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Abstract

We introduce the concepts of unitary, almost unitary and strongly almost un-
itary subset of an ordered semigroup. For the notions of almost unitary and
strongly almost unitary subset of an ordered semigroup, we use the notion of

59—

translational hull of an ordered semigroup. If (,-,<) is an ordered semi-

group having an element e such that e<e’ and Uis a nonempty subset of S
such that u<eu, u<ue forall uecU, we show that Uis almost unitary in

S if and only if U is unitary in (eSe]z ={teS:(3seS) tSese} . Also if
(S,,<) is an ordered semigroup, e¢S, U is a nonempty subset of §
S¢:=SuU{e} and U°:=UuU{e}, we give conditions that an (“extension” of
S) ordered semigroup (Se,*,—_<) and the subset U° of S° must satisfy in

order for Uto be almost unitary or strongly almost unitary in § (in case U'is
strongly almost unitary in S, then the given conditions are equivalent).

Keywords

Left (Right) Translation of an Ordered Semigroup, Bitranslation of an
Ordered Semigroup, Translational Hull of an Ordered Semigroup, Unitary
Subset of an Ordered Semigroup, Almost Unitary Subset of an Ordered
Semigroup, Strongly almost Unitary Subset of an Ordered Semigroup

1. Introduction: Prerequisites

In a previous paper, the author introduced the concepts of free ordered product
and ordered semigroup amalgam showing that an ordered semigroup amalgam
is embeddable in an ordered semigroup if and only if it is naturally embedded in
its free ordered product. Howie [1] gave sufficient conditions under which a
(semigroup) amalgam can be embedded in a semigroup. To do this Howie ge-

neralized the concept of unitariness to that of almost unitariness and his basic
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result is based on almost unitariness of a subset of semigroup. In this paper we
study “similar concepts” in case of ordered semigroups applying the (usual for
ordered semigroups) following “technique”: if (S,-<) isan ordered semigroup,
then, instead of an identity element, we consider an element e of S such that
e<e’ and also for a nonempty subset 4 of Swe usually consider the subsets of S,

(A]z ={xeS:(EIa eA)xSa} and [A)z ={xeS:(3aeA)a£x} . In this pa-
per, taking into account Howie’s definitions (see [1] [2] (§VIII.3) and ([3] §9.4))
we introduce the concepts of unitary, almost unitary and strongly almost unitary
subset of an ordered semigroup Sin terms of left and right translations of an or-
dered semigroup S (as well as the translational hull of $). For the definitions and
results presented in this paragraph, we refer to [4] [5]. An ordered semigroup
(S,,<) is a semigroup (S,) with an order relation “<” which is compatible

« »

with the operation (ie for a,b,ceS, a<b implies a-c<bh-c and
c-a<c-b).Nowlet (S,,<) bean ordered semigroup and A,p:5—S.
e 1 iscalled a left translation of S if

i) A(xy)=A(x)y forall x,yeS.

ii) For x,yeS, x<y implies A(x)<A(y) (ie. A is an isotone map-
ping).

* p iscalled a right translation of Sif

i) p(xy)=xp(y) foral x,yeS.

ii) For x,yeS, x<y implies p(x)<p(y) (ie. p is an isotone map-
ping).

It is readily to prove that the set A(S) (resp. P(S)) of all left (resp. right)
translations of Sis a semigroup under the usual composition of mappings. On
the set:

* A(S) we define a binary relation

f<hge f(x)<g(x) foral x,yesS
* P(S) we define a binary relation
f<"ge f(x)<g(x) foral x,yesS

Then it is straightforward to verify that (A(S ),0, <" ), (P(S ),e,<" ) are or-
dered semigroups. If a €S, then
* The mapping 4,:5S—> S, A,(x):=ax is called inner left translation in-
duced by a.
* The mapping p,:S—S, p,(x)=xa is called inner right translation in-
duced by a.
It is a matter of routine to prove that A, (resp. p,) is a left (resp. right)
translation of Sand A,0p, =p, o 4,.
A left translation A and a right translation p are linked if for every
x,yeS, xA(y)=p(x)y and then the pair (1,p) is called a bitranslation of
S. Clearly (4,,p,) is a bitranslation of S for every beS. It is easy to verify
that the “product” of two bitranslations of S, say (4,p), (4',p'), defined by
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(2.p)0(4,p") = (Ao A, p"e p)

is again a bitranslation of S. Therefore the set Q(S) of all bitranslations of §
under the operation “ ¢ ” defined above is a semigroup. Also the binary relation
“<?”on Q(S) defined by the rule that

(A,p)<? (A, p)e A<t A, p<t p!

can be easily shown that it is an order relation on Q(S) compatible with the
operation “¢ ” and hence (Q(S ),O,SQ) is an ordered semigroup called trans-
lational hull of S. The concept of translational hull of an ordered semigroup was
introduced by the author in his Doctoral Dissertation.

