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Abstract 
Uemura [1] discovered a mapping formula that transforms and maps the 
state of nature into fuzzy events with a membership function that expresses 
the degree of attribution. In decision theory in no-data problems, sequential 
Bayesian inference is an example of this mapping formula, and Hori et al. [2] 
made the mapping formula multidimensional, introduced the concept of 
time, to Markov (decision) processes in fuzzy events under ergodic condi-
tions, and derived stochastic differential equations in fuzzy events, although 
in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 
Fuzzy Events are transformed and mapped onto the state of nature by a qua-
dratic mapping formula that simultaneously considers longitudinal and trans-
verse ambiguity, the joint stochastic differential equation representing these 
two ambiguities can be applied to possibility principal factor analysis if the 
weights of the equations are orthogonal. This indicates that the type 2 fuzzy is 
a two-dimensional possibility multivariate error model with longitudinal and 
transverse directions. Also, when the weights are oblique, it is a general pos-
sibility oblique factor analysis. Therefore, an example of type 2 fuzzy system 
theory is the possibility factor analysis. Furthermore, we show the initial and 
stopping condition on possibility factor rotation, on the base of possibility 
theory. 
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1. Introduction 

Okuda et al. [3] constructed the decision rule under the fuzzy environment; how-
ever, this is an example of Bayes Decision Rule. Otherwise, Uemura [1] [4] [5] 
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and Hori et al. [2] constructed another decision making on vague events. This 
decision-making is a special case for Bayes Decision Theory in No Data problem. 
In this paper, we obtain a mention of the system theory to possibility factor rota-
tion according to the type 2 vague events. 

Uemura [1] found a mapping formula that maps and transforms the state of 
nature in no information problem, (a no-data problem), in which no observable 
information can be observed in Bayesian statistics, to a fuzzy event by a member-
ship function representing its degree of attribution. Note that the no-data prob-
lem can be attributed to Bayesian statistics, where the causality law between the 
state of nature and the observed information is uniform. Now, the fuzzy in this 
paper is sometimes called Vague to distinguish it from the Fuzziness of Zadeh 
[6]. Therefore, the extension of our study is named Vague Sets and Theory (Hori, 
Takemura, and Matsumoto [2]). Zadeh’s fuzzy deals with vertical ambiguity, e.g., 
possibility interval type regression modeling, while our Vague deals with hori-
zontal ambiguity, e.g., α-level cut of fuzzy sets. Also, Zadeh’s modeling is con-
ceptually very close to the interval-type modeling of subjective Bayesian theory, 
and the rotation based on our quadratic mapping formula is very relevant for 
factor analysis or independent component analysis (Hori [7]). First, Uemura [1] 
defined a mapping function from the state of nature for fuzzy events. Next, Hori 
et al. [2] showed that this definition is a formula. When the formula for the 
mapping function for fuzzy events is adapted to the theory of utility functions 
and developed into a decision-making method based on the utility function in 
fuzzy events, it can be applied to the case of the two-choice question (Uemura 
[1]). This is because a nondiscriminatory state in decision withholding arises, 
and Hori et al. [2] imposed an ergodic condition between the previous and next 
nondiscriminatory states and developed it into a Markov (decision) process in 
fuzzy events and derived a stochastic differential equation of it in fuzzy events. 
In this paper, Type 2 Fuzzy Events in which both horizontal and vertical ambi-
guity are considered at the same time, are discussed. Here, the quadratic map-
ping formula transforms a non-mapping function by relating it to two mapping 
functions and provides an orthogonal rotation to the function after the quadratic 
transformation. For Type 2 Fuzzy Events, orthogonal rotations from 0 to 180 
degrees can be interpreted as cases where the longitudinal possibility error mod-
el and the transverse necessity error model are considered. The orthogonal rota-
tion from 180 to 360 degrees can be interpreted as the case where the longitu-
dinal necessity error model and the transverse possibility error model are taken 
into account. Here, what is measured by the possibility and necessity measures 
can be regarded as a kind of information content, and the possibility main factor 
rotation is provided to increase this information content. Note that Type 2 Fuzzy 
Events are attributed to a multidimensional possibility multivariable error model 
that takes into account the possibility and necessity of the longitudinal variable 
error model and the transverse variable error model. Furthermore, we show the 
initial and stopping conditions on possibility general factor rotation. 
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2. Mapping Formulas in Fuzzy Events 

