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Abstract 
This paper presents model problem studies for micropolar thermoviscoelastic 
solids without memory and micropolar thermoviscous fluid using micropolar 
non-classical continuum theories (NCCT) based on internal rotations and 
rotation rates in which rotational inertial physics is considered in the deriva-
tion of the conservation and balance laws (CBL). The dissipation mechanism 
is due to strain rates as well as rotation rates. Model problems are designed to 
demonstrate and illustrate various significant aspects of the micropolar 
NCCT with rotational inertial physics considered in this paper. In case of mi-
cropolar solids, the translational and rotational waves are shown to coexist. In 
the absence of microconstituents (classical continuum theory, CCT) the in-
ternal rotations are a free field, hence have no influence on CCT. Absence of 
gradients of displacements and strains in micropolar thermoviscous fluid 
medium prohibits existence of translational waves as well as rotational waves 
even though the appearance of the mathematical model is analogous to the 
solids, but in terms of strain rates. It is shown that in case of micropolar 
thermoviscous fluids the BAM behaves more like time dependent diffusion 
equation i.e., like heat conduction equation in Lagrangian description. The 
influence of rotational inertial physics is demonstrated using BLM as well as 
BAM in the model problem studies. 
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1. Introduction, Literature Review and Scope of  
Current Work 

In recent papers, Surana et al. [1] [2] have shown that micropolar NCCT for 
solid and fluid media based on internal rotations (due to deformation gradient 
tensor) and internal rotation rates (due to velocity gradient tensor) are thermo-
dynamically and mathematically consistent. All other micropolar non-classical 
continuum theories based on Cosserat rotations and Cosserat rotation rates, 
those considering internal and Cosserat rotations and rotation rates, couple 
stress NCCT utilizing polynomial or potential functions approach for deriving 
constitutive theories are either in violation of thermodynamic consistency and/ 
or mathematical consistency. In reference [3] Surana et al. extended the micro-
polar NCCT of reference [1] based on internal rotations for solid medium to 
account for rotational inertial physics. This leads to modification of balance of 
angular momenta (BAM) and balance of moment of moments (BMM) balance 
laws of reference [1]. Additionally, satisfying entropy inequality requires incor-
porating a constraint equation in the mathematical model consisting of CBL and 
the constitutive theories. Authors showed (without model problem studies) that 
this mathematical model permits co-existence of translational and rotational 
waves. In reference [4] Surana et al. extended the micropolar NCCT of reference 
[2] for fluids to include rotational inertial physics. This also resulted in modifi-
cation of the CBL presented in reference [2]. Authors in references [3] [4] 
showed that the requirement of satisfying entropy inequality necessitated that a 
constraint equation be considered as part of the mathematical model based on 
CBL and the constitutive theories. Authors discussed (without model problem 
studies) similarity of BAM in rotation rates in the case of micropolar fluids [4] 
with the BAM for micropolar solids in rotations in reference [3], but lack of ro-
tational waves in micropolar fluids due to absence of stiffness (due to lack of 
strain physics). Influence of rotational inertial physics on the evolution of the 
IVPs in general resulting due to micropolar NCCT was not discussed. Unfortu-
nately, there are not many published works on micropolar NCCT that consider 
rotational inertial physics. References [5] [6] consider flow of micropolar fluids 
through porous medium and dynamics of hydro-magnetic flow of micropolar 
fluids.  

The objective of this paper is to present model problem studies for micropolar 
solids and micropolar fluids using the mathematical model consisting of the CBL 
and the constitutive theories for micropolar non-classical solids and fluids with 
rotational inertial physics presented in references [3] [4]. Model problem studies 
are intentionally kept simple (one dimensional as far as possible) so that the 
contributions of rotational inertial physics can be clearly illustrated and estab-
lished.  

2. Mathematical Models  

In the following, we consider complete 3D mathematical models consisting of 
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CBL and the constitutive theories for micropolar non-classical solid and fluids 
based on internal rotations and internal rotation rates with rotational inertial 
physics presented by Surana et al. [3] [4]. In both cases, we consider thermo-
viscous physics in which the dissipation mechanism is due to rate of strain (sol-
ids) and strain rate (fluids) as well as due to rate of symmetric part of rotation 
gradient tensor (solids) as well as due to symmetric part of rotational gradient 
rates (fluids). 

2.1. Micropolar Thermoviscous Elastic Solid (Without Memory)  

For small strain, small deformation physics the CBL and the constitutive theo-
ries presented in reference [3] modified for dissipation due to rate of strain 
(CCM) and rate of symmetric part of rotation gradient tensor (micropolar 
NCCT) are given by 

2

0 02 0jkbk
k

j

D u F
xDt
σ

ρ ρ
∂

− − =
∂
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( )2

0 0 2 0jki k
ijk ij
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ρ σΘ ∂Θ

− − =
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s a s s s= + = +σ σ σ σ σ σ σ        (5) 

( )( ) ( )0 2 tr 2 trd
s σ µ λ η κ

Ω
= + + + +I I I σ ε ε ε ε              (6) 

( ) ( )2 2i i
s m s m sµ ηΘ Θ= +m J J                     (7) 

κ= −q g                             (8) 

In the mathematical model we have a total of 25 equations BLM(3), BAM(3), 
BMM(3), FLT(1), constitutive theories for ( )6sσ , ( )6s m , ( )3q  in a total of 
25 dependent variables ( )3u , ( )6d

sσ , ( )3aσ , ( )6s m , ( )3a m , ( )3q , ( )1θ  
hence the model has closure. The last term in the entropy inequality  

: : : : 0i id
s s s a aθ

Θ Θ− − − ≤
q g m J m J 

σ ε                 (9) 

must be set to zero to ensure that (9) is always satisfied. Then, in addition to 
(1)-(8). We must also satisfy  

: 0i
a a

Θ =m J                           (10) 

Equation (10) serves as a constraint on the mathematical Model (1)-(8).  

2.2. Micropolar Thermoviscous Fluid Medium  

We consider incompressible micropolar thermoviscous fluid medium. The CBL 
and constitutive theories of reference [4] are considered. These naturally include 
dissipation mechanism due to classical as well as non-classical micropolar phys-
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ics. Following reference [4] we have the following for CBL and constitutive theo-
ries.  

( ) ( )div 0 CMD
Dt
ρ ρ+ =v  (CM)                    (11) 
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+ − − =
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In this mathematical model we have CM(1), BLM(3), BAM(3), BMM(3), 
FLT(1) and the constitutive theories for ( ) ( )0 6d

sσ , ( ) ( )0 6s m , ( )3q , a total of 
26 equations in 26 dependent variables ( )1ρ , ( )3v , ( ) ( )0 6d

sσ , ( ) ( )0 3aσ , 
( ) ( )0 6s m , ( ) ( )0 3a m , ( )3q , ( )1θ . The last term in the entropy inequality must 

be set to zero to ensure that (16) is not violated. Thus  
( )0 : 0

r
i

s a
Θ =m J                           (22) 

must serve as constraint, hence constitutes additional condition that must be sa-
tisfied to guarantee that the entropy inequality is not violated.  

3. Model Problems  

In this section, we consider model problems for micropolar solid and fluid me-
dia. Model problems are intentionally kept simple so that significant features of 
micropolar aspects in the presence of rotational inertial physics can be demon-
strated.  

3.1. Translational and Rotational Waves in Micropolar Solids  

The objective of this study is to demonstrate existence of pure rotational waves 
in micropolar solids with rotational inertial physics. Just like in classical conti-
nuum mechanics (CCM) we can show existence, propagation, reflection and in-
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teraction of translational (stress) waves, in case of micropolar solids with rota-
tional inertial physics we can additionally show existence, propagation, reflec-
tion and interaction of rotational (moment) waves. That is, in micropolar solids 
with rotational inertial physics, translational and rotational waves coexist. In the 
following study we consider purely one dimensional case of BLM and BAM. In 
the studies presented here we show that BLM permits translational waves where 
as BAM with rotational inertial physics permits pure rotational waves.  