If Uis a nonempty subset of S, then we denote
. (U]i ={xeS:(3ael)x<a
. [U)z ::{xeS:(Elan)an}

Let now 7T'be a subsemigroup of (S,.<). Then (T,-;,<,) is an ordered se-

« »

migroup where “-.” and “<,” are the restrictions of the operation and or-

der relation “<” of Son T'respectively, that is,

ayb=a-b (a,beS)and <.:=<N(TxT)

It is clear that if 7'is a subsemigroup of S, then [T )S

<

groups of S. In the following, when we have a subsemigroup 7 of S, we shall al-

and (T]i are subsemi-

ways consider I"as an ordered semigroup with the previous structure (7,-,<;)
and hence, if A is a nonempty subset of 7, then
T
(A]ST ={xeT:(aecd)x<, a}

. [A); ={xeT:(Jacd)ax, x|

Obviously
(A]T (A]zmT and [A4)

<r

a1

T
2. Unitary Subsets of an Ordered Semigroup

Definition 2.1: Let (S,-,<) be an ordered semigroup and U be a nonempty
subset of 8.

i) Uis called left unitaryin Sif

D [U). (L

II) for wueU and seS such that w<us, we have s<v for some
veU

ii) Uis called right unitaryin Sif

D ) U]

II) for waueU and seS such that w<su, we have s<v for some
veU

iiif) Uis called unitaryin Sif it is both left and right unitary. o

Proposition 2.2: Let (S,-,<) be an ordered semigroup, U be a left (resp.
right) unitary subset of Sand 7'be a subsemigroup of S containing U. Then Ulis
a left (resp. right) unitary subset of T.

Proof: As we mentioned above, since 7'is a subsemigroup of S, we consider T’
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as an ordered semigroup endowed with the operation and order relation defined
by
a,b=a-b, a,beT and <. =<nN(TxT)

and hence, since U T, by definition we have
[U), ={teT:(3weU)ws, 1} and (U], ={teT:(IveU)r<, v}

_ .
we have ye[U )i NT and hence ye[U )j . Since U'is a left unitary subset of S
(Definition 2.1 ii I)) then ye(U]i and hence v e(U]i mT:(U]: . Next we
shall show that the condition i)II) of Definition 2.1 is ‘Erue. Let M;,Tu eU and

To prove that [U):T c(U]. , suppose ye[U). . Since [U)

T T
<r <r <r

teT suchthat w<,u- t.Clearly u- t=u-t and w<u-t¢. Since Uis a left
unitary subset of S (Definition 2.1 i) II)) there exists veU such that t<v, ie
t <, v. Therefore the conditions I), II) of Definition 2.1 i) hold and so U'is a left
unitary subset of 7. O

Remark 2.3: By Proposition 2.2 it follows directly that if (S,.,s) is an or-
dered semigroup, U'is a unitary subset of Sand 7'is a subsemigroup of S con-
taining U, then Uis a unitary subset of 7. O

Proposition 2.4: Let (S,-,<) be an ordered semigroup, U be a nonempty
subset of Sand 7'be a subsemigroup of S containing U. The following are equiv-
alent:

i) Uis a left (resp. right) unitary subset of 7.

i)a) [U) nTc (U]

p) If wuelU and teT with w<ut (resp. w<tu ), then there exists
veU suchthat t<v.

