure 3 (the individual observations 
have been connected) and, after executing the program’s next two segments, also 
the corresponding three ML estimates (saved in sol). 

Computing L and res by the previous routines, and adding the following two 
lines of code (the first evaluating (15), the second doing the plotting) 

 

 
 

produces the desired CR, displayed in Figure 4 (in Mathematica, it can be rotated 
and observed from any direction). 
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Figure 2. Empirical and theoretical distribution of (15). 

 

 
Figure 3. Randomly generated data from Markov model. 

 

 
Figure 4. 95% confidence region for Markov-model parameters. 

3.1. Nuisance Parameters 

We have already shown that the three ML estimators of Markov-model parame-
ters are asymptotically independent; this enables us to find a confidence interval 
(CI) for any one of these (we call it the pivotal parameter) by treating the other 
two as nuisance parameters (see [11]). The reference indicates that changing (15) 
to 
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mixed2 ln 2 lnMLELF LF−                     (16) 

where “mixed” implies using ML estimates for the nuisance parameters and the 
true value of the pivotal one) makes (16) into a 2

1χ  type of random variable. 
Using parameters of the Markov example of the last section, we display, in 

Figure 5, the empirical and theoretical PDF of (16), while considering μ and σ to 
be nuisance parameters and 1α  the pivotal one; the agreement is nearly perfect. 

Let us contrast this result with similar comparison of the actual (empirical) 
distribution of the ML estimator of 1α  with its asymptotic (CLT-based) limit 
(Normal, with the mean of 0.9 and variance, based on (14), of ( )21 0.9 300− ), 
which is displayed in Figure 6. This time the error of the approximation is clearly 
inacceptable; using it for constructing CI for the true value of 1α  is not rec-
ommended.  

 

 
Figure 5. Empirical and asymptotic PDF of (16); nuisance parameters are μ and σ, m = 1. 

 

 
Figure 6. Empirical distribution of α1, versus its Normal approximation. 
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To accurately compute boundaries of a CI for 1α , we must thus return to (16) 
and utilize its fast convergence to 2

1χ  distribution. First, we find ML estimates 
of all parameters (already done in previous section), then add the following two 
lines of code (the first line evaluating (16), the second one making it equal to the 
80% critical value of 2

1χ  and solving this equation for 1α ): 
 

 
 

We then claim, with an 80% confidence, that the true value of 1α  lies be-
tween the resulting two roots. 

Note that the theory allows us to designate any set of parameters as pivotal 
(the rest are then the nuisance parameters); when the two sets of estimators are 
asymptotically independent, the distribution of (16) is approximately 2

pχ , where 
p is the number of pivotals. As soon as there is a non-zero correlation between 
the two groups, the distribution of (16) becomes substantially more complicated 
and, in the case of AR(m) models, practically impossible to deal with. The tech-
nique can thus be applied only to situations when all α parameters are either all 
pivotal or all nuisance, as demonstrated by our next example. 

This time, we generate data from Yule model with 10µ = , 2σ = , 1 1.75α = , 

2 0.9α = − , using 100n = , by the usual 
 

 
 

which produces the sequence of Figure 7. 
We then run the common part of the program to find the four ML estimates, 

saving them under the name res. Executing the following two extra lines (the 
first line evaluating (16), the second one making it equal to the 95% critical value 
of 2

2χ , solving for 1α  and 2α , and displaying the resulting contour): 
 

 
 

we get the 90% CR of Figure 8 for the true values of 1α  and 2α , while consi-
dering μ and σ as nuisance parameters. 

This is based on our previous assertion that the distribution of (16) is, in this 
case, approximately 2

2χ ; to check the accuracy of this statement, we display the 
empirical version of this distribution (using the same Yule model and 105 se-
quences of 100 consecutive observations) together with the PDF of 2

2χ  in Fig-
ure 9; the agreement is again practically perfect. 
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Figure 7. Randomly generated data from Yule model. 

 

 
Figure 8. 90% confidence region for α1 and α2. 

 

 
Figure 9. Empirical and theoretical PDF of (16); nuisance parameters are μ and σ, m = 2. 
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3.2. Establishing Model’s Order 

Until now, we always assumed that the value of m (the order of the model) is 
known; this may normally not be the case, so the question is: how do we test 
whether an AR(m) model has the correct number of α parameters to be an ade-
quate representation of a given set of consecutive observations? The obvious idea 
is to see if, by extending the model by an extra 1mα +  parameter, the correspond-
ing increase in the maximum value of the ln LF  function is statistically signifi-
cant. This can be easily tested by using an extension of the last theorem: when 
the data does follow an AR(m) model, the following difference  

12 ln 2 lnm mLF LF
+

−                       (17) 

(where the subscript indicates the number of α parameters used to maximize 
ln LF ) has 2

1χ  distribution. 
We verify this by yet another Monte-Carlo simulation of 105 sequences gener-

ated from the AR(3) model of our first example, displaying empirical histogram 
of the resulting (17) values, together with the PDF of 2

1χ , in Figure 10. The 
agreement indicates that the latter distribution is again an excellent approxima-
tion of the former. 

Returning to the original example; we have already computed ML estimates of 
the five parameters, which are easily converted into the corresponding value of 
ln FL . We then need to use the same data and run the same program with 4m = , 
similarly converting the resulting six estimates to a new (always higher) value of 
ln LF . Evaluating (17) and substituting the result into the CDF of 2

1χ  (we let the 
reader come up with the corresponding code) yields 0.111; this, being less than 
95%, tells us that the data is adequately described by the original AR(3) model. 

 

 
Figure 10. Empirical and asymptotic PDF of (17); m = 3. 
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On the other hand, trying to fit a Yule model ( 2m = ) to the same data yields 
substantially higher difference between 2ln LF  and 3ln LF , resulting (using 
the same example) in a CDF value indistinguishable from 1 (the corresponding 
P-value is of the order of 10−61), indicating that no Yule model can properly de-
scribe this data. 

We mention in passing that, to test the same 3 0α =  hypothesis, we could 
resort to a less sophisticated approach of using the asymptotic distribution of the  

ML estimator of 3α  (Normal, with the mean of 0 and variance equal to 1
n

,  

under the null hypothesis), getting a similarly small P-value of 10−40; this test is 
not only less accurate (the Normal approximation has a large error, as we have 
seen) but also less sensitive than the one based on (17). 

4. Conclusions 

In this article, we have provided a variety of techniques for estimating parame-
ters of an AR(m) model, including construction of confidence intervals/regions 
and testing various hypotheses regarding parameter values and the model’s or-
der. We have used Monte Carlo simulation extensively to find empirical distri-
butions of various sample statistics and explore the accuracy of each proposed 
approximation. This led us to conclude that the traditional use of CLT and of the 
corresponding Normal distribution is to be discouraged due to the resulting large 
errors. On the other hand, utilizing differences between various ln LF  functions 
and the corresponding 2χ  distribution yielded very accurate results even with 
relatively small sets of past observations. 

There are several directions to pursue in terms of potential future research, 
e.g.: investigating how flexible AR(m) models are to describe, to a sufficient ac-
curacy, general stationary stochastic processes (such as moving averages) that do 
not necessarily originate from (1); after all, real data do not exactly follow any 
mathematical model—these function only as useful approximations. Another 
possible extension of the current research would be to similarly deal with ARMA 
models; here, one would need to find some practical way of inverting (and find-
ing determinants) of large symbolic matrices, essential for computing the cor-
responding ln LF  function. 
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