Mathematical models  
One dimensional form of BLM and balance of angular momenta with rota-

tional inertial physics (Equations (1) and (2)) for small strain small deformation 
and the associated constitutive theories for thermoviscoelastic (without memo-
ry) micropolar solid with dissipation mechanism due to rate of strain (CCM) 
and due to rate of symmetric part of the rotation gradient tensor are given by (in 
the absence of body forces, body moments, initial stress and equilibrium Cauchy 
stress, thus 11 11 11

d
s sσ σ σ= =  and using x for x1)  

( )2
111

0 2 0
d
su
xt

σ
ρ

∂∂
− =

∂∂
                       (23) 
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0 0 2 0i smI
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                     (24) 
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s m mm
x t x
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 ∂ Θ ∂ Θ∂
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        (26) 

Substituting (25) in (23) and (26) in (24) we obtain  

( ) ( )
2 2 2

1 1 1
0 2 2 22 2 0u u u

tt x x
ρ µ λ η κ

 ∂ ∂ ∂∂
− + − + = ∂∂ ∂ ∂ 

            (27) 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1

0 0 1 22 2 2 0i i iI
tt x x

ρ α αΘ  ∂ Θ ∂ Θ ∂ Θ∂
− − =  ∂∂ ∂ ∂ 

         (28) 

for 1D case and for incompressible physics 2 Eµ λ+ = , modulus of elasticity, as 
Poison’s ratio 0ν =  and 0κ = , hence (28) reduces to (but (28) remains same).  

2 2 2
1 1 1

0 2 2 22 0u u uE
tt x x

ρ η
 ∂ ∂ ∂∂

− − = ∂∂ ∂ ∂ 
                 (29) 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1

0 0 1 22 2 2 0i i iI
tt x x

ρ α αΘ  ∂ Θ ∂ Θ ∂ Θ∂
− − =  ∂∂ ∂ ∂ 

        (30) 

Remarks  
1) Equation (29) describes translational or 11

d
sσ  stress wave in a viscous elas-

tic medium. In the absence of the last term in (29), (29) represents translational 
waves in inviscid elastic medium. Dissipation (last term in (29)) results in am-
plitude decay and base elongation.  

2) Equation (30) is analogous to equation (29) and can be obtained b replac-
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ing 1u , 0ρ , E, and 2η  in (29) by 1iΘ , 0 0I ρΘ , 1α  and 2α . Thus, (30) de-
scribes rotational waves i.e., moment ( 11s m ) wave. The third term in (30) is due 
to micropolar dissipation physics which would result in amplitude decay and 
base elongation of 11s m  rotational wave.  

3) We note the lack of coupling between (29) and (30) due to zero antisym-
metric part of the deviatoric Cauchy stress. This is not the case in 2D and 3D 
applications.  

4) Presence of (29) and (30) confirm coexistence of translational and rotation-
al waves in micropolar elastic solids.  

Dimensionless form of the mathematical model  
We first nondimensionalize (29) and (30) before presenting their solutions. 

We write (29) and (30) with hat ( ∧ ) on all quantities indicating that all quanti-
ties have their usual dimensions (units)  

2 2 2
1 1 1

0 2 2 2

ˆ ˆ ˆˆˆ ˆ2 0ˆˆ ˆ ˆ
u u uE

tt x x
ρ η

 ∂ ∂ ∂∂
− − = ∂∂ ∂ ∂ 

                 (31) 
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( )

( )2 2 2
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ˆ ˆ ˆ
ˆ ˆ ˆ 0ˆˆ ˆ ˆ

i i i
I

tt x x
ρ α αΘ

 ∂ Θ ∂ Θ ∂ Θ∂  − − =
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        (32) 

We note that in general the speed of translational wave is different than the 
speed of rotational wave. However, since in this case (31) and (32) are de-
coupled, it is possible to nondimensionalize (31) and (32) such that in the di-
mensionless domain the speed of prorogation of both translation and rotational 
waves is unity. Obviously in 2D and 3D cases it is not possible to do so. We 
present details in the following.  

BLM: Model TW1  

Choosing 0L , 0η , ( )0 ref
ρ , 0t , 0

0 0 0
0

Ev L t
ρ

= =  and ( ) 2
0 0 0ref

E vρ=  as  

reference quantities in which 0v  is the speed of translational wave (speed of 
sound in CCM).  

( )
2 2 2

01 1 1
0 2 2 2 2

0 0

2 0
ref

Eu u uE
Re tt v x x
ηρ

ρ
 ∂ ∂ ∂∂

− − = ∂∂ ∂ ∂ 
            (33) 

where 
( )

0

0 0 0

1
ref

Re
L v

η
ρ

= , Reynolds number. If we choose ( )0 0ˆ
ref

ρ ρ= , 

( ) 2
0 0 0

ˆ
ref

E E vρ= =  and 
2

dC
Re
η

=  as damping coefficient, then (33) can be re-

duced to  
2 2 2

1 1 1
2 2 2 0d
u u uc

tt x x
 ∂ ∂ ∂∂

− − = ∂∂ ∂ ∂ 
                  (34) 

In (34), the dimensionless speed of sound (based on reference quantities) in 
an inviscid medium is unity. We use (34) in the numerical studies.  

BAM: Using speed of rotational waves as reference velocity: Model RW1  
In this case, when nondimensionalizing BAM we choose speed of rotational 
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wave as reference velocity. We also choose some of the same reference quantities as  

in BLM except we choose ( )0 ref
IΘ , ( )1 0

α , ( )2 0
α , ( ) ( ) ( )0 1 0 00 refref

Iω α ρΘ=  

and 0 0 0t L ω= , ( ) ( ) ( ) 2
1 0 0 00 refref

Iα ρ ωΘ= , then (32) can be written as  
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If ( )0 0̂ref
I IΘ Θ= , ( )0 0ˆ
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ρ ρ= , then (35) can be reduced to  
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in which 
( ) ( )

( )
0 0 0 0*

2 0

refref
I L

Re
ρ ω

α

Θ

=  is the Reynolds number associated with 

dissipation due to micropolar physics. If we define * 2
*dc

Re
α

=  as the dissipation  

coefficient due to micropolar physics, then (36) can be written as  

( ) ( ) ( )2 2 2
1 1 1*

2 2 2 0i i i
dc

tt x x
 ∂ Θ ∂ Θ ∂ Θ∂

− − =  ∂∂ ∂ ∂ 
              (37) 

Equation (34) and (37) are the simplified dimensionless forms of BLM and 
BAM describing translational and rotational waves in the presence of dissipation 
mechanisms. In the numerical studies we use equations (34) and (37). 

BAM: Using translation wave speed as reference velocity: Model RW2  
In this case we choose 

( )
0

0
0

0
0

0

ref

Ev

Lt
v

ρ


= 


= 


                          (38) 

using these reference values we can nondimensionalize (32) as follows.  
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If we choose ( )0 0̂ref
I IΘ Θ= , ( )0 0ˆ

ref
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1 2* * *0/2 02
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, , 1d

ref refref ref

c Re
ReI v I L v

α αα
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= = =  

then (39) can be reduced to  

( ) ( ) ( )2 2 2
1 1 1* *

12 2 2 0i i i
dc
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α

 ∂ Θ ∂ Θ ∂ Θ∂
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In this case the speed of dimensionless rotational wave is *
1α  which may 

not be unity. We use (40) in the numerical studies.  
Remarks  
1) We consider (34), (37) and (40) for presenting numerical studies.  
2) Numerical studies are presented using space-time coupled finite element 

method based on space-time residual functional for a space-time strip with time 
marching [5] in which space-time local approximation for a space-time element 
are p-version hierarchical with higher order global differentiability in space and 
time.  

3) We recast (34), (37) and (40) as a system of first order PDEs for conveni-
ence of defining BCs and ICs.  

