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Abstract 
We study two generalized versions of a system of equations which describe 
the time evolution of the hydrodynamic fluctuations of density and velocity 
in a linear viscoelastic fluid. In the first of these versions, the time derivatives 
are replaced by conformable derivatives, and in the second version left- 
handed Caputo’s derivatives are used. We show that the solutions obtained 
with these two types of derivatives exhibit significant similarities, which is an 
interesting (and somewhat surprising) result, taking into account that the 
conformable derivatives are local operators, while Caputo’s derivatives are 
nonlocal operators. We also show that the solutions of the generalized sys-
tems are similar to the solutions of the original system, if the order α of the 
new derivatives (conformable or Caputo) is less than one. On the other hand, 
when α is greater than one, the solutions of the generalized systems are quali-
tatively different from the solutions of the original system. 
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1. Introduction 

Fractional derivatives (FDs) are interesting and complex operators which, in 
spite of having an obscure geometric interpretation, have found many applica-
tions in engineering and in a broad range of physical, biological and social phe-
nomena. Several applications have been found in acoustics [1]-[5], optical soli-
tons [6] [7], complex viscoelastic media [8]-[13], turbulence [14], anomalous 
diffusion and random walkers [15] [16], Bose-Einstein condensates [17], and 
image and signal processing [18] [19] [20] [21]. FDs are also useful to describe 
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complex relaxation processes where a characteristic time scale cannot be de-
fined, and the traditional assumption that time averages and ensemble averages 
coincide, is no longer valid [22]. Moreover, several authors have proposed that 
FDs can be used to explain memory effects [23]-[27]. When FDs are used in par-
tial differential equations (PDEs), the FDs calculated with respect to the evolu-
tion variable (which in most cases is the time, but it is a distance along an optical 
fiber in the study of optical solitons) are usually different from the FDs calcu-
lated with respect to the other variables. For example, when FDs are used to de-
scribe the dispersion of temporal optical solitons, it has been proved that a com-
bination of left and right Grünwald-Letnikov derivatives [6], or a combination of 
Ortigueira’s central FDs of types 1 and 2 [7], provides an excellent description of 
the dispersion of the optical pulses. On the other hand, when we describe com-
plex viscoelastic fluids, the long-term memory of these systems can be taken into 
account by introducing a temporal FD (in this case the time is the evolution va-
riable), and in this case it has been shown that a left-handed Caputo’s derivative 
provides an adequate description of the evolution of these systems [8] [9] [11] 
[13]. These three types of FDs (Grünwald-Letnikov’s, Ortigueira’s and Caputo’s) 
are nonlocal operators, as occurring with most definitions of FDs. However, in 
2014 and 2016 two local differential operators were also proposed as possible de-
finitions for two new “fractional derivatives”. These two local operators were 
called, respectively, “conformable derivatives” [28] and “beta derivatives” [29]. 
These new operators have aroused considerable interest in certain areas, but they 
have also generated various criticisms, and it has been pointed out that they do 
not deserve to be considered as fractional derivatives [30] [31]. In Appendix A 
we can see some of the systems where these new derivatives have been used, and 
some of the criticisms they have received. Independently of the controversial is-
sue of whether or not the conformable and beta derivatives might be considered 
as fractional derivatives, both of them are operators which depend on a conti-
nuous parameter (the order of the derivatives), and when this parameter is equal 
to a positive integer, these two operators reduce to standard, integer-order de-
rivatives. This is a potentially useful property, because if we take a physical mod-
el described by a differential equation, and we replace one of the standard deriv-
atives of the model by a conformable or a beta derivative, we would obtain a ge-
neralized model which depends on a new continuous degree of freedom: the or-
der of the new derivative. And adjusting this order we might obtain solutions 
which may be closer to reality than the solutions of the original model. In fact, 
we already know that replacing integer-order derivatives by “orthodox” frac-
tional derivatives, such as those of Caputo, Grünwald-Letnikov or Ortigueira, we 
may obtain better descriptions of reality than those provided by standard models 
which only employ integer-order derivatives. The positive results obtained with 
orthodox fractional derivatives almost immediately suggest a question: may we 
also obtain good results if we used a conformable or a beta derivative instead of 
an orthodox fractional one? The answer is not obvious at all, as the definitions of 
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the conformable and beta derivatives are very different from those of Caputo or 
Grünwald-Letnikov. In order to contribute to clarify this issue, in the present 
communication we will consider a system of two coupled PDEs that describe hy-
drodynamic fluctuations of density and velocity in a linear viscoelastic fluid, and 
we will consider two generalized versions of this system. In the first version, we 
will replace the standard first-order temporal derivatives by conformable deriva-
tives, and in the second version, we will replace these derivatives with Caputo’s de-
rivatives. Then, we will calculate particular solutions of the three systems (i.e., the 
original system using first-order derivatives, and those using conformable and 
Caputo’s derivatives). The comparison of these solutions will show to what extent 
the introduction of the new derivatives modifies the standard solution (i.e., the 
solution of the system with first-order derivatives), and it will also show that the 
results obtained with the conformable derivatives are similar to those obtained 
with Caputo’s derivatives. This similarity is an interesting result, considering 
that the definitions of the conformable and Caputo’s derivatives are so different. 