Proof: As we mentioned above, since 7'is a subsemigroup of S, we consider 7"

as an ordered semigroup (7,-,,<,) where

a,b=a-b, a,beT and <. :=<N(TxT)

i) = ii) Itis clear that Uis a nonempty subset of 7.
a) From Definition 2.1 we have [U )Z c(U ]Z and hence

[U). AT (U]

p) Let waueU and teT such that w<ur. From the definitions of “-.”
and “<,” we immediately have (since UcT) w<,u-,t and consequently
(since Uis a left unitary subset of 7) there exists veU such that 7<, v. Thus
(since <,c<) t<v.

ii) = 1) From a) we obtain directly [U)z NT c (U]i NT,thatis

[U). (U] . Now let wueU and teT such that w<, u- t. From the
=T =T

»

definitions of “-,” and “<,” we have (since UcT) w<u-t and so, by B),
there exists veU such that #<v which clearly means that 7<, v. Then,
from Definition 2.1 i), it follows immediately that Uis a left unitary subset of 7
o

By Definition 2.1 and Proposition 2.4 we directly have the following
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Proposition 2.5: Let (S,-,<) be an ordered semigroup, U be a nonempty
subset of Sand 7'be a subsemigroup of S containing U. The following are equiv-
alent:

i) Uis unitary in 7.

i) @) [U) nTc (U]

P If wuelU and reT with w<ur, then there exists veU such that
t<v.

Y If wueU and teT with w<tu, then there exists veU such that
t<v.oO

3. Almost Unitary Subsets of an Ordered Semigroup

Proposition 3.1: Let (S,-<) be an ordered semigroup, A be a left transla-
tion of § and p be a right translation of § such that 1op=poA. Then
A(p(S)) isa subsemigroup of S.

Proof: Suppose «a,be S . Then

Ap(@))A(p())

=2 A( p(b))) (A is aleft translation of )
=A(p(a)p(A(b
=2(p(p(@)A(b

that is, A(p(a))A(p(b))ei(p(S)). Hence A(p(S))A(p(S))=A(p(S)) and
s0, since clearly A(p(S)) is a nonempty subset of S, A(p(S)) is a subsemi-

(p(a)
(@)p(A() (Aep=poi)
)

)) (p isaright translation of S)

group of . O

Definition 3.2: Let (S,-,<) be an ordered semigroup and U be a nonempty
subset of S. The subset Uis said to be almost unitaryin Sif there exist mappings
A,p:8— S (called associated mappings) with the following properties:

i) (4,p) isabitranslation of S(ze. (4,p)eQ(S))

ii) Aop=pol (ie. A commuteswith o)

iii) A(x)<A(4(x)) and p(x)<p(p(x)) forall xeS

iv) u<A(u) and u<p(u) forall ueU

v) Uis unitary in (/l(p(S))]j .0

Remark 3.3: By Proposition 3.1 we deduce directly that if A is a left transla-
tion of § and p is a right translation of § such that Aop=poA, then
(/I( p(S))]i is a subsemigroup of $ and hence the v) of Definition 3.2 is mea-
ningful. o

Theorem 3.4; Let (S,.<) be an ordered semigroup, eeS such that
e<e’ and U be a subset of S such that for all ueU, u<eu and u<ue.
Then

i) (eSe]’ is a subsemigroup of

ii) Uis almost unitary in Sif and only if Uis unitary in (eSe]z .

Proof:

i) Since eSe is clearly a subsemigroup of S then (eSe]i is also a subsemi-
group of .
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ii) Foreach ueU we have

u<eu<eueceleceSe

whence it follows immediately that U c (eSe]i .

(=) Let U be almost unitary in S. Then there exist mappings A,p:S —> S
with the properties i) - v) of Definition 3.2. By condition iv) of Definition 3.2, it
follows that e<A(e) and e<p(e).Hence forevery a €S we have

eae< A(e)ap(e) (A isaleft translation of S)

=A(eap(e)) (p isaright translation of )
4 (ead)

thatis, eae<A(p(eae))ei(p(S)). Thus eSec (ﬂ(p(S))]i and so

(eSe]z c (ﬂ(p(S))E . By Proposition 3.1 (since Aop=poA, see Definition
3.2 ii)) we have A(,;)(S)) is a subsemigroup of Sand hence (/'L(p(S))];g isa
subsemigroup of S. Therefore, since (/I(p(S))]j is a subsemigroup of S con-
taining (eSe]z and (eSe]i is a subsemigroup of S then we immediately have
(eSe]z is a subsemigroup of (i(p(S))]i and so, since U g(eSe]i and (by
Definition 3.2 v)) U is unitary in (ﬂ,( p(§ ))Jj , it follows from Remark 4.3 that
Uis unitary in (eSe]i . .