First order system of PDEs  
Translational (or stress) waves (Model TW1)  
We recast (34) as follows 

( )111

1 1
11

1
1

0

0

0

d
s

d
s d

v
t x

u vc
x x

uv
t

σ

σ

∂∂ − =
∂ ∂ 

∂ ∂ − − =
∂ ∂ 

∂
− = 
∂ 

                      (41) 

Rotational (or moment) waves (Model RW1)  
We recast (37) as 

( ) ( )

( ) ( )

( )

1 11

1 1*
11

1
1

0

0

0

i s

i i
s d

i
i

m
t x

m c
x x

t

ω

ω

ω

∂ ∂
− = ∂ ∂ 

∂ Θ ∂
− − = 

∂ ∂ 
∂ Θ
− =

∂ 

                  (42) 

Rotational (or moment) waves (Model RW2)  

( ) ( )

( ) ( )

( )

1 11

1 1* *
11 1

1
1

0

0

i s

i i
s d

i
i

m
t x

m c
x x

t

ω

ω
α

ω

∂ ∂
− ∂ ∂ 

∂ Θ ∂
− − = 

∂ ∂ 
∂ Θ
− =

∂ 

                 (43) 

Numerical studies  
Evolutions are computed for models TW1, RW1 and RW2 using space-time 

coupled finite element method for a space-time strip with time marching [7]. 
The space-time local approximation for a space-time element is p-version hie-
rarchical with higher order global differentiability in space and time. Discretiza-
tions, p-levels and the minimally confirming spaces are chosen such that for 
each space-time strip the space-time residual functional for the discretization is 
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O(10−8) or lower ensuring that PDEs are satisfied accurately by the computed 
solution. In the present studies we choose a uniform mesh of 30, nine node 
p-version hierarchical finite elements with p-levels of 9 in space and time for all 
elements of the space-time strip. We choose local approximations in space and 
time of class C11. 

A time increment of 0.1t∆ =  is used in all computations. The solution is 
computed for the first space-time strip ( 0 t t≤ ≤ ∆ ) and then time marched to 
obtain evolution for desired value of τ  (final value of time). Since all evolu-
tions considered here are smooth, choice of solutions of class C11 in space and 
time suffices. For this choice of the order of the approximation space, the 
space-time integrals for the discretization of the space-time strip are Riemann. 
The 30 element uniform discretization with p-levels of 9 for space and time and 

2k =  for both space and time, yield space-time residual functional values for 
each space-time strip of the order O(10−8) or lower during the entire evolution, 
confirming good accuracy of the computed solution. In the following, we 
present computed evolutions for: translation wave using Model TW1 and rota-
tions wave using Models TR1 and TR2.  

Figure 1 shows schematic, space-time domain xtΩ , discretization  
( )eT

xt xte
Ω = Ω



 of the space time domain into space-time strips, discretization 

( )( ) ( )1 T e
xt xte

Ω = Ω


 of the first space-time strip ( )1
xtΩ  and the details of stress  

11
d
sσ  boundary conditions (for TW1) applied to the last space-time element face 
at 1x = . In the numerical studies, we choose negative 0σ  (compressive) for 
the applied pulse at 1x = . The details of applying BC at x L=  for mathemati-
cal models RW1 and RW2 are similar.  

Translational wave: Model TW1 
We consider mathematical model TW1. Evolution is computed for 30 time 

steps for the undamped case, 0dc =  using space-time coupled finite element 
formulation based on space-time residual functional. Since in this case, the speed 
of wave propagation is one, in ten time steps with 0.1t∆ = , the applied pulse at 

1x =  reaches the impermeable boundary at 0x = . Due to zero damping, we 
expect the applied pulse shape to be preserved during evolution. Figure 2(a) 
shows a plot of 11

d
sσ  versus x for various values of time. Time steps 2, 6, 10 

show the incident compressive pulse entering the spatial domain at x L=  and 
propagating without amplitude decay or base elongation confirming the absence 
of numerical dispersion. At the 10th time step the compressive pulse is precisely 
at 0x =  as expected. Reflection of the compressive incident pulse at the im-
permeable boundary (at 0x = ) results in reflected compressive pulse at the 11th 
time step with double the peak value. Upon further evolution the reflected com-
pressive pulse recovers its peak and base at the 12th time step (not shown). At the 
14th time step, we see reflected pulse with the same amplitude and base as the 
original incident pulse propagating toward the right end. At the 20th time step 
the reflected compressive pulse reaches the free boundary at 1x L= =  and  
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Figure 1. Spatial domain, space-time domain, Discretization into space-time strips, 
First space-time strip, Boundary conditions. 
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Figure 2. Evolution of deviatoric stress wave: 11

d
sσ  versus position x (Model TW1). 

 
reflects as a tensile pulse of the same amplitude and base as the original incident 
pulse propagating towards the boundary at 0x =  (time steps 23 and 28 in Fig-
ure 2(a)).  

In the next study for TW1, we consider dimensionless damping coefficient 
0.002dc = . Figure 2(b) shows evolution of 11

d
sσ  versus x for time steps 2, 6, 10; 

11, 14, 18; 23 and 28 (same as in Figure 2(a) for the undamped case). In the in-
cident pulse, amplitude decays and the base elongates during propagation (time 
steps 2, 6, 10). During reflection (time step 11), the magnitude of the pulse in-
creases but recovers upon further evolution (time step 14). The reflected pulse 
reaches the free boundary and reflection from the free boundary results in a ten-
sile pulse that propagates to the left. We observe the amplitude decay is more 
pronounced in the propagating incident pulse. The reflected pulses also shows 
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some amplitude decay, but the base elongation in the reflected pulse is more 
pronounced. All evolutions are smooth i.e., free of oscillations. Integrated sum 
of squares of the space-time residual functional are of the order of O(10−8) or 
lower for each space-time strip ensuring that the computed solution is accurate. 
Choice of 2k =  (order of the approximation space in space and time) is mini-
mally conforming for the first order system of PDEs, hence all space-time inte-
grals for ( )( )Ti

xtΩ , discretization of space-time strip ( )i
xtΩ  are Riemann. The 

space-time residual functional of the order O(10−8) ensures that the PDEs are sa-
tisfied in point wise sense over each space-time strip discretization ( )i

xtΩ , hence 
good time accuracy of the evolution is ensured.  

Rotational wave: Model RW1  
We consider mathematical model RW1 defined by Equation (42). In this case, 

the equations are nondimensionalized using the speed of rotational wave, hence 
the dimensionless speed of the rotational wave is one. In the first study, we apply 
moment pulse i.e., 11s m  pulse of time duration 2 t∆  (similar to 11

d
sσ  shown 

in Figure 1(e)). We choose p-levels of 9 in space and time, 0.1t∆ =  and order 
k of the approximation space in space and time is chosen to be 2, which is mi-
nimally confirming for a first order system of PDEs. We choose peak values of 

11 1s m = − . Evolution is computed using space-time strip with time marching, 
Integral form in space-time finite element process is based on space-time resi-
dual functional. Figure 3(a) shows the evolution for * 0dc =  (undamped case). 
Incident moment pulse propagates towards the impermeable boundary without 
amplitude decay and base elongation. Upon reflection at 0x = , the peak am-
plitude doubles during reflection but the pulse recovers to the original shape in 
the 12th time steps and continues to propagate toward the free boundary. Reflec-
tion from the free boundary results in tensile moment pulse of the same shape as 
original incident compressive moment pulse that continues to propagate toward 
the impermeable boundary at 0x = . 

Figure 3(b) shows the propagation, reflection and propagation upon reflec-
tion of the same compressive 11s m  pulse as in Figure 3(a) but in the presence 
of dissipation. We choose dimensionless dissipation coefficient * 0.002dc = . From 
Figure 3(b) we observe almost the same behavior of the moment pulse as that of 

11
d
sσ  pulse in Figure 2(b). Presence of dissipation resulting in continued am-
plitude decay and base elongation during the propagation. Amplitude decay is 
more pronounced for the incident pulse and the base elongation is more signifi-
cant in the reflected pulse.  