The structure of this communication is the following. In Section 2 we briefly 
explain the physical origin of the system of PDEs studied in this article, we 
present the definition of the conformable derivative, and a first generalized ver-
sion of the aforementioned system (with conformable derivatives instead of 
first-order time derivatives) will be proposed. Then we will obtain analytical and 
numerical solutions of both, the standard (i.e., involving only integer-order de-
rivatives) and the conformable systems. In Section 3 we will propose a second 
generalized version of the system of PDEs presented in Section 2, this time re-
placing the first-order time derivatives with Caputo’s derivatives. Then we will 
show that this fractional system (with Caputo’s derivatives) can be analytically 
solved via the Laplace transformation. And we show solutions for different val-
ues of the fractional order of the Caputo’s derivatives. Finally, in Section 4 and 5, 
we enumerate the principal characteristics of the solutions found in the previous 
sections, and we present the main conclusions of this work. 

2. Standard and Conformable Derivatives 
Let us consider a model which describes the time retarded density and velocity 
hydrodynamic fluctuations for a linear viscoelastic fluid in a non-equilibrium 
state, but near thermodynamic equilibrium. This model was introduced in a 
previous work [13]. The dynamics of the fluctuations is described in terms of a 
generalized Langevin equation with a long-time power-law memory kernel with 
a long-correlation noise. We used a fluctuating hydrodynamic approach that 
leads to Equations (8) and (9) in [13], which are obtained from the general con-
servation laws of mass and momentum. Their derivation is discussed in detail in 
this reference, and here we only describe the general trend of ideas used. It is 
important to point out that the explicit calculation of these quantities is essential 
to calculate measurable properties of the system, such as the fractional diffusion 
coefficient (from the velocity fluctuations correlation function), and the frac-
tional light structure factor (from the density correlations).  
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If we denote the hydrodynamic fluctuations of density and velocity as f and g, 
respectively, and we consider (for simplicity) a one-dimensional case, the Equa-
tions (8)-(9) of [13] take the forms: 

0
f g
t z

ρ β∂ ∂ = − + ∂ ∂ 
                       (1) 

( )
2

2 20
00

1 1 d ,
tg f gM t t t

t z zρρ κ
∂ ∂ ∂′ ′= − + −
∂ ∂ ∂∫                (2) 

where we have used the symbol β to represent the concentration gradient which 
was denoted as α in [13], since in this work we use the symbol α for the order of 
the conformable and Caputo’s derivatives.  

The integral on the right side of Equation (2) is the usual way of incorporating 
memory into this equation, and it follows from the procedure introduced by 
Wang in [32]. However, in order to obtain a simpler system, in this communica-
tion we will consider that the function M(t) is a Dirac delta function. Besides, the 
left-handed Caputo’s derivative already takes into account memory effects, and 
the conformable derivative also incorporates a time-dependent factor which, in 
certain cases, can be considered as an approximate way to take into account 
memory (as we shall see further ahead).Therefore, considering that M(t) is a Di-
rac delta function, multiplied by a constant M0, Equations (1)-(2) reduce to: 

0 ,f g g
t z

ρ β∂ ∂
= − −

∂ ∂
                       (1a) 

2
0

2 2
00

1 .Mg f g
t z zρρ κ

∂ ∂ ∂
= − +

∂ ∂ ∂
                    (2a) 

Now let us take the Fourier transform (FT) of Equations (1a)-(2a). If the FT of 
the functions ( ),f z t  and ( ),g z t  are denoted as ( )ˆ ,f q t  and ( )ˆ ,g q t , re-
spectively, we obtain:   

( )0 0

ˆ
ˆ ˆ,f i q g A g

t
ρ β∂

= − ≡
∂

                   (1b) 

2
0

0 02
00

ˆ ˆ ˆˆ ˆ,M qg iq f g B f C g
t ρρ κ

∂
= − ≡ −

∂
              (2b) 

where we have defined: 

0 0 ,A i qρ β= −                         (3) 

0 2
0

,iqB
ρ κ

=                          (4) 

2
0

0
0

.M qC
ρ

=                          (5) 