(<) Let Ube unitary in (eSe]z. We take for 4 and p the inner left and
inner right translation A,, p, respectively, thatis

A,:8>8, A,(x)=ex

and

P8>S, p(x)=xe

We shall show that Uis almost unitary in Swith 4,, p, as associated map-
pings. The conditions i), ii), iv) of Definition 3.2 clearly hold. For the iii) of De-
finition 3.2, take xeS. Then

A (x)=ex<e’x=e(ex)=1,(ex)=2, (/1 (x))

e

thatis, 4,(x)<24,(4,(x)). Similarly p,(x)<p,(p,(x)). Regarding v) of Defi-
nition 3.2, we observe that 4, ( p.(S )) =2,(Se)=eSe whence it follows imme-
diately that (eSe]i = (/le (p.(S ))Jj Consequently, since Uis unitary in (eSe]i ,
we deduce that Ulis unitary in (/1;( p.(S ))Jj (i.e. the condition v) of Definition
3.2 is true). Therefore, according to Definition 3.2, Uis almost unitary in S. 0

Remark 3.5: From the proof of Theorem 3.4, we immediately observe that
Theorem 3.4 also holds without the condition iii) of Definition 3.2 and the
property that A, p arelinked. o

For e¢S and 7'anonempty subset of Swe denote T°:=T U{e}.

Theorem 3.6: Let (S, <) be an ordered semigroup, Ube a nonempty subset
of Sand eg S . Also let (S ‘%, j) be an ordered semigroup with the following
properties:

i) a-b=ax*b, a,beS

ii) exScS, S*ecS
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i) <=<n(5xS)
iv) jm(Sx{e})=®
v) u<e*u and u <uxe forevery uelU*
vi) U° is unitary in (e*S" *e]j
Then Uis almost unitary in S.
Proof: Set
e 1:S—>8, A(x)=exx
s p:SoS, p(x)=xxe
Because of ii), it is evident that 4, p are well defined. Also for x,yeS

we have
A(x)es
o /I(x~y)=e*(x-y)?e*(x*y):(e*x)*y:ﬂ(x)*y = Z(x)-y
Z(x),ﬂ.(y)ES

o xﬁy;ix <y=e*x = e*y:>/1(x) j/l(y) :)> l(x)S/I(y)

So A isaleft translation of S. Similarly p is a right translation of S. More-
over for a,beS wehave

A(b)es pla)es
a-A(b) = axA(b)=ax*(exb)=(a*e)*b=p(a)*b = pla)-b

and hence A, p arelinked on S. Thus (4,p) is a bitranslation of S (ie. the

condition i) of Definition 3.2 holds). Since for any a €S
Hpl@)=A(are)=es(are)=(era)re=plexa)= p(A(a))

then the condition ii) of Definition 3.2 is true. Moreover by v) for u=e we di-
rectly have

e<exe (1)

and so foreach xeS§

ﬁ(x) =e *x(?)(e* e) *x=e* (e* x) =e* l(x)/l(f)es/i(i(x))
Thus
l(x),/l(/l(x))es
) =2(2(0) = A<A(A()
Similarly we show that p(x)< p(p(x)). Therefore the condition iii) of Defi-
nition 3.2 holds. Also, by v), for every u U we have

uje*ule(u):uj/l(u) uél(u)

Au)es
i

and in a similar way we show that u < p(u). Consequently the condition iv) of
Definition 3.2 holds.
I) Since forany aeS, A(p(a))=e*a*e thenclearly A(p(S))=exSx*e.
II) (ﬂ(p(S))]i is a subsemigroup of S (see Remark 3.3).

U (3(p(5)]
Let u €U . Then by v) we have

u=<exu<exu*e
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Thus u <exu*e and since e*u*ezl(p(u)) then u < ﬂ(p(u)) . Ob-
viously u,/i(p(u)) e S and hence, by iii), it follows that u < ﬂ,(p(u)) There-
fore u e(}t(p(S))]z andso Uc (ﬂ(p(S))]z .