Rotational Wave: Model RW2  
In this study, we consider mathematical model RW3, Equation (43). In this 

mathematical model rotational wave speed is *
1α  and the dissipation is con-

trolled by the dimensionless dissipation coefficient *
dc . We apply a moment 

( 11s m ) pulse of duration 2 t∆  at the boundary 1x L= = .  
In the first study, we choose 0.1t∆ = , *

1 2.25α =  and * 0dc =  (undamped 
case). The wave speed is 2.25 1.5= , thus the pulse would reach 0x =   
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Figure 3. Evolution of Cauchy Moment wave: 11s m  versus position x (Model RW1). 

 
boundary in ( )1 1.5 0.1 6.67=  time steps. Figure 4(a) show propagation and 
reflection of the moment pulse. Figure 4(b) show propagation and reflection of 
the moment pulse for *

1 2.25α =  i.e., at the wave speed of 1.5 when * 0.002dc = . 
Diminished amplitudes and elongated base of the pulse is clearly observed dur-
ing evolution. This is similar to RW1 ( * 0.002dc = ). In the next study, we apply 
the same moment pulse as in the previous study but choose *

1 0.49α =  and 
* 0dc = , hence rotational wave speed of 0.49 0.7= , thus the moment pulse will 

reach the boundary at 0x =  in ( )1 0.7 0.1 14.285=  time steps. Figure 5(a) 
and Figure 5(b) show propagation and reflection of the moment wave for 

* 0dc =  and * 0.002dc = . The undamped pulse ( * 0dc = ) maintains its base and 
amplitude during the entire evolution and when * 0.002dc =  progressive am-
plitude decay and base elongation of the pulse is observed for both values of *

1α .  
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Figure 4. Evolution of Cauchy Moment wave: 11s m  versus position x (Model RW2: 

* 2.25α = ). 
 
We remark that when the rotational wave speed is one, we are able to precisely 
locate the pulse at the impermeable boundary as the time to reach the imperme-
able boundary is integer multiple of t∆ . In this case, we see perfect reflection of 
the 11s m  pulse at the 11th time step and the peak value of 11s m  doubles, same 
as in the case of the translational stress wave. However, when rotational wave 
speed is not an integer multiple of t∆ , precise arrival of 11s m  pulse at 0x =  
cannot be simulated as elapsed time is always an integer multiple of t∆ . For this 
reason, we are not able to observe 2 ( 11s m ) in the peak values during the reflec-
tion process of the undamped case (Figure 4(a) and Figure 5(a)) when the rota-
tional speed is not one.  
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Figure 5. Evolution of Cauchy Moment wave: 11s m  versus position x (Model RW2: 

* 0.49α = ). 

Remarks 
1) In the model problem studies presented here the translational and rotation-

al waves are decoupled. In 2R  and 3R  this may not be the case. Since the 
stress tensor is a function of d

s J    and the moment tensor is a function of 
d
a J   , both stress and moment tensor waves are dependent on gradients of dis-

placement. Thus, in 2R  and 3R  we expect interaction between the two 
waves. That is, as shown here, rotational waves depend upon 1α̂  and IΘ  
which in turn influences d J   , thus d

s J   , hence influencing translational 
waves. The model problem studies in 2R  and 3R  are needed to illustrate this 
physics.  

2) The medium with and without microconstituents is always considered iso-
tropic and homogeneous. Thus, in this micropolar theory there is absence of 
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wave dispersion in the micropolar medium as it is considered to be isotropic and 
homogeneous. This micropolar theory can only simulate wave propagation 
physics of translational and rotational waves and their interaction (when it ex-
ists) in 2R  and 3R  (future work). 

3.2. Micropolar Viscous Fluids: Rotational Inertial Physics  

Rotational wave?  
The objective of the model problem studies presented in this section is to 

demonstrate the influence of rotational inertial physics in micropolar fluids in 
which NCCT is based on internal rotation rate physics. It is well known that in 
classical or micropolar viscous fluids, translational deviatoric stress waves can 
not exist due to the absence of elasticity. In this study, we only consider balance 
of angular momenta in 1D and associated constitutive theories to investigate the 
influence of rotational inertial physics. 

Mathematical model: rotational wave?  
The one dimensional form of BAM and the constitutive theory for the Cauchy 

moment tensor are given by (using x  for 1x ).  

( ) ( )1 11 0i s m
I

t x
ω

ρΘ ∂ ∂
− =

∂ ∂
                     (44) 

( )1
11 1

1
2

i
s m

x
ω

α
 ∂

=  
∂ 

                       (45) 

Substituting (45) in (44)  

( ) ( )2
1 11

2 0
2

i iI
t x
ω ωα

ρΘ  ∂ ∂
− =  ∂ ∂ 

                  (46) 

Remarks  
1) We clearly see that this Equation (46) will not permit a moment ( 11s m )  

wave as it is not a wave equation due to the absence of 
( )2

1
2

i

t
ω∂

∂
 in place of 

( )1i

t
ω∂
∂

.  

2) However it is interesting to study its solution for varying IΘ  values.  
Dimensionless form of the mathematical model  
Recasting (46) with hat ( ∧ ) on all quantities indicating that they have their 

usual dimensions (or units)  

( ) ( )2
1 11

2

ˆ ˆˆˆ ˆ 0ˆˆ 2
i i

I
t x

ω ωα
ρΘ

 ∂ ∂
 − =
 ∂ ∂
 

                  (47) 

and using 

( ) ( )

0 0 0

1 1 0 0 0 0

0 1 0 0 1 1 10 0

ˆ ˆ ˆ, ,
ˆ , ,

ˆand ,
i i

I I I x x L

t L

I

ρ ρ ρ

ω ω ω ω

ω α ρ α α α

Θ Θ Θ

Θ

= = =
= = 


= = 

            (48) 
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We can write (47) as 

( ) ( ) ( )2
11 101

2
0 0 0

0
2

i iI
t L I x

αω ωα
ρ

ρ
Θ

Θ

 ∂ ∂ − =    ∂ ∂   
            (49) 

If we choose 0
ˆI IΘ Θ= , 0

ˆρ ρ=  and ( )1 10
ˆα α=  then (49) can be reduced to  

( ) ( )2
1 1

2 2 0i ic
t x
ω ω ∂ ∂

− =  ∂ ∂ 
                  (50) 

in which ( ) ( )2 1 0
ˆˆ ˆ2c L Iα ρΘ= , dimensionless dissipation coefficient. PDE (50)  

can be cast as a system of two first order PDEs by using moment 11s m  as aux-
iliary variable and we have 

( ) ( )

( )

1 11

1
11 2

0i s

i
s

m
t x

m c
x

ω

ω

∂ ∂
− = ∂ ∂


∂ = ∂ 

                   (51) 

PDEs in (51) are helpful in defining BCs and ICs, hence are used in the com-
putations. 

Numerical Studies  
Rotational wave?  
We consider mathematical model (50) or (51). It is evident (50) is not a wave 

equation as a wave equation must have second order spatial and second order 
time derivatives of the dependent variable. Thus, (50) can not describe a wave, 
which is not a surprise, because classical as well as micropolar fluids do not pos-
sess elasticity, hence do not have stiffness, thus they cannot support deviatoric 
Cauchy stress wave or Cauchy moment wave.  

Equation (50) is in fact a time dependent diffusion equation in which  

2
1c
IΘ∝  is the diffusion coefficient. Thus low values of IΘ  correspond to  

high values of 2c  and vice versa. Details of the schematic, space-time strips and 
discretization of a space-time strip remain the same as shown in Figure 1. We 
apply a negative 11s m  moment pulse of duration 2 t∆  on the boundary at 

1x =  such that [ ]11 0, 1s m ∈ −  [ ]0,t t∀ ∈ ∆ ; [ ]11 1,0s m ∈ −  [ ],2t t t∀ ∈ ∆ ∆  and 

11 0s m =  for 2t t≥ ∆  (similar to BC shown in Figure 1(e)). We choose a dis-
cretization of 30 nine node p-version hierarchical space-time elements with 
p-levels of nine in space and time. Evolution is computed for 30 time steps using 

0.1t∆ =  with local approximation of class C11 in space and time, We choose two 
values of 2 0.0001,0.001c = . Evolutions for different values of time for the two 
choices of 2c  are shown in Figure 6(a) and Figure 6(b). For both values of 2c , 
the applied pulse progressively diffuses as time elapses. We observe significantly 
high diffusion of the applied moment pulse for 2 0.001c =  compared to 

2 0.0001c =  as expected. We clearly observe lack of existence and propagation 
of rotational or moment waves due to lack of elasticity, demonstrating that rota-
tional waves can not exist in micropolar fluids with rotational inertial physics.  
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Figure 6. Cauchy Moment 11s m  versus position x . 