Uemura [1] defined the formula for mapping a function ( )f x  by ( )1g x  as a 
formula (1). However, the definition is provided as a system theory, while as an 
example of application, a two-choice question is provided with respect to deter-
minism. Later, it is shown that this definition is a formula (Hori, Takemura, and 
Matsumoto [2]) 

( ) ( ) ( )( )1
1 1SUPy f x g x g f y−

= =                     (1) 

The stochastic differential equation for a fuzzy event that represents the tran-
sition of the nondiscriminatory state regarding the decision withholding in the 
two-choice question based on the state of nature in sequential Bayesian inference 
is formulated as in Equation (2), and the Markov process in the fuzzy event is 
obtained as its solution as in Equation (3). The pole of the S-Markov process in 
the fuzzy event is the mapping formula for the fuzzy event in Equation (1). Here, 
ergodic conditions between each natural state are assumed. In addition, the 
monotonicity of the function f is a condition because it requires the existence of 
the first rank of the inverse function 1f −  (Hori, Takemura, and Matsumoto 
[2]). 

( )( ) ( )( )1 1d , ,
d t t t t t
F b t f y t f y W
t

σ− −= + ⋅                 (2) 

It is assumed that b is the mean term, σ the variance term, and W the error 
term in the equation of state for normal events. 

( )( )( )1 1
1,t tF L t g f y− −=                       (3) 

Here, L is the transition matrix of the Markov process of normal events. 
Although this formula is subject to strict condition between Ergodic Condi-

tions and monotonicity conditions of the function f, in natural states, it is able to 
be applied to the Go-Reserved Judgement Problem in the no-data problem, and 
is applicable to fuzzy stochastic differential equations for the transition of non-
discriminatory states concerning decision withholding in sequential Bayesian 
inference.  

3. A Simultaneous Stochastic Differential Equation for Type  
2 Fuzzy Events 

Hori [7] [8] formulated the quadratic mapping formula as in Equation (4). 

( )
( )( )

( ) ( )( )( )
1

1

1 1
2 2 1SUPy f x

Z g f y

g Z g g f y
−

− −
=
=

=                   (4) 

Here, Equation (4) is a quadratic mapping formula that maps Equation (1), once 
again, by ( )2g x . The special property of the quadratic mapping formula is that 
it inverts 180 degrees when the mapped functions are equivalent, as in Equation 
(5). This indicates that this is a type of principal factor analysis. In statistical 
principal factor analysis, a 180-degree rotation requires two rotations of every 90 
degrees. However, note that the quadratic mapping formula reverses 180 degrees 
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in one rotation. 

( ) ( ) ( )1
1 2if theng g x f y−⋅ = ⋅ =                 (5) 

In this paper, the concept of time t into this quadratic mapping formula and 
derive a type 2 Markov process and its simultaneous fuzzy stochastic differential 
equation, albeit inverse. 

First, if the transition matrix is L, the Markov process tD  is formulated as 
follows. (Takahashi [9]) 

( ),t tD L t x=                            (6) 

The type 1 fuzzy Markov process, which introduces the concept of fuzzy events, 
is derived in Equation (7), and the type 2 fuzzy Markov process is derived in 
Equation (8). 

( )( )1
1,t tF L t g x−=                         (7) 

( )( )( )
( )( )

( )( )( )( )( )
1

1

1
2

,

1 1 1 1
2 1

SUP ,

, ,

t
t t

F t
y L t g f x

t

F L t g x

L t L t g g f y

−

−

=

− − − −

=

=
                (8) 

Here, the Markov process in Equation (8) is derived from the following simulta-
neous fuzzy stochastic differential equations. 

Equation (9) represents the change in the x-axis direction, and Equation (10) 
represents the change in the y-axis direction. tx  is a fuzzy variable in the hori-
zontal direction and follows the fuzzy stochastic differential equation in Equa-
tion (9), and tZ  is a fuzzy variable in the vertical direction and follows the fuzzy 
stochastic differential equation in Equation (11). 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 1
1 1 1 1 1

2 2 2 2 2

d , , (9)
d
d , , (10)
d

t t t t t t t

t t t t t t t

Z m t g f Z t g f Z W
t
x m t g f x t g f x W
t

σ

σ

− − = + ⋅

 = + ⋅


 

Here, ( )t t tZ f x= , so Equation (10) is equivalent to Equation (11). 

