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Abstract 
An equation concerning with the subdifferential of convex functionals de-
fined in real Banach spaces and the metric projections to level sets is shown. 
The equation is compared with the resolvents of general monotone operators, 
and makes the geometric properties of differential equations expressed by 
subdifferentials clear. Hence, it can be expected to be useful in obtaining the 
steepest descents defined by the convex functionals in Banach spaces. Also, it 
gives a similar result to the Lagrange multiplier method under certain condi-
tions. 
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1. Introduction 

The subdifferentials of lower semi-continuous convex functionals defined on 
real Banach spaces play important roles in many researches of nonlinear diffe-
rential equations. In fact, for example, −Laplacian or −p-Laplacian operator with 
a usual boundary condition is the subdifferential of lower-semicontinuous con-
vex functional ( ) 1: dpv p v xϕ −

Ω
= ∇∫  defined in ( )2L Ω . 

Throughout this paper, let X be a real Banach space, *X  be the dual space, 
and *:F X X→  be the duality mapping of X. Let ( ]: ,Xϕ → −∞ +∞  be a 
proper lower-semicontinuous convex functional. The effective domain of ϕ , 
which is denoted by ( )D ϕ , is the following;  

( ) ( ){ }: : .D x X xϕ ϕ= ∈ < ∞  
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The level set of ϕ  for infXλ ϕ>  is denoted by ( ),C ϕ λ , i.e.,  

( ) ( ) ( ){ }, : : .C x D xϕ λ ϕ ϕ λ= ∈ ≤  

Since ϕ  is lower-semicontinuous and convex, the level sets are closed and 
convex in X. 

The subgradients of ϕ  at ( )x D ϕ∈  are the elements *f X∈  satisfying  

( ) ( ) ( ), ,   .x f x Xϕ ϕ ξ ξ ξ≤ + − ∀ ∈  

The subdifferential of ϕ  at x  is the set of all subgradients of ϕ  at x , and 
denoted by ( )xϕ∂ , i.e.,  

( ) { }*: :  is a subgradient of   at ,x f X f xϕ ϕ∂ = ∈  

( ) ( ) ( ){ }: : .D x D xϕ ϕ ϕ∂ = ∈ ∂ ≠ ∅  

It is known that ( ) *: D X Xϕ ϕ∂ ∂ ⊂ →  is a maximal monotone operator ([1] 
[2] [3]). 

For every closed convex subset C X⊂ , the metric projection from X onto C, 
which is denoted by ProjC , is defined as below.  

 { }Proj : : min ,   .C C
x z C x z x x X

ζ
ζ

∈
= ∈ − = − ∈  

As is seen in Figure 1, in general, ProjC x  is not unique. In this paper, we de-
note arbitral ProjCz x∈  by ProjC x  for simplicity. 
 

 
Figure 1. An example where ProjC x  is not unique. 

 
If X is reflexive, then ProjC x ≠ ∅  for x X∀ ∈ . (In fact, there is a sequence 

{ }nz C⊂  such that minn Cx z xζ ζ∈− → − . Since X is reflexive, the bounded 
subset { }nz  is weakly compact. Thus, some subsequence of it converges to 

z X∃ ∈ . By the closed convexity of C, z C∈ .) If X is strictly convex, then ProjC x  
is either single or empty. 

In general, if both X and *X  are strictly convex and reflexive, then every 
maximal monotone operator ( ) *:A D A X X⊂ →  satisfies the following ([1]). 

(i) For 0λ∀ >  (equivalently, for 0λ∃ > ), ( ) *R A F Xλ+ = .  
(ii) For 0λ∀ >  and x X∀ ∈ , there is a unique solution ( )x D Aλ ∈  to the 

relation  

( ) 0.F x x Axλ λλ− +                       (1.1)  

0

x

C

the set of ProjC x

{ }( , ) : : ,

: dist ) Pro( , jC

S x r x

x C x x

ξ ξ ρ

ρ

= − =

= = −

( ) { }0,1 : :  1S ξ ξ= =
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(iii) For 0λ >  and x X∈ , let ( )x D Aλ ∈  be the unique solution of (1.1) 
and put  

( )1: ,    : .J x x A x F x xλ λ λ λλ
= = − −                 (1.2)  

Then :J X Xλ →  and *:A X Xλ →  satisfy the following; 
Aλ  is single valued and monotone, Jλ  and Aλ  are bounded,  

both A x Axλ ≤  and 0lim J x xλ λ→ =  hold for ( )x D A∀ ∈ , and so on.  

The subdifferential operators satisfy more properties other than (i) to (iii) 
above. For instance, the following (A) (B) are known.  