As the principal goal of this communication is to compare the effects of stan-
dard derivatives, conformable ones, and Caputo’s derivatives, and not in ob-
taining an accurate description of a particular viscoelastic fluid, we will consider 
an ideal case (a toy model) where β, A0, B0 and C0 take the following values: 
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0 0 01, 1, , 1.A A i B B i C Cβ = = ≡ − = ≡ = ≡              (6) 

These values may be obtained with many different values of ρ0, q, κ and M0. In 
particular, the values presented in (6) could be obtained using 0 qρ κ= = =

0 1M = . It should be observed that using these numerical values of the parame-
ters ρ0, q, κ and M0 we will be able to obtain numerical solutions of the Equa-
tions (1b)-(2b), but the solutions so-obtained will no longer be the complete 
Fourier transforms ( )ˆ ,f q t  and ( )ˆ ,g q t , since we have fixed the value of the 
wavenumber q. Therefore, we will define the functions: 

( ) ( ) ( ) ( )ˆ ˆ1, , 1,f t f q t g t g q t= = = =                 (7) 

and therefore these functions will be the solutions of the system: 

f Ag
t

∂
=

∂
                          (1c) 

g Bf Cg
t

∂
= −

∂
                        (2c) 

In the following we will consider two generalizations of the System (1c)-(2c). 
To begin with, let us consider a generalization of the System (1c)-(2c) where the 
first-order temporal derivatives are replaced by conformable derivatives.  

The conformable derivative (CD) of order 0 1α< ≤  of a function [ ): 0,f ∞ →

  is defined in the form [28]:  

( )( )
( ) ( )1

0
lim .

f t t f t
T f t

α

α ε

ε

ε

−

→

+ −
=                 (8) 

Moreover, if ( )f t  is a differentiable function, and ( ]0,1α ∈ , the principal 
property of the CDs tells us that [28]: 

( )( ) 1 d ,
d
fT f t t
t

α
α

−=                        (9) 

At first sight the true meaning of this equation is not apparent. However, in 
Appendix B we will see that the function 1t α−  can be considered (at least in 
certain cases) as an approximate way to incorporate a memory effect.  

On the other hand, when ( ], 1n nα ∈ + , the CD of ( )f t  is defined in the 
form [33]: 

( )( ) ( )( )( ) ,nT f t T f tα β=                     (10) 

where nβ α= −  and ( )nf  is the n-th derivative of f. Consequently, if 
( ]1,2α ∈ , we will have 1β α= − , and therefore: 

( )( ) ( )( )( )
( )1 2

1 1 2
2

d d .
d d
f fT f t T f t t t
t t

β α
α β

− −= = =           (11) 

If we now replace the first-order temporal derivatives in System (1c)-(2c) by 
CDs we obtain the system: 

,T f Agα =                          (1d) 

.T g Bf Cgα = −                        (2d) 
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We can obtain the solution of this system by using either Equation (9), if 
( ]0,1α ∈ , or Equation (11), if ( ]1,2α ∈ . In the first case, when ( ]0,1α ∈ , the 

System (1d)-(2d) can be transformed into the system: 

1
1 ,f Ag

t t α−

∂
=

∂
                         (1e) 

1 1 ,g B Cf g
t t tα α− −

∂
= −

∂
                      (2e) 

and if we now introduce the change of variables: 

,tx
α

α
=                            (12) 

and we define: 

( ) ( )( ) ( )1F x f x f tαα≡ =                    (13) 

( ) ( )( ) ( )1G x g x g tαα≡ = ,                   (14) 

the System (1e)-(2e) is transformed into: 

d ,
d
F AG
x
=                           (1f) 

d .
d
G BF CG
x
= −                         (2f) 

If we now use the values of A, B and C given in (6), the solution of this system 
is the following: 

( ) ( ) ( ) ( )1 12 2
1 2

2 3e e 1 e e e e ,
5 5 5 5

i x i xix x ix xi iF x c i c− − − −      = − + + + + −         
   (15) 

( ) ( ) ( ) ( )1 12 2
1 2

2 2e e e e 1 e e ,
5 5 5 5

i x i xix x ix xi iG x c c i− − − −      = − − + − + +         
   (16) 

where c1 and c2 are the initial conditions ( )1 0c F=  and ( )2 0c G= . And from 
(15)-(16) we can obtain the solutions ( )f t  and ( )g t  of the System (1e)-(2e) 
in the form: 

( ) ( )f t F tα α=  and ( ) ( )g t G tα α=                (17) 

It should be noticed that we could also obtain the solution of the System 
(1e)-(2e) numerically. And the numerical solution might be more convenient if 
we wanted to use initial conditions defined at a time different from zero, because 
in such a case the expressions for the constants c1 and c2 (in terms of the initial 
conditions) become rather cumbersome. 