( )( ) ( )( )2 2 2 2 2
d , ,
d t t t t t
Z m t g Z t g Z W
t

σ= + ⋅                (11) 

In the simultaneous fuzzy stochastic differential Equations (9) and (10), when 
the sum of the weights of each equation is 1, the type 2 Markov process of 
Equation (8) is derived. This means that the fuzzy event is a direct sum, which is 
closely related to the main factor analysis in Section 5. 

4. Type 2 Possibility Principal Factor Rotation 

Type 2 Fuzzy Events simultaneously encompass a two-dimensional necessity va-
riable error model that considers longitudinal and transverse possibility errors. 
The 180-degree orthogonal rotation is the case of Equation (5), where possibility 
theory is applied to these possibility variable error models. Note that since both 
longitudinal and transverse fuzzy variables are considered, possibility theory is 
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able to be applied. In this paper, particular attention to the measure of the size 
relationship of the fuzzy set is paid. Here, the possibility measure (POS) and the 
necessity measure (NES) are defined as followed (D. Dubois and H. Parade [10]). 
In addition, M and N are assumed to be Orthogonal Fuzzy Events with ortho-
gonal degrees of attribution. 

( ) ( ) ( )( )POS SUP min ,M NU V
M N U Vµ µ

≥
≥               (12) 

( ) ( ) ( )( )POS SUPinf min ,M NV UU
M N U Vµ µ

≥
>             (13) 

( ) ( ) ( )( )NES inf SUP max 1 ,M NU V U
M N U Vµ µ

≤
≥ −          (14) 

( ) ( ) ( )( )NES 1 SUP min ,M NU V
M N U Vµ µ

≥
> −           (15) 

The possibility principal factor rotation matrix for type 2 fuzzy is as follows: 

( ) ( )
( ) ( )

1

1

POS NES
NES POS

t t

t t

x M N M N x
Z M N M N Z

+

+

 ≥ >   
=     > ≥    

          (16) 

In particular, note that in (16), when the possibility measure is 1, it is the 
identity matrix, and when the necessity measure is 1, it is the inversion matrix. 
Therefore, the possibility main factor rotation matrix in Equation (16) indicates 
that the sum of the weights of Equation (9) and (10) in the simultaneous fuzzy 
stochastic differential equation is 1 (Hori [7] [11]). 

5. Initial and Stopping Condition in Type 2 Possibility  
Principal Factor Rotation 

The initial condition and stopping condition for a normal Markov process are 
shown in [12]. Since we deal with horizontal ambiguity, we introduce the con-
cept of quadratic possibility theory to the rotation according to a complex Mar-
kov process. The initial and stopping condition are shown in Equation (17), (18) 
and (19), (20), respectively. Where the rotation can start from (18) satisfying the 
initial condition (17). And the rotation can stop under (20) satisfying the stop-
ping condition (19). 

1) ( ) ( )10 20 10 20, ,t t t tF F Z Z=                                        (17) 
2) ( ) ( )( ) ( ) ( )( )1 2 1 2 0 1 0 2 0 1 0 2 0POS , , | POS , ,t t t t t t t tF F Z Z x DF x DF x DZ x DZ x≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )1 2 1 2 0 1 0 2 0 1 0 2 0NES , , | NES , ,t t t t t t t tF F Z Z x DF x DF x DZ x DZ x≥ ≥ ≥  
Where ( ) ( )1 0 2 0 1 2, ,t t t tDF x DF x DX DZ=  
(Starting State) ( ) ( )10 20t t

F F⋅ = ⋅                                   (18) 
1) ( )0 0 1,2ti tiF Z i= =  
2) ( ) ( ) ( )0 0 0POS | POS 1,2it it i xi xiF Z x DF DZ i≥ ≤ ≥ =  
3) ( ) ( ) ( )0 0 0NES | NES 1,2it it i i iF Z x DFx DZx i≥ ≥ ≥ =  
Where ( )0 0 1,2i iDFx DZx i= =  
Where 0i tF  and ( )0 1,2i tDF i =  represents 2 complex events, and the qua-

dratic possibility theory is applied. If the mapping function is equivalent, they 
invert 180-degree, and the initial condition and stopping condition is reversed. 
Note that the complex event become also one in a simulation like this. 
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1) ( ) ( )1 0 2 0 1 0 2 0, ,t t t tF F Z Z=                                       (19) 
2) ( ) ( )( ) ( ) ( )( )1 0 2 0 1 2 10 20 10 20POS , , POS , ,t t t tF F Z Z DF DF DZ DZ≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )1 2 1 2 10 20 10 20NES , , NES , ,t t t tF F Z Z DF DF DZ DZ≥ ≥ ≥  
Where ( ) ( )10 20 10 20, ,DF DF DZ DZ=  
(Stopping State) ( ) ( )10 20t t