3.2.1. Developing Pressure Driven Flow between Parallel  
Plates and Developing Couette Flow 

In this study, we consider developing pressure driven flow between parallel 
plates and developing Couette flow in which the mathematical models are based 
on: CCM, NCCM without rotational inertial physics and NCCM with rotational 
inertial physics. Only the micropolar nonclassical continuum theory based on 
internal rotation rates is considered [4]. Figure 7 shows a schematic of the di-
mensionless configuration of parallel plates. 

Away from the ends A and B, the physics of the flow is purely one dimension-
al (in the y  direction) velocity u  is a dependent variable, velocity v  in the 
y  direction is zero regardless of the type of mathematical model hence, Cauchy 

shear stress is the only non-zero stress (details are given in the following). We 
present details of three mathematical models (as mentioned above): based  
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Figure 7. Spatial domain for pressure driven and Couette flow. 

 
on CCM, NCCM without rotational inertial physics and NCCM with rotational 
inertial physics. We nondimensionalize these mathematical models using the 
following reference quantities and dimensionless quantities.  

( ) ( ) ( ) ( ) ( ) ( )

( )

0 0 0 0

0 0 0 0 0 0
23 23 0 21 21 0 21 21 0

2
0 0 0 0 0 0 0

0 0 0 0 0

3 3 0 0 0 0

ˆ ˆˆ ˆ, , ,
ˆ ˆ ˆ, ,

, characteristic kinetic energy
ˆ ˆ, ,

ˆˆ , ,

d d
s s a a

i i

x x L y y L

m m m

m L v p

u u v v v v t L v

t I I I

η η η α α α

σ σ τ σ σ τ

τ τ ρ

ω ω ω ω Θ Θ Θ

= = = =

= = =
= = = 


= = = 


= = = 

       (52) 

Mathematical model based on CCM: Model A  
Balance of linear momenta in the x  direction and the constitutive theory for 

deviatoric Cauchy stress ( ) ( )0 0
12 21d dσ σ=  are the only two equations needed in 

this case and are given in the following (with usual dimensions for all quantities) 
for incompressible classical fluid. 

( )( )

( )

0
21

0
21

ˆˆ ˆˆ 0ˆ ˆˆ
ˆˆˆ
ˆ

d
s

d
s

u p
t x y

u
y

σ
ρ

σ η

∂∂ ∂ + − =
∂ ∂ ∂

∂

= ∂ 

                       (53) 

We can nondimensionalize (53) using (52) and if we choose 0
ˆρ ρ= , 0

ˆη η= , 
then the dimensionless form of (53) can be written as 

( )

( )

(0)
21

0
21

0

1

d
s

d
s

u p
t x y

u
Re y

σ

σ

∂∂ ∂ + − =
∂ ∂ ∂


∂ = ∂ 

                        (54) 

In case of pressure driven flow, 
p
x
∂
∂

 is given. For non-pressure driven 

Couette flow, 0p
x
∂

=
∂

. In (54), Re is Reynolds number and is given by (based on 
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reference quantities) 0 0 0

0

L vRe ρ
η

= . Equation (54) is a first order system of two  

PDEs in two dependent variables u  and ( )0
21

d
sσ . In this case, flow characteris-

tics depend upon dimensionless parameter Re.  
Micropolar NCCT without rotational inertial physics: Model B  
In this case, the mathematical model consists of BLM in x  direction, balance 

of angular momenta about the z  direction, constitutive theory for symmetric 
part of deviatoric Cauchy shear stress ( ) ( )0 0

12 21
d d
s sσ σ= , constitutive theory for 

symmetric Cauchy moment 23s m  and definition of angular rotation rate 3iω  
i.e., rotation rate about z . We can write the following (with their usual dimen-
sions) using the CBL and the constitutive theories given for 3  by Equations 
(11)-(22), in the absence of body forces and body moments.  

( )( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( )

0 0
21 21

0
23 0

21

0 0
12 21

30
23

3

ˆ ˆˆ ˆˆ 0ˆ ˆˆ

ˆ
ˆ2 0ˆ

ˆˆˆ ˆ
ˆ

ˆˆˆ
2

ˆ1ˆ
ˆ2

d d
s a

s d
a

d d
s s

i
s

i

u p
t x y y

m

y

u
y

m
y

u
y

σ σ
ρ

σ

σ σ η

ωα

ω

∂ ∂∂ ∂ + − − =
∂ ∂ ∂ ∂

∂
+ =
∂
∂ = =
∂


∂ 
= 

∂ 
∂ = −
∂ 

                 (55) 

We can nondimensionalize (55) using (52), and if we choose 0
ˆI IΘ Θ= , 

0
ˆρ ρ= , 0

ˆη η= , then (55) can be written as 

( )( ) ( )( )
( )( ) ( )( )

( ) ( )

( ) ( )

0 0
21 21

0
23 0

21

0 0
12 21

0 3
23

3

0

2 0

1

2
1
2

d d
s a

s d
a

d d
s s

i
s

i

u p
t x y y
m

y
u

Re y

m
y

u
y

σ σ
ρ

σ

σ σ

ωα

ω

∂ ∂∂ ∂ + − − =
∂ ∂ ∂ ∂


∂ 
+ = ∂ ∂ = = ∂

∂ = ∂
∂ = −
∂ 

                 (56) 

in which 2
0 0 0

ˆ L tα α τ= , dimensionless material coefficient for micropolar non-
classical physics. Equations (56) is a system of five first order PDEs in five de-
pendent variables: u , ( )0

21
d
sσ , ( )0

21
d
aσ , ( )0

23s m  and 3iω . 
Dimensionless parameters Re and α  control classical physics and micropo-

lar nonclassical physics.  
Micropolar NCCT with rotational inertial physics: Model C  
The mathematical model consists of BLM in x  direction, BAM about z  
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direction, BMM balance law, constitutive theory for symmetric part of the de-
viatoric Cauchy shear stress ( ) ( )0 0

12 21
d d
s sσ σ= , constitutive theory for symmetric 

Cauchy moment ( )0
23s m , definition of angular rotation rate 3iω  and the con-

straint equations resulting from the entropy inequality.  
Using the mathematical model in 3  (Equations (11)-(22)) and noting that 

in this case 0v = , 0w = , we can write the following for CBL and constitutive 
theories (in the absence of body forces and body moments) and the constraint 
equation 

( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )

( ) ( )

0 0
21 21

0 0
23 233 0

21

0 0
12 21

30
23

3

ˆ ˆˆ ˆˆ 0ˆ ˆˆ
ˆ ˆˆ

ˆˆ ˆ2 0ˆ ˆˆ

ˆˆˆ ˆ
ˆ

ˆˆˆ
2

ˆ1ˆ
ˆ2

d d
s a

s ai d
a

d d
s s

i
s

i

u p
t x y y

m m
I

t y y

u
y

m
y

u
y

σ σ
ρ

ω
ρ σ

σ σ η

ωα

ω

Θ

∂ ∂∂ ∂ + − − =
∂ ∂ ∂ ∂


  ∂ ∂∂   − − + =  ∂ ∂ ∂   ∂ = = ∂


∂ 
= 

∂ 
∂

= − 
∂ 

         (57) 

( ) ( ) ( )0 0
3 23 23

ˆ ˆˆ ˆ ˆ 0i s aI v m mωΘ − − =  (BMM when 0v ≠ )            (58) 

( ) ( )0
23 3

ˆˆ 0s im ω =  (constraint equation)                (59) 

When 0v =  (which is the case here), BMM (58) reduces to  

23 23
ˆ ˆ 0s am m+ =                           (60) 

Equation (60) suggests that ( ) ( )0 0
23 23

ˆ ˆ
a sm m= −  or the nonsymmetric moment 

tensor ( )0
23m̂  is zero, implying no micropolar physics. This of course is errone-

ous, hence in this case (60) cannot be used as part of the mathematical model. 
The constraint Equation (59) implies that either ( )0

23
ˆ 0s m =  or 3

ˆ 0iω =  for all 
, xtx t∈Ω . This also is erroneous, thus (58) and (59) cannot be considered as a 

part of the mathematical model, thus Equation (57) constitutes the mathematical 
model. We can nondimensionalize (57) using (52), and if we choose 0

ˆI IΘ Θ= , 

0
ˆρ ρ= , 0

ˆη η= , then we can obtain the following from (57). 