Now let us consider the second case, when ( ]1,2α ∈ . In this case the System 
(1d)-(2d) can be transformed into: 

2

2 2 ,a
f A g

t t −

∂
=

∂
                          (1g) 

2

2 2 2 .a a
g B Cf g

t t t− −

∂
= −

∂
                       (2g) 
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In this case we cannot find a change of variables [similar to (12)] which per-
mits to transform this system into a new one, with constant coefficients [similar 
to (1f)-(2f)]. Therefore, in this case, when ( ]1,2α ∈ , we cannot find the solution 
of this system in a closed analytical form, and therefore we will obtain numerical 
solutions (as we shall see below). 

We can now obtain solutions of the System (1d)-(2d) in three different cases: 
when 0.5α =  and 1α =  [Using (15)-(17), or solving numerically the system], 
and when 1.5α =  [solving numerically (1g)-(2g)]. When 0.5α =  and 1α =  
we will use the initial conditions: 

( ) ( )1 1 1.5f g= =                         (18) 

and in the case 1.5α =  the following initial conditions will be used: 

( ) ( )1 1 1.5f g= =  and ( ) ( )1 1 0.6f g′ ′= = −             (19) 

When 1.5α =  we use initial conditions defined at 1t =  (instead of using 
0t = ) because the values of the derivatives which appear in the System (1g)-(2g) 

tend to infinity when 0t → , and this might be troublesome when we obtain 
numerical solutions of this system. And consequently, also when 0.5α =  and 

1α =  we use initial conditions defined at 1t =  [as seen in (18)] to solve the 
System (1e)-(2e), and in this case the solutions of this system will be obtained 
numerically. 

It is interesting to observe that these initial conditions guarantee that  
( ) ( )f t g t=  in the three cases: 0.5α = , 1α =  and 1.5α = . In Figure 1 we 

can see the forms of ( )f t  corresponding to these three values of α. And the 
real and imaginary parts of ( )f t  are shown in Figure 2 and Figure 3, respec-
tively. 
 

 

Figure 1. Modulus of the function ( )f t  [solution of the System (1d)-(2d)] when 

0.5α =  (dashed line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial condi-
tions used to obtain these three solutions are shown in (18)-(19). 
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Figure 2. Real part of ( )f t  [solution of the System (1d)-(2d)] when 0.5α =  (dashed 

line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial conditions used to ob-
tain these three solutions are shown in (18)-(19). 
 

 

Figure 3. Imaginary part of ( )f t  [solution of the System (1d)-(2d)] when 0.5α =  

(dashed line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial conditions used 
to obtain these three solutions are shown in (18)-(19). 

3. Fractional System with Caputo’s Derivatives 

In this section we consider a fractional generalization of the System (1c)-(2c), 
where the first-order temporal derivatives are replaced by left-handed Caputo’s 
derivatives. 

The left Caputo derivative of a function ( )f t  is defined in the form [34]:  

( ) ( )

( ) ( )
( )0 10

1 d .
n

t n

t f
D f t

n t
α

α

τ
τ

α τ + −=
Γ − −

∫                 (20) 
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where [ )1,n nα ∈ − , and ( )nf  is the n-th derivative of f. 
Now let us replace the first-order derivatives in (1c)-(2c) by Caputo’s deriva-

tives. In this way we obtain the fractional system: 

0 ,tD f Agα =                          (1h) 

0 .tD g Bf Cgα = −                        (2h) 

This system seems difficult to solve. However, it is possible to obtain the Lap-
lace transform (LT) of the Caputo derivative using the equation [34] [35]: 

( ) ( ) ( ) ( ) ( )
1

1
0

0
0 ,

n
kk

t
k

D f t s s f s s fα α α
−

− −

=

  = −  ∑           (21) 

where ( )f s  denotes the LT of ( )f t , ( ) ( )0kf  is the k-th derivative of ( )f t  
[evaluated at 0t = ], ( ) ( ) ( )0 0 0f f≡ , and n is the integer such that  

( ]1,n nα ∈ − . It is worth mentioning that the use of this equation implies that we 
are considering that the values of ( ) ( )0kf  and ( ) ( )0kg  are adequate initial 
conditions to define a particular solution of the fractional System (1h)-(2h). 
Therefore, in this communication we will not consider other possible ways of in-
itialize a fractional differential equation, since the alternative ways that have 
been proposed to deal with this problem [36] [37] [38] [39], such as introducing 
time-varying initializations, or taking into account possible differences between 

( ) ( )0kf +  and ( ) ( )0kf − , are far beyond the scope of this work. In the following 
we will see that Equation (21) will permit us to obtain the analytical solution of 
the System (1h)-(2h). Therefore, taking the LT of this system we obtain: 

( ) ( )0 ,tD f t s Agα  =                       (1i) 

( ) ( )0 ,tD g t s Bf Cgα  = −                     (2i) 

where ( )f s  and ( )g s  are the LT of ( )f t  and ( )g t , respectively. It is im-
portant to observe that the solution of this system changes depending on wheth-
er ( ]0,1α ∈  or ( ]1,2α ∈ , because the expression (21) is different if 1α <  or 

1α > . Therefore, we will consider these two cases [ ( ]0,1α ∈  or ( ]1,2α ∈  sepa-
rately. 