(A) If X is a real Hilbert space H, then for ( ) ( )\ ,x D Cϕ ϕ λ∀ ∈ , relations  

( ) ( ) ( ) ( )( ), , ,Proj ,   Proj Proj 0C C Cx D x x xϕ λ ϕ λ ϕ λϕ µ ϕ∈ ∂ − + ∂       (1.3) 

hold with ( ) 0xµ µ∃ ≡ > .  
Although µ  in (1.3) is depending on x , while λ  in (1.1) is common to all 

x X∈ , (1.3) seems sufficiently useful to obtain solutions of ( ) ( )d dt u uϕ∈−∂  
in H. (1.3) is proved without using the above properties (i) to (iii), but geometric 
properties of convex functionals’ graphs in Hilbert spaces (see [3]).  

(B) Let g be a given smooth functional satisfying ( ) 0g x ≥  on X. Put  

 ( ){ }: : 0 ,K x X g x= ∈ =  

and suppose that K is convex and closed in X. Let KI  be the indicator func-
tional of K, i.e.,  

( ) : 0, if  ,  : , otherwise.KI x x K= ∈ = +∞  

Then, KI  is a lower-semicontinuous convex functional and its subdifferential is 
below.  

 ( ) ( ){ } ( )*
0 0: , 0 for ,   .K KI x y X y x K D I Kξ ξ∂ = ∈ − ≥ ∀ ∈ ∂ =  

Let 0ϕ  be a proper lower-continuous convex functional defined on X. Then, the 
convex functional  

0: KIϕ ϕ= +  

is useful for conditional extremum problem on K. 
For example (cf. [4], obstacle problems), let ( )2:X L= Ω ,  
( ) ( ) 21

0 : 2 dx xϕ ω ω−

Ω
= ∇∫ , and ( ) ( ) ( ){ }

21: 2 dg x x kω ω ω−

+Ω
 = − ∫ , where  

{ }: max ,0α α+ =  and :k Ω→ R  is smooth. Then,  
( ) ( ) ( ){ }2 : , a.e. K x L x kω ω ω= ∈ Ω ≤ ∈Ω . Since K is closed and convex, KI  is a 

lower semi-continuous convex functional, and  
( ) ( ) ( ) ( ) ( )( ){ }2

0 0: d 0KI x y L y x kω ω ω ω
Ω

∂ = ∈ Ω − ≥∫  for ( )0 Kx D I K∈ ∂ ≡ . 
Thus, 0: KIϕ ϕ= +  is useful in the obstacle problem ( ) ( )x kω ω≤ .  

Concerning the above (A) (B), our theorem and remarks show the following.  
(A)’ Same result of (A) holds under more general assumptions; (i) X is an ar-

bitral real Banach space, (ii) ( ) ( )\ ,x D Cϕ ϕ λ∈ , and (iii) ( ),ProjC xϕ λ  exists. 
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Here, as is mentioned above, if X is reflexive, then assumption (iii) always holds. 
It seems that ( ) ( )d dF u t uϕ∈−∂  in X is not solved even if X is reflexive. The 

author hopes that our theorem will contribute to solving this problem.  
(B)’ Let 0: KIϕ ϕ= +  and x K∉ . Then, in general, ( ),ProjC xϕ λ  may fail to 

satisfy (1.3) in H, or, in the case of Banach space X,  

( ) ( ) ( )( ) ( )( ), , ,Proj ,   Proj Proj 0C C Cx D F x x xϕ λ ϕ λ ϕ λϕ µ ϕ∈ ∂ − + ∂      (1.4) 

(see Remark 2.2). 
Suppose that ( ),ProjC xϕ λ  satisfies (1.4), and that codimension of K is finite. In 

general, as is seen in Figure 2 and Figure 3, if one takes arbitral  

( )( ),ProjCh F x xϕ λ∈ − , then h may falt to satisfy (1.4). If h satisfies (1.4), then 

( ) ( )1
,Proj 0C x hϕ λ

−+  is a kind of hyperplane tangent of ( ),C ϕ λ  at ( ),ProjC xϕ λ , 
because every ( )( ),ProjCy xϕ λϕ∈∂  is the same.  

 

 
Figure 2. In spaces where the unit sphere has corners, ( )ProjCF x x−  may not be unique. 