F F⋅ = ⋅                                  (20) 
1) ( )0 0 1,2ti tiF Z i= =  
2) ( ) ( ) ( )0 0POS POS 1,2it it i iF Z DF DZ i≥ ≤ ≥ =  
3) ( ) ( ) ( )0 0NES NES 1,2it it i iF Z DF DZ i≥ ≥ ≥ =  
Where 0 0i iDF DZ=  

6. Type 2 Possibility Oblique Factor Rotation 

Assume that the fuzzy variables in the x-axis direction and the fuzzy variables in 
the y-axis direction are transformed into fuzzy events N and M on the natural 
state S by the membership functions ( )N Sµ  and ( )M Sµ  Note that the mem-
bership functions ( )N Sµ  and ( )M Sµ  are derived by the quadratic mapping 
formula as follows 

( ) ( )( )( )1 1
1N N MS f xµ − −= Π Π                   (21) 

( ) ( )( )( )1 1
2M M NS f yµ − −= Π Π                   (22) 

NΠ  and MΠ  are the prior possibility distributions of the fuzzy variables N 
along the x-axis and M along the y-axis. The system functions are ( )1x f S=  
and ( )2y f S= , respectively.  

After the transformation, fuzzy event N and fuzzy event M that are not direct 
sums, as shown in the image in Figure 1 (Uemura [4]), are discussed. Note that 
the sum of the membership functions representing the degree of attribution of 
fuzzy event N and fuzzy event M to the state of nature is less than or equal to 1. 
Therefore, the nondiscriminatory event Fe is automatically derived as follows. In 
decision theory, when the sum of the membership functions is less than or equal 
to 1, it is better to use the probability of the fuzzy event, and when the sum is 
greater than 1, it is better to use the probability measure of the fuzzy event (Ue-
mura [13]). 

Suppose that the possibility distribution ( )1, ,FK K nΠ =   of two or more 
non-orthogonal Fuzzy Events is pre-set by Equation (21) and (22). 

 

 
Figure 1. Indifferent event. 
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In this section, we consider the general case where ( )1 1n
Fkk S

=
Π ≤∑  S S∀ ∈ . 

Here, we introduce the concept of Indifferent Event Fe in order to avoid the risk 
of decision-making arising from the lack of information in Fuzzy Events. The 
possibility distribution of this Indifferent Event can be automatically derived by 
the following equation. 

( ) ( )1
eF FkkS SΠ = − Π∑                       (23) 

In this paper, we pick up the fuzzy variables in the x-axis direction and the 
fuzzy variables in the y-axis direction. Note that we consider only two fuzzy events 
such that N = F1 and M = F2. 

The Indifferent Event Fe is divided into zones of the state of nature to make 
sense of it. In Zone { }0 20X s= ≤ < , it is completely N, In Zone  

{ }20 45a s= ≤ < , it is a conditional Indifferent Event known to be a fuzzy event 
N In Zone { }45 70b s= ≤ < , it is an Indifferent Event that is neither fuzzy event 
N nor fuzzy even M. However, the relationship between the magnitude of fuzzy 
event N. and fuzzy event M. Zone { }70 80c s= ≤ <  is a conditional Indifferent 
Event that is known to be fuzzy event M. Zone { }80 100Y s= ≤ ≤  is completely 
M. Here, each zone has different characteristics, so it is necessary to analyze each 
zone individually. However, decomposing and recomposing the system is very 
risky. In this decision problem, N, M and Fe are orthogonal sum events, so there 
is no need to decompose and recompose the system. 

The fuzzy event N is derived from the stochastic differential Equation (9) 
along the x-axis, while the fuzzy event M is derived from the stochastic differen-
tial Equation (10) along the y-axis. With respect to the weights W1 and W2 of 
those simultaneous stochastic differential equations, if the two fuzzy events are 
in direct sum, that is, if the sum of the weights of each differential Equation (9) 
and (10) is orthogonal (W1 + W2 = 1), then it is a possible principal factor analy-
sis (Hori [7] [11]). On the other hand, if the sum of the weights is less than 1 
(W1 + W2 < 1), it is a possibility oblique factor analysis. In the following, for each 
zone, we focus on the indicator of the fuzzy set size relationship in possibility 
theory and derive the possibility factor rotation matrix MMi according to the de-
finition of the probability measure that represents the size relationship of the 
fuzzy set. 