In the first case, when ( ]0,1α ∈ , we have 1n = , and Equation (21) reduces 
to: 

( ) ( ) ( ) 1
0 0tD f t s s f s s fα α α−  = −                 (22) 

and a similar equation holds for the LT of the Caputo’s derivative of ( )g t : 

( ) ( ) ( ) 1
0 0tD g t s s g s s gα α α−  = −                 (23) 

where we have defined ( ) ( ) ( )0
0 0 0f f f= =  and ( ) ( ) ( )0

0 0 0g g g= = . If we 
now substitute Equations (22)-(23) in the System (1i)-(2i), and we use the values 
of A, B and C given in (6), we obtain a system of two algebraic equations for 
( )f s  and ( )g s , whose solution is the following: 

( ) ( ) ( )
1

0 02 1 1
1

sf s s f i g
s s i

α
α

α α

−
 = + + − + + +

          (24) 
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( )
1

0 02 1
sg s if s g

s s i

α
α

α α

−
 = + + + +

                (25) 

Now it is convenient to rewrite these expressions in a different form, which 
will be more adequate to obtain the inverse LT of these functions. To clarify the 
procedure, let us show explicitly how to rewrite the first term of the right- 
hand-side (rhs) of (24): 

12 1
0 0 0

2 2

2

1 11
1 11 1

s f f f i
i ss s i s ss

s s

α

α α α α

α α

−− + = = + + ++ + +    + + 
 

      (26) 

Following a similar procedure, we can rewrite the remaining two terms of the 
rhs of (24), and the two terms of the rhs of (25). In this way we can rewrite 
( )f s  and ( )g s  in the following forms: 

( )
1 1

0 02 1 2

1

01 2

1 1 1 1 1 11 1

1 1 11 ,

i if s f f
s s s s s s

i i g
s s s

α α α α α

α α α

− −

+

−

+

+ +   = + + + + +   
   
− + + + + 

 

      (27) 

( )
1 1

0 01 2 2
1 1 1 1 11 1 .i i ig s f g

ss s s s sα α α α α

− −

+

+ +   = + + + + +   
   

      (28) 

The essential point of this transformation is that ( )f s  and ( )g s  are now 
written in terms of the trinomial: 

1

2
1 11 i
s sα α

−+ + + 
 

                      (29) 

and this trinomial can be expanded in series using the multinomial expansion 
(Chap. 24 of [40]): 

( ) ( ) ( )1

0 0

1 !
1

! !

n m
n m

n m

n m
x y x y

n m

+∞ ∞
−

= =

− +
+ + =∑∑             (30) 

Using this expansion each of the terms which appear in the right-hand-sides 
of (27) and (28) can be expressed as a double series, and written in this way it is 
possible to obtain the inverse LT of ( )f s  and ( )g s , as it is possible to obtain 
the inverse LT of each of the terms in these series. It should be emphasized that 
this is precisely the procedure followed in the Technical Publication of the 
NASA “Generalized Functions for the Fractional Calculus” [41] to obtain all the 
series which define the seven special functions studied in this reference, and 
shown in Table 1 of [41]. 

We can now obtain the inverse LT of ( )f s  and ( )g s . In particular, the in-
verse LT of (28) is the following function: 

( )
( )

( )
( ) ( )

( ) ( ) ( )

2
0 2 , 1 1

0

2
0 2 ,1
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1
!

1 ,
!
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k
k

k
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g E i t
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α
α α

α α

α
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α α

∞

− +
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∞

−
=

−
 = − + 

−
 + − + 

∑

∑

           (31) 
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where ( ) ( ),
kE zµ ν  is the k-th derivative of the two-parameter Mittag-Leffler func-

tion ( ),E zµ ν , and it is given by the equation (see Equation (18) in Ref. [42]): 

( ) ( ) ( )
( ),

0

!
.

!

n
k

n

n k zE z
n n kµ ν µ ν

∞

=

+
=

 Γ + + 
∑               (32) 

Consequently, Equation (31) can be used to obtain the form of ( )g t  when 
( ]0,1α ∈ . 