W) [U):n(A(e(9)] < (U]
Let we[U)zm(/l(p(S))}i. Since we[U)i then u<w forgsome uelU

and so, by iii), © <w which obviously means that we[U" )i . Also since

we (ﬂ(p(S))]z then there exists seS suchsethat w< A(p(s))ie *s*e and

so, by iii), w<e*s*e.Hence we (e* S¢ *e} . Consequently
<

we[U")j ﬁ(e*Se*e]Se

<
S(’
But U° is unitaryin (e * S % e} and so, by Definition 2.1,

=

[v° )j A(exse *e]j“ g(w]j’ A(exse *e]je

5 5¢
Therefore we (Ue l N (e * 5 % el and thus there exists veU® such that
w=v. Since U*=Uul{e} it follows that v=e or veU. If v=e then
(wv)e= m(S X {e}) . Contradiction (see iv)). Therefore veU and since

w < v, we have (see iii)) w<v andso we (U]z . Consequently

). A (4(p(5))] (U]

V) Let wueU and te(ﬁ(p(S))]j such that w<u-r. We shall prove
that 1<v, veU.Indeed:

Since te (/I(p(S))Ji we have reS and r<A(p(s))=e*s*e for some
s€S . Hence (see iii_)) t <e*s*e. Therefore te(e*S *e]ie . Also since
w<t-u, then (see i), iii)) w < ¢*u . But (see vi) and Definition 2.1 iii)) U° is
a left unitary subset of (e*S *e]if . Consequently (see Proposition 2.4 i) =
ii)B)) there exists veU® such that £ < v. Since U°=U U{e} it follows that
v=e or veU. If v=e then (1,v)e<n(Sx{e}). Contradiction (see iv)).
Therefore veU and since ¢ < v, we have (see iii)) #<v. From II) - V) and
Proposition 2.4 ii) = i) it follows directly that U is a left unitary subset of
(4( p(S))]i . Similarly we show that Uis a right unitary subset of (A( p(S))]i .
Therefore (_see Definition 2.1 iii)) Uis a unitary subset of (ﬂ,( p(S))]j and so
the condition v) of Definition 3.2 holds. This (see Definition 3.2) completes the

proof. O

4. Strongly Almost Unitary Subsets of an Ordered Semigroup

Remark 4.1: From the proof of the Theorem 3.6 we immediately have that if
e=exe (instead of e <e*e), then for every xeS, A(x)=4(4(x)) and
p(x)=p(p(x)) (where A, p are the mappings defined in the proof of the
previous Theorem). O

Now due to Remark 4.1 it follows immediately the next
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Theorem 4.2: Let (S, <) be an ordered semigroup, Ube a nonempty subset
of Sand eg S . Also let (S ‘%, j) be an ordered semigroup with the following
properties:

i) a-b=ax*b, a,besS

ii) exScS, S*xecS

iii) e=ex*e

iv) <=<n(SxS)

v) <N (Sx{e})=0

vi) u <e*u and u <u*e foreyery uelU

vii) U° is unitary in (e* A\ *e]i .

Then there exist mappings A,p:S — S such that

a) A=Ak, p=pop

B) Uis almost unitary in Swith associated mappings 4, p.O

Remark 4.3: Observe that, due to Theorem 3.4 ii), we can equivalently replace
the conditions vi), vii) of Theorems 3.6, 4.2 with the condition “U* is almost
unitary in S°”. So, if the ordered semigroup (S ¢ %, j) satisfies the conditions
i) - v) of Theorem 3.6 (resp. the conditions i) - vi) of Theorem 4.2) and also U*
is almost unitary in S, then the conclusion of Theorem 3.6 (resp. of Theorem
4.2) remains true. This helps us better understand the connection between “al-
most unitary in S” and “almost unitaryin S°”. 0

Definition 4.4: Let (S,-,<) be an ordered semigroup and U be a nonempty
subset of S. The subset Uis said to be strongly almost unitary in §if there exist
mappings A,p0:5 — S (called associated mappings) with the following proper-
ties:

i) (4,p) isabitranslation of S (ie. (4,p)eQ(S))

ii) dop=pod (ie. A commuteswith p)

iii) A(x)=4(4(x)) and p(x)=p(p(x)) forall xeS

iv) u<A(u) and u<p(u) forall ueU

v) Uis unitary in (/”L(p(S))]i .0

Remark 4.5: Evidently if U is strongly almost unitary in S, then Uis almost
unitary in S (see Definitions 4.4, 3.2). O

From Theorem 4.2, Remark 4.3 and Definitions 3.2, 4.4 we immediately have
the following

Theorem 4.6: Let (S,-,<) be an ordered semigroup, Ube a nonempty subset
of Sand eg S . Also let (S ‘%, j) be an ordered semigroup with the following
properties:

i) a-b=ax*b, a,besS

ii) exScS, S*xecS

iii) e=ex*e

iv) <=<n(SxS)

V) u<e*u and u<ux*e for every ueU*

vi) U is unitary in (e*Se *e]i
S9).