1) Possibility factor rotation matrix in Zoon X: 

1 0
0 1xMM  

=  
 

                         (24) 

2) Possibility factor rotation matrix in Zone a: 

( ) ( )
( ) ( )1

POS NES
NES POS

e e

e e

N F N F
MM

N F N F
 ≥ >

=  > ≥ 
              (25) 

3) Possibility factor rotation matrix in Zone b: 

( ) ( )
( ) ( )2

POS NES
NES POS

e e

e e

F N F M
MM

F M F N
 ≥ >

=  > ≥ 
             (26) 
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4) Possibility factor rotation matrix in Zone c: 

( ) ( )
( ) ( )3

POS NES
NES POS

e e

e e

F M F N
MM

F N F M
 ≥ >

=  > ≥ 
             (27) 

5) Possibility factor rotation matrix in Zone d: 

( ) ( )
( ) ( )4

POS NES
NES POS

e e

e e

M F M F
MM

M F M F
 ≥ >

=  > ≥ 
             (28) 

6) Possibility factor rotation matrix in Zoon Y: 

0 1
1 0yMM  

=  
 

                        (29) 

The information content iI  in each zone is given by Equation (30). The final 
possibility oblique factor rotation MM is the weighted sum of the information 
content in each zone, the possibility factor matrix elements in each zone, and 
Equation (31). 

( ) ( ) ( )log 1,2,3,max 4
e ei S F i F iI S S iµ µ= × =            (30) 

4
1 i iiMM MM I
=

= ×∑                       (31) 

7. Initial and Stopping Condition on Type 2 Possibility  
Oblique Factor Rotation 

In this section, we consider the possibility oblique factor rotation after the initial 
observation X0. At first, in zone X and zone Y, the initial and stopping condition 
can be derived from the normal Markov process (Takahashi [12]). Second, N 
and Fe is direct sum in zone a. Furthermore, M and Fe is direct sum in zone d. In 
this case, these rotations are as well as the possibility principal rotations. At last, 
the initial and stopping conditions in zone b and zone c are derived from Equation 
(32) and (33). Note that the type2 fuzzy event N can rotate as same as the type2 
fuzzy event M, because changing M to N in Equation (32) and (33) is similar to 
the original version. 

(Initial Condition)  
1) ( ) ( )0 0 10 20, ,t t t tM N Z Z=                                       (32) 
2) ( ) ( )( ) ( ) ( )( )2 1 2 0 3 0 0 0 0POS , , | POS , ,t et t t t et t tI M F Z Z x I M X F X M X N X≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )2 1 2 0 3 0 0NES , , | NES , ,t et t t t et t tI N F Z Z x I N F M X N X≥ ≥ ≥  
(Stopping Condition)  
1) ( ) ( )0 0 10 20, ,t t t tM N Z Z=                                       (33) 
2) ( ) ( )( ) ( ) ( )( )2 1 2 3POS , , POS , ,t et t t t et t tI M F Z Z I M F M N≥ ≥ ≥  
3) ( ) ( )( ) ( ) ( )( )2 1 2 3NES , , NES , ,t et t t t et t tI N F Z Z I N F M N≥ ≤ ≥  
The starting and stopping state are obtained in zone b as follows:  
(Stating State) ( ) ( )10 20t t

M M⋅ = ⋅                                  (34) 
1) ( )0 0 1,2ti eiM F i= =  
2) ( ) ( ) ( )2 0 3 0POS | POS 1,2ti eti ti etiI M F X I N F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 0 3 0NES | NES 1,2ti eti ti etiI M F X I N F i≥ ≥ ≥ =   
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(Stopping State) ( ) ( )10 20t t
M M⋅ = ⋅                                 (35) 

1) ( )0 0 1,2ti eiM F i= =  
2) ( ) ( ) ( )2 3POS POS 1,2ti eti ti etiI M F I N F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 3NES NES 1,2ti eti ti etiI M F I N F i≥ ≥ ≥ =   
The starting and stopping state are obtained in zone c as follows: 
(Starting State) ( ) ( )10 20t t