( )( ) ( )( )

( ) ( )( ) ( )
( )

( ) ( )

0 0
21 21

0
233 (0)

21

0(0)
12 21

0 3
23

3

0

2 0

1

2
1
2

d d
s a

si d
a

d d
s s

i
s

i

u p
t x y y

m

t y
u

Re y

m
y

u
y

σ σ
ρ

ω
β σ

σ σ

ωα

ω

∂ ∂∂ ∂ + − − =
∂ ∂ ∂ ∂


∂ ∂
− + = ∂ ∂ ∂ = = ∂

∂ = ∂
∂ = −
∂ 

 

               (61) 
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These are a system of five first order PDEs in five dependent variables: u , 
( )0
21

d
sσ , ( )0

21
d
aσ , ( )0

23s m  and 3iω . Re, α  and β  control classical physics, non-
classical physics without rotational inertial effects and nonclassical physics with 
rotational inertia effects, respectively. In (61), α  and β  are defined as 

2
0 0 0

ˆ L tα α τ=  and 2
0 0I Lβ Θ= . 

Numerical studies  
We consider two model problems in this section: developing flow between 

parallel plates and developing Couette flow. In both model problems, we com-
pute solutions for Model A (CCM); Model B, NCCM with micropolar physics 
but absence of rotational inertial physics; and Model C, micropolar NCCM with 
rotational inertial physics. In Model A (CCM), the only dimensionless parame-
ter is Re which controls the flow physics. In case of Model B, Re for CCM and 
α  for micropolar physics control the flow physics. In case of Model C, Re, 1α  
and 1β  all three control the physics. 1β  is associated with rotational inertial 
physics. For both model problem studies we present evolutions for different 
combinations of α  and β  for a fixed Re to illustrate their influence on flow 
physics. Computed solutions for Model B and C are always compared with 
Model A.  

We recall that many works published by Surana et al. [8] [9] show that in mi-
cropolar NCCT presence of micro constituents offer resistance to flow i.e., in-
creasing value of α  results in diminishing flow rate. Material coefficient β , 
due to rotational inertial physics, related to rotational inertial physics due to mi-
croconstituents is also expected provide further resistance to flow over and 
beyond α . In other words, we expect increasing α  as well as increasing β  to 
provide increasing resistance to flow. Since the constitutive theories are not cali-
brated, we do not know actual values of α  and β  for various fluids with va-
rying microconstituents. In the model problem studies presented here, we 
choose α  and β  such that we can demonstrate their relative influence on 
flow physics.  

Developing flow between parallel plates 
Figure 8 shows schematic, space-time strips and a uniform discretization of 

first space-time strip using 10 p-version hierarchical space-time finite elements. 
We consider solution of class C 00 in space and time with p-level of nine in space  

and time, 100Re =  with 1.0t∆ = . Flow is pressure driven with 0.1p
x
∂

= −
∂

.  

Case I  
In the first study we choose 
Model A (CCM), 100Re =   
Model B (NCCM), 100Re = ; 0.0001,0.001α = .  
Figures 9(a)-(d) show plots of the evolution of velocity u  for 5t t= ∆ , 

10 t∆ , 20 t∆  and 40 t∆  for Models A and B. In case of Model A (CCM) the 
flow has no resistance due to microconstituents. In model B, with progressively 
increasing α  the flow resistance increases resulting in diminishing flow rate. 
This holds true for each value of time t. At 40t t= ∆ , we almost have stationary  
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Figure 8. Developing flow between parallel plates, Discretization in time, Spatial discretization. 

 
state of the developing flow. Significant reduction in flow rate with increasing 
α  is also obvious from the stationary state in Figure 9(d). In CCM, rotation 
rates are a free field, hence they do not influence CCT. Figure 10(a) shows evo-
lution of 3iω  versus y  for Model A (CCM). At 40t t= ∆ , we almost have  

stationary sate at which 
( )3i constant

y
ω∂

=
∂

. Since 3iω  is a free field, 23 0s m = ,  
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Figure 9. Developing flow between parallel plates: velocity u  versus position y : Models A and B (Case I). 

 
shown in Figure 10(b). Figure 10(c) and Figure 10(d) show evolution of 3iω  
versus y  and 23s m  versus y  for Model B for 0.001α = . Comparison of 
these evolutions with those in Figure 10(a) and Figure 10(b) clearly shows the 
influence of microconstituents on 3iω  and 23s m  as in this case 3iω  is not a 
free field, hence 23s m  is no longer zero.  

Case II  
In this study we consider the influence of both α  and β  for fixed Reynolds 

number. We consider the following  
Model A (CCM), 100Re =  (same as in Case I)  
Model C (NCCM with rotational inertial physics),  

100Re =  (same as in Case I)  
0.0001

0.05,0.9
0.001

α
β

α
= 

== 
  

Discretization, p-levels and other details remain the same as in case I. Figures 
11(a)-(d) and Figures 12(a)-(d) show plots of velocity u  versus y  for 

0.0001,0.001α = , 0.05β = ; and 0.0001,0.001α = , 0.9β = . As we mentioned  
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Figure 10. Developing flow between parallel plates: Model B: 3iω  versus y  and 23s m  versus y . 

 
earlier both α  and β  result in resistance to the flow but we expect that the 
degree of resistance is not the same for α  and β  with similar change in their 
value. When comparing Figures 11(a)-(d) with Figures 9(a)-(d) we note that 
for same values of α  as in Figures 9(a)-(d) but with 0β = , we observe fur-
ther reduction in the flow rate when 0.05β = . For 0.9β =  (Figures 12(a)-(d)) 
flow rate is further reduced compared to 0.05β = .  

Case III  
In this study we consider fixed 100Re = , choose a fixed value of 0.01α =  

and vary β  to study evolution of velocity u . We choose 1.0t∆ =  and 
0.05,0.2β =  and 0.5. Remaining details are same as in case I. Figures 

13(a)-(d) show plots of u  versus y  for 5t t= ∆ , 10 t∆ , 20 t∆  and 40 t∆ . 
At 40t t= ∆  we almost have stationary state of the flow. As expected, larger 
values of β  offer more resistance to flow and requires more time to reach sta-
tionary state and vice versa. We note that stationary state is same for all β  val-
ues. Figure 14(a) and Figure 14(b) show evolution of 3iω  versus y  and 

23s m  versus y  (case II) for 100Re = , 0.001α =  and 0.9β = . Comparing 
this with Figure 10(c) and Figure 10(d) ( 0.001α = , 0.0β = ), we clearly note 
reduced values of 3iω  during the evolution for 0.9β =  in Figure 14(a),  
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Figure 11. Developing flow between parallel plates: velocity u  versus position y : Models A and C (Case II), 0.05β = . 
 

Cauchy moment 23s m  adjusts accordingly. This of course is due to increased 
resistance to flow due to β .  