We could proceed in a similar way to obtain ( )f t . However, it is interesting 
to observe that in the particular case when 0 0f g= , the functions (27) and (28) 
coincide, and consequently, in this case (when 0 0f g= ), the right-hand-side 
(rhs) of Equation (31) also gives us the form of ( )f t . 

Now let us obtain ( )f s  and ( )g s  in the case when ( ]1,2α ∈ . Following a 
procedure similar to that used to obtain the System (27)-(28), in this case the 
Equations (1i)-(2i) imply that: 

( ) ( ) ( )

( ) ( )

1 1
0 0

2 1 2 2 2 2

1 1
0 0 0 0

1 2 2 2 2

1 11 1 1 11 1

1 11 1 1 11 1 ,

i f i fi if s
s s s s s s

i g i g f fi i
ss s s s s s s

α α α α α α

α α α α α α
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+ +
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   

′− − ′+ +   + + + + + + + +   
   

  (33) 

( )
1 1

0 0
1 2 2 2

1 1
0 0

2 2 2

1 1 1 11 1

1 1 1 11 1 .

if ifi ig s
s s s s s s

g gi i
s s s s s s

α α α α α α

α α α α

− −

+ +

− −

′+ +   = + + + + +   
   

′+ +   + + + + + +   
   

         (34) 

where ( )0 0f f′ ′≡  and ( )0 0g g′ ′≡ . It is interesting to observe that also in this 
case, when ( ]1,2α ∈ , it has been possible to express ( )f s  and ( )g s  in terms 
of the trinomial shown in (29). And consequently, also in this case we can use 
(30) to express ( )f s  and ( )g s  as series. Then we can obtain the inverse LT 
of each of the terms in these series, and in this form we can obtain the inverse LT 
of ( )f s  and ( )g s . In particular, the inverse LT of (34) gives us the following 
result:  
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           (35) 

The form of ( )f t  can be obtained in a similar way. However, if the condi-
tions 0 0f g=  and 0 0f g′ ′=  are satisfied, a bit of algebra shows that the expres-
sions (33) and (34) coincide, and consequently, ( )f t  is also given by the rhs of 
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Equation (35). 
With the expressions (31) and (35) we are now in conditions of calculating the 

forms of ( )f t  when 0.5,1.0α =  and 1.5. In these three cases we will consider 
that 0 0f g=  and 0 0f g′ ′= , and consequently, in the three cases we will have 
( ) ( )f t g t= . 
In Figure 4 we can see the form of ( )f t  when 0.5α =  (dashed line), 

1α =  (solid line), and 1.5α =  (dot-dashed). And Figure 5 and Figure 6 show 
the forms of ( )Re f t    and ( )Im f t    for these three values of α. 
 

 

Figure 4. Modulus of the function ( )f t  [solution of the System (1h)-(2h)] when 

0.5α =  (dashed line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial condi-
tions used to obtain these three solutions are shown in (36)-(37). 
 

 

Figure 5. Real part of ( )f t  [solution of the System (1h)-(2h)] when 0.5α =  (dashed 

line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial conditions used to ob-
tain these three solutions are shown in (36)-(37). 
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Figure 6. Imaginary part of ( )f t  [solution of the System (1h)-(2h)] when 0.5α =  

(dashed line), 1α =  (solid line), and 1.5α =  (dot-dashed). The initial conditions used 
to obtain these three solutions are shown in (36)-(37). 
 

The solutions corresponding to 0.5α =  and 1α =  were obtained using the 
initial conditions: 

0 0 1f g= =                           (36) 

and the solution corresponding to 1.5α =  was obtained with the initial condi-
tions: 

0 0 1f g= =  and 0 0 0.5f g′ ′= = −                  (37) 

4. Discussion 

The following 6 observations (OBS) can be drawn from Figures 1-6: 
Concerning the solutions obtained with conformable derivatives: 
OBS-1: 
The modulus, as well as the real and imaginary parts, of the solutions of Sys-

tem (1d)-(2d) are extremely similar when 0.5α =  and 1α =  (see Figures 
1-3). 

OBS-2: 
The solution of System (1d)-(2d) corresponding to 1.5α =  is significantly 

different from the solutions obtained with 0.5α =  and 1α = . In particular, 
the real and imaginary parts of the solution obtained with 1.5α =  exhibit 
high-amplitude oscillations that do not appear in the solutions obtained with 

0.5α =  and 1α =  (see Figure 2 and Figure 3). 
Concerning the solutions obtained with Caputo’s derivatives: 
OBS-3: 
The modulus, as well as the real and imaginary parts of the solutions of Sys-

tem (1h)-(2h) are similar when 0.5α =  and 1α =  (see Figures 4-6). Howev-
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er, these three functions, ( )f t , ( )Re f t    and ( )Im f t   , tend to zero at a 
slower rate when 0.5α = , in comparison with the results corresponding to 

1α =  (see Figures 4-6). 
OBS-4: 
When 1.5α =  the modulus, as well as the real and imaginary parts of the 

solutions of System (1h)-(2h), exhibit high-amplitude oscillations that are not 
observed when 0.5α =  and 1α =  (see Figures 4-6). 