 

 
Figure 3. For ( )ProjCh F x x∈ −  that satisfies (1.4), ( )1Proj 0C x h−+  is a kind of hyper-

plane tangent of ( ),C ϕ λ , and also of ( ), ProjCB x x x− . 
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In this paper, for simplicity, ( )( ),ProjCF x xϕ λ −  denotes  

( )( ),ProjCh F x xϕ λ∃ ∈ −  such that (1.4) holds. Then, since  

( ) ( )( ) ( )( ) ( )( )0 0, , ,Proj Proj ProjK KC C CI x x I xϕ λ ϕ λ ϕ λϕ ϕ∂ + ⊂ ∂ + ∂  

holds by ( )codim K < +∞ , (1.4) implies that ( )( )1 0 ,ProjCy xϕ λϕ∃ ∈∂ ,  

( )( )2 ,ProjK Cy I xϕ λ∃ ∈∂ , 1 2,r r∃ ∈R  such that  

 ( )( )1 1 2 2 ,  Proj .Cr y r y F x xϕ λ+ = −                  (1.5) 

On the other hand, let ( )0 0x D ϕ∈ ∂  be obtained by Lagrange multiplier me-
thod in the problem of minimizing ( )0 xϕ  under the condition ( ) 0xψ =  with 
smooth function ψ . Then, Lagrange multiplier method implies that  

( )3 0 0y xϕ∃ ∈∂ , 3r∃ ∈R  such that  

( )3 3 0 0.y r d xψ+ =                       (1.6) 

Put ( ) ( ){ }2
:g x xψ=  and ( )1: 0K g−= . Suppose that K is convex. Then, by (1.6), 

for ( )4 0Ky I x∃ ∈∂ , 4r∃ ∈R ,  
 3 4 4  0.y r y+ =                        (1.7) 

Hence, if we put ( )( ),Proj 0CF x xϕ λ− =  in (1.5), then the form of (1.5) is the 
same as (1.7). 

2. Results 

As is mentioned in Section 1, let X be a real Banach space with duality mapping 
F, and ϕ  be a proper lower-continuous convex functional defined in X. Fix 

infXλ ϕ∀ > . In the following, we denote the metric projection ( ),ProjC ϕ λ  by P, 
and Px  means arbitral element of Px , for simplicity. 

Let ( )\ ,x X C ϕ λ∈  be such that Px  exists. Then, ( ),B x x Px−  has in-
ner points, and any inner point of ( ),B x x Px−  does not included in ( ),C ϕ λ . 
Thus, Hahn-Banach theorem implies that ( )h F x Px∃ ∈ −  satisfying  

( ) ( ){ }
( ) ( ){ }

, : , 0

and  , : , 0

C X h Px

B x x Px X h Px

ϕ λ ξ ξ

ξ ξ

⊂ ∈ − ≤

− ⊂ ∈ − ≥
           (2.1) 

(cf. [5]). 
Fix an arbitral ( )h F x Px∈ −  such that (2.1) holds. 
Theorem 2.1. Suppose that  

 ( ) ( ){ }: , 0 .D X h Pxϕ ξ ξ∩ ∈ − > ≠∅               (2.2) 

Then,  
(i) ( )Px D ϕ∈ ∂ . 
(ii) The inclusion  

 [ ] ( ): , h Px
h

α α α α ϕ− +

  ∈ ⊂ ∂ 
  

                (2.3) 

holds with ,α α− +  defined by as blow;  

 ( )
( )1 0

: inf .
hξ

κ ξ ϕ
−+

=  
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( )

( )

0

0

: lim ,

: lim .

t

t

x PxPx t Px
x Px

t
x PxPx t Px
x Px

t

κ κ
α

κ κ
α

− ↑

+ ↓

 −
+ −  − =

 −
+ −  − =

 

Remark 2.1. Assumption (2.2) holds if either  

( )x D ϕ∈  or ( )D ϕ  is dense in X.  

Hence, assertion (A)’ mentioned in Section 1 follows from Theorem 2.1.  
Remark 2.2. In Theorem 2.1, the assumption (2.2) is needed. In fact, if (2.2) 

does not hold, then there are two types of examples as below.  
(i)’ ( )Px D ϕ∉ ∂   
(ii)’ ( )Px D ϕ∈ ∂  holds, but (2.3) does not hold.  
The examples of (i)’ (ii)’ are given in Section 3, and assertion (B)’ in Section 1 

concerns with these examples.  

3. Proofs of Results 
3.1. Proof of Theorem 2.1 

We verify convexity of κ . Fix 1 2,w w X∀ ∈  and ( )0,1t∀ ∈ . For 0ε∀ > ,  
( )1 0i iy w h−∃ ∈ +  ( )1,2i =  such that  

( ) ( ) ( ){ } ( )1  inf : 0 .i i iy y y w h wϕ ε ϕ κ−− < ∈ + ≡  

Then, the relation ( ) ( ) ( )1
1 2 1 21   1 0ty t y tw t w h−+ − ∈ + − +  implies  

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

1 2 1 2

1 2 1 2

1 1

 1   1 .

t w t w t y t y

ty t y tw t w

κ κ ϕ ϕ ε

ϕ ε κ ε

+ − > + − −

≥ + − − ≥ + − −
  

Since 0ε >  is arbitral, κ  is convex. 
Now we know that both κ  and ϕ  are convex, and ( ) ( )w wκ ϕ≤  for  
w X∀ ∈ . Suppose that  