Developing Couette flow  
The configuration of parallel plates and other details remain the same as in 

Figure 8. We choose 5Re =  in all studies. A 10 element uniform mesh with 
p-levels of nine in space and time and a solution of class C00 with 0.01t∆ =  is 
considered. At the top plate ( 1.0y = ) a velocity of 1.0 is applied over t∆  in a 
continuous and differentiable manner i.e., [ ]0,1u ∈  [ ]0,t t∀ ∈ ∆  and 1.0u =  

t t∀ ≥ ∆ .  
Case A  
Model A (CCM): 5Re =  
Model B (NCCM): 5Re = ; 0.0001,0.001α =   
Figures 15(a)-(c) show evolution of u  versus y  at 2t t= ∆ , 5 t∆  and 

10 t∆ . For each value of time the velocity u  for both α  values is lower than 
from Model A (CCM) as expected. Furthermore, higher values of α  yield low-
er values of velocity u  compared to lower values of α  during the entire  
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Figure 12. Developing flow between parallel plates: velocity u  versus position y : Models A and C (Case II), 0.9β = . 
 

evolution, demonstrating increasing resistance to flow with increasing value of 
α  during the entire evolution. 

Case B  
In case B we present two studies. In the first study, we choose  
Model A (CCM): 5Re =  
Model C (NCCM): 5Re = ; 0.01,0.1α = ; 0.05,0.2β =  
Computations are performed using the same mesh and other details as in case 

A. Figures 16(a)-(d) show plots of evolution of u  versus y  at 5t t= ∆  and 
20t t= ∆  for 0.05β =  and 0.2β =  for both values of α  in each case. Once 

again, combination of higher values of α  and β  result in more reduction in 
the velocity due to higher resistance to flow. Velocities for 0.2β =  are lower 
than those for 0.05β =  for both values of α . In the second study, we choose a 
fixed 0.1α =  and vary 0.1,0.2,0.3β = . Figure 17(a) and Figure 17(b) shows 
evolution of u  versus y  at t t= ∆  and 5t t= ∆ . Progressively increasing 
values of β  results in progressively reduced values of velocity u . Figures 
18(a)-(c) show evolution of 3iω  versus y  for: Model A, CCM ( 5Re = ); Model 
B, NCCM ( 5Re = , 0.001α = ) and Model C, NCCM ( 5Re = , 0.001α =  and  
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Figure 13. Developing flow between parallel plates: velocity u  versus position y : Model C (Case III). 
 

0.05β = ). Corresponding 23s m  versus y  graphs are shown in Figures 
19(a)-(c). In Figure 18(a) and Figure 18(b) we clearly observe the change in 

3iω  free field due to micropolar physics. In Figure 18(c), we observe further 
reduction and change in 3iω  due to 0.05β = . Evolution of 23s m  versus y  
follows a trend opposite to 3iω  i.e., 0α ≠  introduces nonzero 23s m  and in-
troduction of β  further changes evolution of existing nonzero 23s m  due to 
only α . 

3.2.2. Remarks 
1) In this work, α  and β  are two parameters related to the micropolar 

physics. We have seen in the model problem studies that both offer increasing 
resistance to flow with their increasing values.  

2) Model problem studies show that resistance to flow due to β  ( IΘ  and 
ρ  combined) is more pronounced compared to α .  

3) Parameters α  and IΘ  are properties of the micropolar medium con-
trolled by the microconstituents, but the manner in which they exert their in-
fluence on flow physics is different. The parameter α  is a measure of the  
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Figure 14. Developing flow between parallel plates: Model B (Case II): 3iω  and 23s m  

versus y : 0.001α = , 0.9β = . 
 
collective resistance offered to the flow by each microconstituents. Whereas IΘ  
appears as I ρΘ , suggesting that it is a volumetric or mass effect through angu-
lar acceleration. Thus I ρΘ  is the collective influence of a group of microcons-
tituents in a unit volume and perhaps provides a better explanation of why β  
is more influential than α .  

4. Summary and Conclusions  

The micropolar NCCT for solids derived using internal rotations (due to defor-
mation gradient tensor) with rotational inertial physics [3] and the micropolar  
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Figure 15. Developing Couette flow: velocity u  versus position y : 
Models A and B (Case A). 
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Figure 16. Developing Couette flow: velocity u  versus position y : Models A and C (Case B). 

 
NCCT for fluids derived using internal rotation rates (due to velocity gradient 
tensor) with rotational inertial physics [4] are considered in the work presented 
in this paper, to present various model problem studies that illustrate the influ-
ence of rotational inertial physics in case of micropolar solids as well as micro-
polar fluids. In this section, we present a summary of the work and draw some 
conclusions from it.  

1) In reference [3], by examining the BLM and BAM for micropolar solids 
with NCCT based on internal rotations, authors established co-existence of 
translational and rotational waves in micropolar solids with small deformation, 
small strain physics.  

2) In reference [4], authors considered BLM and BAM of the micropolar 
NCCT for fluids to show that in this case neither translational nor rotational 
waves can exist due to absence of elasticity or stiffness due to absence of strain 
physics in both CCM as well as NCCM.  

3) Conclusions (1) and (2) in references [3] [4] were purely based on mathe-
matical model. Solutions of IVPs resulting from the conservation and balance 
laws and the constitutive theories were not presented.  

https://doi.org/10.4236/am.2023.149037


K. S. Surana, J. K. Kendall 
 

 

DOI: 10.4236/am.2023.149037 643 Applied Mathematics 
 

 
Figure 17. Developing Couette flow: velocity u  versus position y : (Case B, second 
study). 
 

4) In this paper, we consider the mathematical models of reference [3] [4] 
with rotational inertial physics to construct model problems (IVPs) and present 
their solutions using space-time coupled finite element method. The model 
problems are intentionally kept simple so that significant aspects of the micro-
polar physics due to microconstituents and in particular influence of rotational 
inertial physics can be demonstrated clearly.  
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Figure 18. Developing Couette flow: 3iω  versus y : Models A, B and C. 
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Figure 19. Developing Couette flow: 3iω  versus y : Models A, B and C. 
Developing Couette flow: 23s m  versus y : Models A, B and C. 
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5) The solutions of the model problems (IVPs) are obtained by using 
space-time coupled finite element method based on space-time residual func-
tional for a space-time strip with time marching. The space-time local approxi-
mation are p-version hierarchical in space and time with higher order global 
differentiability in space and time. In this approach, with the choice of minimal-
ly confirming spaces, when the space-time residual functional for a space-time 
strip is O(10−8) or lower, PDEs in the IVPs are satisfied accurately, hence the 
computed evolutions are almost time accurate.  

6) In the present work, we consider micropolar NCCT of references [3] [4] 
but with dissipation mechanisms due to: strain rate (CCM) and due to rate of 
symmetric part of internal rotational gradient tensor (Micropolar nonclassical 
dissipation). While the strain rate dissipation (CCT) is viscous, the nonviscous 
dissipation mechanisms in micropolar NCCT is due to microconstituents and 
the fluid medium. These aspects were not considered in the micropolar NCCT 
in references [3] [4], hence is additional new physics in the mathematical mod-
els. 

7) From the one dimensional numerical studies presented for translational 
and rotational waves in micropolar solid medium using Models TW1, RW1 and 
RW2 we observe:  

a) Existence and propagation of translational wave (CCM) in the absence and 
in the presence of strain rate dissipation. The translational wave propagates, re-
flects, the reflected wave propagates and reflects from the free boundary without 
amplitude decay and base elongation when the medium is inviscid. The same 
phenomenon exists in the presence of damping but with continued amplitude 
decay and base elongation during evolution. Amplitude decay is most pro-
nounced for the incident wave where as base elongation is more prominent in 
the reflected waves.  

b) In the case of Model RW1, in which the rotational wave speed is one, the 
evolution of rotational wave physics is exactly same as in Model TW1.  

c) Model RW2 permits the choice of wave speed. Studies for wave speed faster 
than one and slower than one with and without dissipation are presented. In 2D 
and 3D applications choice of 0t  using 0 0v L  or 0 0i Lω  permits transla-
tional wave speed of one or rotational wave speed of one, but both wave speeds 
cannot be one. In this study, we show that wave speed different than one only 
influences when the propagating wave reaches the boundaries. The studies con-
clusively demonstrate that rotational inertial physics in micropolar solids is es-
sential for the existence of rotational waves in micropolar solids.  

d) In the studies presented here, rotational and translational waves are de-
coupled but coexist. In 2R  and 3R  this is not the case (Section 3.1.1). Since 
translational waves depend upon gradients of displacements in d

s J    and the 
rotational waves depend upon the gradients of displacements in d

a J   , both 
d
s J    and d

a J    being due to [ ]J , we expect coupling in the two in 2R  and 
3R .  
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e) Both micropolar and non-micropolar media are assumed isotropic and 
homogeneous, thus this micropolar theory can not simulate wave dispersion in 
micropolar media due to microconstituents. This theory can only simulate the 
influence of micropolar physics on wave propagation physics without disper-
sion.  