N N⋅ = ⋅                                  (36) 
1) ( )0 0 1,2ti eiN F i= =  
2) ( ) ( ) ( )2 0 3 0POS | POS 1,2ti eti ti etiI N F X I M F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 0 3 0NES | NES 1,2ti eti ti etiI N F X I M F i≥ ≥ ≥ =   
(Stopping State) ( ) ( )10 20t t

N N⋅ = ⋅                                 (37) 
1) ( )0 0 1,2ti eiN F i= =  
2) ( ) ( ) ( )2 3POS POS 1,2ti eti ti etiI N N I M F i =≥≤≥   
3) ( ) ( ) ( )2 3NES NES 1,2ti eti ti etiI N N I M F i =≥ ≥ ≥   

8. Approach Forward to Type 2 Possibility Factor Analysis 

In this section, we mention the decision making rule for the possibility factor 
analysis such that can make a decision rotating the possibility factor rotation in 
the decision making problem. In the every zone shown by the imaging Figure 1, 
we propose the simple decision rule after the possibility factor rotating. In Equa-
tion (38), (39) and (40), D1 and D2 are the decisions. And ( )1 1|x U S D= ,  

( )2 2|y U S D= , are utility functions. ( )N Sµ  is the type 2 membership function 
in x-axis. ( )M Sµ  is the type 2 membership function in y-axis. And ( )Sπ  is 
the possibility prior distribution. Note that the decision maker can obtain these 
utility functions by the lot method after deciding his type (Risk Aversion, Risk 
Neutral, Risk Proneness). 

1) Zone x, y (Integral Transfer (maximizing Expected Utility))           (38) 

( ) ( ) ( )( )1
1 1 1| dNE D S U x D Sπ µ −= ×∫  

( ) ( ) ( )( )1
2 2 2| dME D S U y D Sπ µ −= ×∫  

2) Zone a, d (max-product method)                               (39)  

( ) ( ) ( )( )1
1 1 1max |s ND S U x Dπ π µ −= ×  

( ) ( ) ( )( )1
2 2 2max |s MD S U y Dπ π µ −= ×  

3) Zone b, c (min-max principal)                                 (40) 

( ) ( ) ( )( )( )1
1 1 1min max , |S ND S U x Dπ µ −∧ =  

( ) ( ) ( )( )( )1
2 2 2min max , |S MD S U y Dπ µ −∧ =

 
Here, in Equations (38), (39) and (40), after we pick up the bigger measure in the 
every zone, we can decide the individual optimal decision with these measures. 
Otherwise, because type 2 fuzzy event M, N and Fe are the direct sum, we can 
select the total optimal decision by the max the weighted sum of the information 
content (30). Note that we may need to obtain the individual optimal decision in 
the every zone. (Uemura, Inaida [11]). 
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9. Conclusion 

In this paper, we mentioned that Type 2 Fuzzy for no-data problems is derived 
from simultaneous stochastic differential equations in fuzzy events and is closely 
related to artificial intelligence in multi-input nonlinear factor analysis. The 
Type 2 Fuzzy Event is a multidimensional possibility variable error model that 
simultaneously considers longitudinal and transverse errors introducing the 
concepts of possibility and necessity, and it is application to main factor analysis 
based on possibility theory is described. Focusing on the oblique rotation of 
general factor analysis, the possibility and inevitability measures were defined so 
that the sum of these measures does not satisfy 1, and the oblique factor rotation 
matrix was derived by automatically subtracting the sum from 1 for indiscrimi-
nate fuzzy events to obtain the possibility and inevitability measures for indi-
scriminate fuzzy events. If the sum of the weights of the simultaneous stochastic 
differential equation between the longitudinal and transverse fuzzy variables is 
greater than 1, no indiscriminate event occurs. For this reason, after normalizing 
the membership function, the possibility principal factor analysis is applied. Al-
though determinism was not discussed in this paper, it has been proposed that 
sequential Bayesian inference be employed in cases involving nondiscriminatory 
events by adding the action of decision withholding (Uemura [1] [4]), because of 
the information risk of nondiscriminatory events. At last, Japanese call Japanese 
original traditional decision-making from this world to the other world around 
another world by the type 2 KIDOU (in Japanese) (Hori [14]). Our proposing 
theory can apply to deriver the sea wave from the sea wave equation. Specially, 
when the sea wave equation is regarded as Normal Possibility Process (i.e. Gauss 
Process), we can obtain the sea wave that is Gauss Process (Uemura [9]). Japa-
nese can regard this sea wave process as Sea Goddess/God decision making (Ho-
ri [14]). 
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