 ( ) ( ) ( )  : .Px Pxκ ϕ λ= =                     (3.1) 

Then, by definition of subdifferential,  

 ( ) ( ).Px Pxκ ϕ∂ ⊂ ∂  

On the other hand, by definition of κ ,  

 ( ) : .hPx
h

κ α α α α− +

  ∂ = ≤ ≤ 
  

 

Thus, the proof of Theorem 2.1 is completed if (3.1) is shown. 
To verify (3.1) by contradiction, suppose that (3.1) does not hold. Then, by 

definition of κ , ( )1
0 0w Px h−∃ ∈ +  with ( )0wϕ λ< . By (2.2),  

( ) ( ){ }0 : , 0y D w h w Pxϕ∃ ∈ ∩ − > . Take ( )0,1t∈  sufficiently small such that  

 ( ) ( ) ( )0 01 .t y t wϕ ϕ λ+ − <  

Then, since ϕ  is convex,  
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 ( ) ( ) ( ){ }0 01   , : , 0 .ty t w C w h w Pxϕ λ+ − ∈ ∩ − >          (3.2) 

On the other hand, we have verified (2.1) which contains the inclusion  
( ) ( ){ }, : , 0C w X h w Pvϕ λ ⊂ ∈ − ≤ . This is a contradiction to (3.2). Therefore, 

Theorem 2.1 is proved. 

3.2. Example of (i)’ in Remark 2.2 

Suppose dim X = ∞ . Take [ ]0 : 0,Xϕ → ∞  which satisfies  

( )0D ϕ  is dense in X and ( )0 ,C rϕ  are compact.       (3.3)  

Since dim X = ∞ , (3.3) yields ( ) ( )0 0\D Dϕ ϕ∂ ≠ ∅ . For example, ( )2:X L= Ω  
with bounded nΩ⊂ R , ( ) ( ) 21

0 : 2 dx xϕ ω ω−

Ω
= ∇∫ , ( ) 1

0 0:D Hϕ = . 
Fix any { }1 \ 0x X∈  and ( )1y F x∈ , where F is the duality mapping of X. 

Define the nonnegative convex functional g by ( ) ( ){ }2
: , , g y Xξ ξ ξ= ∈ . Put  

( ) ( )1 1
0:   with : 0 0KI K g yϕ ϕ − −= + = ≡  

Then, since K is still an infinite dimensional linear subspace, same properties of 
(3.3) hold if we take 0 Kϕ  and K instead of 0ϕ  and X, respectively. Take 0x  
such that  

( ) ( )( ) ( )( )0 0 0 0 0\ ,   .K K Kx D D xϕ ϕ ϕ λ∈ ∂ <  

Then, for 0 1:x x x= + ,  

 ( )0Px x D ϕ= ∉ ∂  

holds as is seen in Figure 4. 
 

 
Figure 4. Since K is a hyperplane of X and 1Proj =0C x , for every 0x K∈  and r∈R , 

one has ( )1 0 0ProjK rx x x+ = . 

 

 
Figure 5. How ( ),ProjC xϕ λ  is determined differs depending on λ. 
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3.3. Example of (ii)’ in Remark 2.2 

Let 2:X = R  with ( ) 2 2
1 2 1 2, :r r r r= + . Put  

( )( ) ( ) ( )( ) ( ) ( ){ }2 2 1
0 1 2 1 2 1 2 2 1 2 2, : , ,  , : ,  : 0 , : 0 .r r r r g r r r K g r r xϕ −= = = = =  

By definition, 0: KIϕ ϕ= +  is the following.  

( )( ) 2
1 2 1 2, ,  if  0;     , otherwise,r r r rϕ = = = +∞  

and  

( ) ( ){ }1 1, ,0 : , ,C r rϕ λ λ λ = ∈ −   

( )( ) ( ){ } ( )1 1,0 2 , : ,  .r r D Kϕ ρ ρ ϕ∂ = ∈ ∂ =R  

Let ( )1 2: ,x r r=  with 1 0r ≠ . Then, as is seen in Figure 5, the following cases 
hold. Case 2 satisfies (2.2). 

Case 1. If 2
1r λ< , then (1.3) does not hold. In fact, for µ∀ ∈R ,  

 ( ) ( ) ( ){ }2 10, 2 , : .x Px r Px rµ ϕ µ ρ ρ− = ∉ ∂ ≡ ∈R  

Case 2. If 1r λ> , then (1.3) with ( ) ( )1 2rµ λ λ= −  holds, since  

( ) ( ) ( ) ( ){ }1 2,0 ,  , ,  2 , : .Px x Px r r Pxλ λ ϕ λ ρ ρ= − = − ∂ = ∈R  
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