(equivalently: U° is almost unitary in
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Then U’is strongly almost unitary in . O

The reverse of the previous Theorem also holds:

Theorem 4.7: Let (S, <) be an ordered semigroup, Ube a nonempty subset
of S'such that Uis strongly almost unitary in Sand e .S . Then we can define
an operation “*” and an order relation “<” on S§° with the following proper-
ties:

i) a-b=ax*b, a,beS

ii) exScS, S*ecS

iii) e=ex*e

iv) <=<n(SxS)

V) (S %, j) is an ordered semigroup

vi) u <e*u and u <ux*e foreevery uelU

vii) U° is unitary in (e*S" *e]i .

Proof: Since U is strongly almost unitary in S then there exist mappings

A,p:S— S satistying the properties of Definition 4.4. On S° we define
a-b, a,besS
pla), aeSb=e

- A(b), a=ebeS

e, a=b=e

axh: and <:=<U{(e,e)}

Then (Se,*) is a semigroup (§9.4). Also clearly “<” is an order relation on
S.

We shall prove that “<” is compatible with the operation “*”:

Let a,b,ceS® such that o <b. We shall show that a*c <b*c and
c*a <c*b.Since a <b and <:=<U{(e,e)} we distinguish the cases o <b
or a=b=e.

A) a<b

TherViously a,beS.For ceS° wehavethecases ceS or c=e.

Al) ceS

SinceﬂceS then a*c=a-c and b*c=5b-c.Hence

as<b=a-c<b-ca*c<b*c=Da*c<b*c

A2) c=e

SinceT,beS then a*c=p(a) and b*c=p(b).Hence

a<b=p(a)<p(b)=>axc<bxc=a*c<b*c

B) a=b=e¢

Since ce S° we have thecases ceS or c=e.

Bl) ceS
Obviously a*c=A(c) and b*c=A(c).Thus

AMe)<A(c)=axc<bxc=ax*c<b*c
B2) c=e
Since a=b=c=e then a*c=e and b*c=e.Thus

e<e>a*c<b*c
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From A), B) we immediately have a*c < b*c. Similarly we show that
c*a < c*b. Therefore (S e,*,j) is an ordered semigroup. It is evident that
the required conditions i) - v) are true. For the condition vi), take u €U . We shall
prove that u < e*u and u < u*e. By definition of “*” we have e*u=A(u).
Since U is strongly almost unitary in S, it follows by Definition 4.4 iv) that
u<A(u) and hence u<e*u.From iv) we immediately have u < e*u . Simi-
larly we show that u < u*e and thus the condition vi) holds. Now it remains
to be shown that the condition vii) is also true.

I) Obviously e*S°+*e isa subsemigroup of S° andso (e*S* e]_S: is also
a subsemigroup of S°. )

IT) Since clearly A(p(x))=e*x*e for all xeS then A(p(S))=exS+*e.
We shall show that (xl(p(S))]i =(e*S* e]_Sj :

Let ae (l(p(S))]i . Then «< ﬂ(p(b)j, beS. Since A(p(b))ee*S*e
and, from the definition of “<”, a < A(p(b)), then it follows immediately that

5€
=

Se
ae(exSxe] -

. Now take ce(e*S=e], . Then c<e*t*e, teS. Since

extxeeA(p(S)) and, from the definition of “<”, c<e*7*e, then we have
ce(2(p(5))]. -
m Ut c(exs se] :

First we shall show that U < (e*S * e]ie .Let ueU .Then

u<exu<eruxe

vi) vi)
that is, ue(e*S*e]ie.Thus Uc(e*Sx*e| )

e=e*xexece*S e thenitisreadilyveriﬁedthat Ueg(e*Se*e] .
<

v) [U9) A(exs xe] (U]