8) In the case of micropolar fluid, neither translational nor rotational waves 
exist. The 1D form of BAM in this case is a time dependent diffusion equation. 
Two numerical studies are presented for two values of diffusion coefficient. 
From the studies, we clearly see higher values of the diffusion coefficient result 
in faster diffusion of the applied pulse.  

9) Numerical studies presented for pressure driven developing flow between 
parallel plates show:  

a) Micropolar physics with increasing α  ( 0β = ) results in progressively in-
creasing resistance to flow and progressively decreasing flow rate. This holds 
during the entire evolution for each value of time.  

b) We have shown that β , which controls rotational inertial physics, also of-
fers resistance to flow. Increasing values of β  results in decreasing flow rate.  

c) Thus, in micropolar fluids with both α  and β , the resulting flow rate is 
decreased. Since the constitutive model is not calibrated their relative influence 
on the flow rate is difficult to ascertain. Based on the values of α  and β  used, 
β  influences flow rate more than α . We have discussed the physics related to 
α  and β  in Section 3.2.2. Both α  and β  offer resistance to flow but the 
physics of the resistance mechanisms is different in the two cases.  

d) The significance of these studies is that we can conclusively see that rota-
tional inertial physics in micropolar nonclassical continuum theories for fluids 
offers further resistance to the motion of the fluids over and beyond rotation 
rates or rotation rate gradients, thus reducing velocities and flow rates.  

10) Numerical studies presented for Couette flow confirms the findings re-
ported in item (9).  

11) Presence of rotational inertial physics in fluids only offers added resistance 
to fluid motion. It can not possibly result in rotational waves as micropolar flu-
ids have no elasticity associated with micropolar physics. In the case of micro-
polar fluids, BAM is not a wave equation in rotation rate.  

12) Evolution of 3iω  versus y  and 23s m  versus y  (Figure 10(a) and 
Figure 10(b)) for Model A (CCM) and their comparison with similar evolution 
when 0.001α =  ( 0.0β = ) i.e., model B shown in Figure 10(c) and Figure 
10(d) and those for 0.001α =  and 0.9β =  in Figure 14(a) and Figure 14(b) 
clearly demonstrate how the free field 3iω  and zero 23s m  in Figure 10(a) and 
Figure 10(b) are affected by the presence of microconstituents without and with 
rotational inertial physics. These studies show that increasing α  ( 0.0β = ) re-
duces 3iω  field due to resistance offered by the microconstituents. When both 
α  and β  are nonzero, resistance offered by the microconstituents increases 
resulting in further reduction in 3iω  field. The consequences of reducing 3iω  
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field are increase in 23s m  as shown in the graphs. 
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Nomenclatures 
*
1α   Diffusion coefficient in Model RW2  

1α , 2α  Material coefficient for constitutive theory for Cauchy moment tensor  
α   Nonclassical physics material coefficient 

0α   Dimensionless nonclassical physics material coefficient 
β   Rotational inertial physics nonclassical material coefficient  

2c   Dimensionless dissipation coefficient fluids  

dc   Damping coefficient Model TW1  
*
dc   Damping coefficient Model RW1, RW2  

E   Modulus of elasticity  

0E   Reference modulus of elasticity  
e   Specific internal energy in Lagrangian description  
e   Specific internal energy in Eulerian description  
 ,  , ijk  Permutation tensor  
ε   Strain tensor in Lagrangian description  
ε   Strain tensor in Eulerian description  
ε   Strain rate tensor in Lagrangian description  
ε   Strain rate tensor in Eulerian description  
η   Viscosity in Lagrangian description  
η   Viscosity in Eulerian description  
g   Heat vector in Lagrangian description  
g   Heat vector in Eulerian description  
IΘ   Internal rotational inertia in Lagrangian description  
IΘ   Internal rotational inertia in Eulerian description  

J   Deformation gradient tensor in Lagrangian description  

s J   Symmetric part of deformation gradient tensor in Lagrangian description  

a J   Skew Symmetric part of deformation gradient tensor in Lagrangian description  
d J   Displacement gradient tensor in Lagrangian description  
d
s J   Symmetric part of displacement gradient tensor in Lagrangian description  
d
a J   Skew symmetric part of displacement gradient tensor in Lagrangian description  
L , 0L  Length, reference length  
L , J  Velocity gradient tensor in Lagrangian description  
L   Velocity gradient tensor in Eulerian description  

11s m   Symmetric Cauchy moment tensor in Lagrangian description component 11  

11s m   Symmetric Cauchy moment tensor in Eulerian description component 11  

23s m   Symmetric Cauchy moment tensor in Eulerian description component 23  

23a m   Skew symmetric Cauchy moment tensor in Eulerian description component 23  

iω , i kω   Internal rotational velocity or rotation rates  

1iω   Internal rotation rate in Lagrangian description about the x1 axis 

0ω   Reference rotational velocity  

1iω   Internal rotation rate in Eulerian description about the x1 axis 

3iω   Internal rotation rate in Eulerian description about the x3 axis 

xtΩ   Space-time domain  
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T
xtΩ   Discretization of space-time domain xtΩ   
( )i
xtΩ   ith space-time strip  
( )( )Ti
xtΩ   Discretization of ith space-time strip  

e
xtΩ   Space-time element e  

0ρ   Reference Density  
ρ   Density in Lagrangian description  
ρ   Density in Eulerian description  
p   Pressure in Eulerian description  
σ   Cauchy stress tensor in Lagrangian description  

sσ   Symmetric Cauchy stress tensor in Lagrangian description  

aσ   Skew symmetric Cauchy stress tensor in Lagrangian description  
e
sσ   Symmetric equilibrium Cauchy stress tensor in Lagrangian description  
d
sσ   Symmetric deviatoric Cauchy stress tensor in Lagrangian description  

( ) ( )0 0
21 12

d d
s sσ σ=  Symmetric deviatoric contravariant Cauchy stress in Eulerian description component 12  

( ) ( )0 0
21 12

d d
a aσ σ=  Antisymmetric deviatoric contravariant Cauchy stress in Eulerian description component 12  
t   Time  

0t   Reference time  

0τ   Reference stress  

iΘ , i jΘ , { }iΘ  Internal or classical rotations in Lagrangian description  

iΘ , i jΘ , { }iΘ  Internal or classical rotations in Eulerian description  
r
i Θ   Internal or classical rotation rates in Lagrangian description  
r
i Θ   Internal or classical rotation rates in Eulerian description  

1iΘ   Internal rotation about the x1 axis  

3iΘ   Internal rotation about the x3 axis  
u , v , w  Velocity components in x1, x2 and x3 directions  

0v   Reference velocity  
v , iv , { }v  Velocity vector in Lagrangian description  
v , iv , { }v  Velocity vector in Eulerian descriptions  
x , ix , { }x  Cartesian Coordinates  
x , ix , { }x  Cartesian Coordinates  
y   Cartesian Coordinates  
y   Cartesian Coordinates  
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Abbreviations 

BAM: Balance of angular momentum  
BLM: Balance of linear momentum  
BMM: Balance of moment of moments  
BVP: Boundary value problem  
CBL: Conservation and balance laws  
CCM: Classical continuum mechanics  
CCT: Classical continuum theory  
CM: Conservation of mass  
FLT: First law of thermodynamics  
IVP: Initial value problem  
NCCM: Non-classical continuum mechanics  
NCCT: Non-classical continuum theory  
ODE: Ordinary differential equation  
PDE: Partial differential equation  
SLT: Second law of thermodynamics 
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