Concerning the comparison between conformable and Caputo’s derivatives: 
OBS-5: 
The behaviours of the real parts of the solutions of System (1d)-(2d) [shown 

in Figure 2] are similar to the behaviours of the real parts of the solutions of 
System (1h)-(2h) [shown in Figure 5]. 

OBS-6: 
The behaviours of the imaginary parts of the solutions of Systems (1d)-(2d) 

[shown in Figure 3], are also similar to the behaviours of the imaginary parts of 
the solutions of System (1h)-(2h) [shown in Figure 6]. 

From the six observations listed above we can extract three essential conclu-
sions: 

FIRST: 
In spite of the enormous differences between the definitions of conformable 

[Equation (8)] and Caputo’s derivatives [Equation (20)], the solutions of the 
System (1d)-(2d) [which contains conformable derivatives] and the System 
(1h)-(2h) [which contains Caputo’s derivatives], exhibit clear (and unexpected) 
similarities. These similarities constitute a surprising result, since the conforma-
ble derivatives are local operators, while most of the fractional derivatives (such 
as those of Caputo, Riemann-Liouville, Grünwald-Letnikov [34], or Ortigueira 
[43]) are nonlocal operators, and consequently it seemed unlikely that these two 
operators might produce similar results. 

SECOND: 
The graphs shown in Figures 1-3 show that we will obtain a small change if 

we replace the fist-order derivatives which appear in the System (1b)-(2b) by 
conformable derivatives of an order ( )0,1α ∈ . On the other hand, if we replace 
the first-order derivatives by Caputo’s derivatives of an order ( )0,1α ∈ , we will 
obtain solutions which decay in time at a slower rate (as seen in Figures 4-6). 

THIRD: 
The six figures presented in Sections 2 and 3 show that the solutions obtained 

with conformable or Caputo’s derivatives of order 0.5α =  are qualitatively 
similar to those obtained with standard first-order derivatives. On the other 
hand, conformable and Caputo’s derivatives of order 1.5α =  produce solutions 
which are qualitatively different from those of the standard system. The con-
formable and Caputo’s solutions obtained in this case ( 1.5α = ) exhibit high- 
amplitude oscillations which do not appear when 0.5α = . This qualitative dif-
ference in the behavior of the solutions obtained with 0.5α = , and those ob-
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tained with 1.5α = , can be understood in both cases, i.e., when we use con-
formable derivatives, and when we use Caputo’s derivatives. Let us begin by 
considering the case of conformable derivatives. When we replace the first-order 
derivatives which appear in System (1c)-(2c) by conformable derivatives of order 

0.5α = , we obtain the first-order System (1e)-(2e). On the other hand, when 
the first-order derivatives of System (1c)-(2c) are replaced by conformable de-
rivatives of order 1.5α = , we obtain the second order System (1g)-(2g). Con-
sequently, when we use 0.5α = , the order of the system under study does not 
change: initially we had the first-order System (1c)-(2c), and after the replace-
ment of the first-order derivatives by conformable derivatives of order 0.5α = , 
we obtain a new first-order system: the System (1e)-(2e). This is reason for the 
similarity of the solutions obtained with 1α =  and 0.5α = . On the other hand, 
when we use 1.5α = , the original first-order System (1c)-(2c) is transformed 
into the second-order System (1g)-(2g), and this is an important qualitative 
change (similar to replace the diffusion equation by the wave equation), and this 
change will necessarily produce important changes in the solutions. This is the 
reason for the qualitative difference between the solutions obtained with 1α =  
and 1.5α = . Now let us consider the case of Caputo’s derivatives. In this case 
the reason for the qualitative difference between the solutions of the fractional 
System (1h)-(2h) when 0.5α =  and 1.5α =  can be found in the definition 
itself of the Caputo’s derivative [Equation (20)]. This definition implies that 
when the first-order derivatives in System (1c)-(2c) are replaced by Caputo’s de-
rivatives of order 0.5α = , we arrive at a fractional system [System (1h)-(2h)] 
whose solution requires the values of the first-order derivatives ( ) ( )1f t  and 

( ) ( )1g t  [as the Caputo’s derivatives of ( )f t  and ( )g t  when 0.5α =  are 
defined by integrals which contain first-order derivatives in the integrands: see 
Equation (20) with 1n = ], and these derivatives are precisely the functions de-
fined in the original first-order System (1c)-(2c). On the contrary, when the 
first-order derivatives in System (1c)-(2c) are replaced by Caputo’s derivatives of 
order 1.5α = , the solution of the fractional System (1h)-(2h) will now require 
the values of the second-order derivatives, ( ) ( )2f t  and ( ) ( )2g t  [since the 
integral in (20) will now contain a second-order derivative, because now 2n = ], 
and these functions do not appear in the original first-order System (1c)-(2c). 
Therefore, there exists an important qualitative difference in the form of calcu-
lating the solutions of the fractional System (1h)-(2h) when we change from 

0.5α =  to 1.5α = , and consequently an important qualitative change in the 
solutions should be expected. 