= =

s¢ .
and since clearly
-

S(’
e s e s . e 5 . e
Let ae[U ) ﬁ(e*S *e] . Then, since ae[U ) , there exists ueU
= = =
such that u < o . Since ueU*®=U U{e}, we have two cases:
IV1) u=e
Then e < o and so, by definition of “<”, we have «a =e. It is evident now
<
that a e (U "]
=
IV2) ueU
Since ue€S and u < «, then, by definition of “<”, it follows that a €S
SE‘
and u<a. Thus ae [U)i . Also, since ae (e*Se *e} , there exists teS°
< <
such that ¢ <e*t*e. But €S and so, by definition of “<”, we have
ext*recS and a<e*t*e.Since ext*eecS then, by definition of “*”, we

clearly have €S andso,byll), e*t*ee A(p(S)). Consequently
a e(/l(p(S))]j and hence a e [U)i m(ﬂ(p(S))Jj. By Definition 4.4 v), Uis

unitary in (x?,(p(S))]i and so, by Proposition 2.5 i) = ii)a), we have

[U)im(ﬂ(p(S))Jig(U]z. Thus ae(U]z whence a<w for some welU .

e

S
Since, by definition of “<”, a <w then it clear that o e (U e}
=<
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V) Let w,ueU°® and te(e*S“ *e]i? such that w < u=*7. We shall prove
that t < v, veU’: )

Since te(e*Se *e}i then reS° and ¢ <e*s*e for some seS°. If
t=e then obviously r < eeU*. Suppose t#e, ie. teS. Since t <exs*e,
then, by definition of “<”, we have e*s*eeS and f<e*s*e. By definition
of “*”, since exs*eec S, it follows that se.S . Also, since weU* :Uu{e}
then w=e or welU .If w=e, then e<u*t and so, by definition of “<”,
we immediately have u*f=e which, by definition of “*”, means that f=e.
This is impossible and so weU . Since ueU*=U u{e} we have the follow-
ing two cases:

V1) u=e

ThenTj ext. Also

S S¢
ext < e*e*s*e;}e*s*e:w =< e*s*e:e*s*ee[Ue)j ﬁ(e*Se *eL

Then, from IV), we immediately have e*s*ee (U ¢ ]i and hence e*s*e <v
for some veU®.But t <e*s*e andso t<veU°.

v2) uel S

Since seS then e*sxecexS *eI:I)/I(p(S)) and thus te (l(p(S))L
Also since w,u,t€S and w < u*¢ then, by i) and definition of “<”, we have
w<u-t. Therefore we have w,uelU and te (/I(p(S))]j such that w<u-¢.
But, by Definition 4.4 v), Uis unitary in (A( p(S))]i and so (see Proposition
2.51) = ii)p)) there exists veU such that #<v which means (see the defi-
nition of “<”) that ¢t <veU°.

From I), III) - V) and Proposition 2.4 ii) = i) it follows directly that U° is
a left unitary subset of (]efS ¢ x e]i . Similarly we show that U° is a right uni-
tary subset of (e*S"j:e i ef

subset of (e*Se *el and so the condition vii) of the Theorem holds. This
completes the proof.

. Therefore (see Definition 2.1 iii)) U° is a unitary

O

Writing down Theorems 4.7, 4.6 together, we immediately obtain the follow-
ing fundamental Theorem which actually summarizes the main results of the
paper.

Theorem 4.8: Let (S, <) be an ordered semigroup, Ube a nonempty subset
of Sand e g S . The following are equivalent:

I) Uis strongly almost unitary in S.

IT) We can define an operation “*” and an order relation “<” on S° with
the following properties:

i) a-b=ax*b, a,besS

ii) exScS, S*xecS

iii) e=exe

iv) <=<n(SxS)

V) (S %, j) is an ordered semigroup

vi) u <e*u and u <u*e forevery ueU
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e

vii) U° is unitary in (e*Se *e]i (equivalently: U° is almost unitary in
S).
O
The results presented in the paper generalize the analogous ones of semi-
groups without order (cf. [2] §VIIIL.3 and [3] §9.4) because we can consider that
every semigroup without order is an ordered semigroup with order relation be-
ing the equality relation. In general, researchers in ordered semigroups should
arrive at results that hold in the case of semigroups without order by considering
them as ordered semigroups in the previous sense and will therefore have more
general results. Note that in Section 1 we mention a technique that can be ap-

plied by any researcher studying the topic of the paper.
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