It is worth observing that the third conclusion mentioned above might be 
extrapolated as follows. 

The solutions of the generalized versions of the System (1c)-(2c) obtained in 
this paper suggest that whenever we generalize a differential equation (ordinary 
or partial) by replacing a derivative of n-th order by a conformable or a Caputo’s 
derivative of order α, the solutions of the generalized equation will be similar to 
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the solutions of the original n-th order equation if ( )1,n nα ∈ − . However, if 
( ), 1n nα ∈ + , the solutions of the generalized equation will probably be qualita-

tively different from the solutions of the original equation, and consequently, 
these generalized solutions may not be physically acceptable. And this qualitative 
difference could be explained by the same arguments which permitted us to un-
derstand the difference in the solutions of the generalized Systems (1d)-(2d) and 
(1h)-(2h) when we change from 0.5α =  to 1.5α = . 

5. Conclusion 

To close this article, we would like to point out that it would be of interest to ge-
neralize the analysis presented in this communication in order to apply it to a 
more realistic system. In particular, the initial conditions and the values of the 
relevant parameters should be adequately chosen to enable us to calculate mea-
surable transport properties, such as the diffusion coefficient, or the light scat-
tering spectrum of the fluid. This issue will be investigated elsewhere.  
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Appendix A 

The conformable derivatives have been used in the study of several areas. For 
example: in optics [44], in chaotic systems [45], in generalizations of Newtonian 
mechanics [46], and in generalizations of important PDEs of mathematical 
physics [47] [48]. On the other hand, the beta derivative has also been used in 
several areas. For example: quantum mechanics [49], optical solitons [50], fer-
roelectric materials [51], disease propagation [52] and in generalized PDEs of 
mathematical-physics [53].  

The examples mentioned in the previous paragraph show that the conforma-
ble and the beta derivatives have aroused interest in many fields, and interesting 
results have been found using these derivatives. However, a controversial issue 
concerning these operators is whether they may, or may not, be considered as 
“fractional derivatives” (FDs). Initially, when they were introduced in [28] [29], 
they were proposed as FDs. However, in 2015, a few months after the introduc-
tion of the conformable derivatives in [28], Ortigueira and Tenreiro Machado 
proposed a well-defined criterion which permits to decide if an operator may be 
classified as a FD or not [31], and they found that according to this criterion, the 
conformable derivatives are not FDs. And afterwards, in 2019, Abdelhakim pre-
sented a careful analysis of the conformable derivatives [30], and he also arrived 
at the conclusion that the conformable derivatives should not be considered as 
FDs. In spite of these works, conformable and beta derivatives are still being re-
ferred to as “fractional derivatives” in some articles [44] [49] [53], although an 
increasing number of scientists is now regarding the conformable and the beta 
derivatives as natural extensions of the classical derivative, rather than fractional 
derivatives [51]. 

Appendix B 

It is well-known that the left-handed fractional derivatives of Caputo, Rie-
mann-Liouville and Grünwald-Letnikov take into account memory effects. In 
particular, let us consider the left-handed Riemann-Liouville derivative of order 

[ )0,1α ∈ : 

( ) ( )
( )

( )0 0

1 d
1t

f
D f t

t
α

α

τ
τ

α τ

∞
=
Γ − −

∫                (B1) 

If we now consider the particular case when ( )f t t= , the integral in (B1) can 
be evaluated (see Equation (2.12) in [35]), and the following result is obtained: 

( )
1

0
1

2tD t tα α

α
−=

Γ −
                     (B2) 

On the other hand, according to Equation (9), the conformable derivative of 
( )f t t=  is the following: 

( )( ) 1T f t t α
α

−=                        (B3) 

Therefore, in the particular case when ( )f t t= , the function of time 1t α−  
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which appears in the conformable derivative [Equation (9)], reproduces exactly 
the time dependence of the memory contribution given by the Riemann- 
Liouville fractional derivative shown in (B2). This result shows that the function 

1t α− , which appears in Equation (9), may be considered as the medium used by 
the conformable derivatives to take into account memory effects (at least in an 
approximate way). 
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