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Abstract 
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and en-
vironmentally friendly alternative to Continuous Emission Monitoring Systems 
(CEMS) for monitoring pollution from industrial sources. Multiple regression 
is one of the fundamental statistical techniques to describe the relationship be-
tween dependent and independent variables. This model can be effectively used 
to develop a PEMS, to estimate the amount of pollution emitted by industrial 
sources, where the fuel composition and other process-related parameters are 
available. It often makes them sufficient to predict the emission discharge with 
acceptable accuracy. In cases where PEMS are accepted as an alternative me-
thod to CEMS, which use gas analyzers, they can provide cost savings and sub-
stantial benefits for ongoing system support and maintenance. The described 
mathematical concept is based on the matrix algebra representation in multiple 
regression involving multiple precision arithmetic techniques. Challenging 
numerical examples for statistical big data analysis, are investigated. Numerical 
examples illustrate computational accuracy and efficiency of statistical analysis 
due to increasing the precision level. The programming language C++ is used 
for mathematical model implementation. The data for research and develop-
ment, including the dependent fuel and independent NOx emissions data, were 
obtained from CEMS software installed on a petrochemical plant. 
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1. Introduction 

Continues Emissions Monitoring Systems (CEMS) were traditionally used to 
monitor emissions from stationary sources. CEMS requires a significant capital 
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investment and is very expensive to operate and maintain due to the high initial 
cost of the hardware and significant amount of labor required to maintain the 
equipment. Predictive Emission Monitoring Systems (PEMS) can be a cost-effective 
alternative, they can continuously monitor dependent parameters and estimate 
emissions with a close to real accuracy, greatly reducing the initial commission-
ing costs and ongoing maintenance. 

PEMS development is based on proven scientific methods to perform statis-
tical data analysis of the significant parameters used as inputs to a multiple re-
gression model. Several commercial software packages, such as Minitab, MATLAB, 
and R, are available and provide methods and techniques for multiple linear re-
gression models [1] [2] [3] [4]. We will focus on using the available techniques 
in combination with C++ programming language to develop the multiple linear 
and polynomial regression software that can work as a powerful PEMS model. 
Other used methods are: big data analysis, vectors, matrices and linear algebra, 
high precision numerical calculations [5] [6], as well as custom-developed classes 
and objects implementing high-performance scientific computing. Our PEMS mod-
el also uses numerical integration technique, including integral representation for 
the cumulative distribution function (CDF) of t, F and Normal distributions. These 
methods require big statistical data analysis for testing the significance of regres-
sion coefficients and calculation of significance levels for F statistic. 

The Data Acquisition System software was provided by Limesoft Inc. [7] to 
input and test the PEMS mathematical model, present results and compare them 
in real-time and on historical trend chart with actual NOx values obtained from 
the CEMS gas analyzer. 

The PEMS model was verified against performance specification [8] require-
ments. It also has all the necessary test procedures to perform PEMS model evalu-
ation, assessment and verification, to prove that PEMS software results have re-
quired accuracy in order to be accepted by the Environmental Agency. 

The remainder of the paper is organized as follows. In Section 2, a brief de-
scription of the underlying theory is given, to introduce matrix algebra formula-
tion to multiple linear regression. Section 3 applies predictive emission moni-
toring with matrix notation. Sections 4 and 5 describe statistical techniques and 
numerical integration used in PEMS model development. In section 6, multiple 
polynomial regression model was tested with big data analysis. In Section 7, 
PEMS mathematical model was tested by actual CEMS gas analyzer. The proce-
dures described in Section 8, provide a framework for testing PEMS model dur-
ing normal engine operations. In Section 9 and Appendix, we discuss the role of 
high precision software in statistical computations. In Sections 10, 11 and 12, we 
consider comprehensive methodology for developing PEMS, limitations of PEMS 
model and environmental benefits of PEMS over CEMS. 

2. Matrix Algebra Formulation to Multiple Linear Regression 

Linear regression model specifies that the regression function is a linear function 
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of the regressor (independent) variables. More realistic applications require 
more general regression models because the regression function is not linear or 
because there are many regressor variables. Including polynomial terms in the 
regression model is a common way to achieve a better approximation to the true 
regression function. This leads to the term polynomial regression. Incorporating 
several regressor variables, with or without additional polynomial terms, is con-
sidered a multiple regression model. The most effective way to express the ma-
thematical operations is fitting model in matrix notation. 

Suppose that there are k regressor variables and n observations,  
( )1 2, , , , , 1, 2, ,i i ik ix x x y i n=� � . The regression function can be modeled as 

0 1 1 2 2 , 1, 2, ,i i i k ik iy x x x i nβ β β β= + + + + + =� �          (1) 

This model is a system of n equations that can be written in matrix form as 

,= +y X β                           (2) 

where 

1 11 12 1 0 1

2 21 22 2 1 2

1 2

1
1

, , ,

1

k

k

n n n nk k n

y x x x
y x x x

y x x x

β
β

β

       
       
       = = = =
       
       
       

y X

�
�

� � � � � � �
�






β       (3) 

The vector y  is the 1n×  vector of the observations, the design matrix X  
is the ( )1n k× +  matrix containing the values of the input variables, the para-
meter β  is ( )1 1k + ×  vector of the regression coefficients and   is the 1n×  
vector of random errors. The vector of the least squares estimator β̂  is the so-
lution of the normal equations, which can be written in matrix notation as 

ˆ′ ′=X X X yβ                          (4) 

Multiplying both sides of the normal equations (4) by ( ) 1−′X X , we obtain the 
least square estimate of β̂ : 

( ) 1ˆ ,−′ ′= X X X yβ                        (5) 

where ′X  is the transpose of the matrix X . 
If the variables 1 2, , , kx x x�  are linearly independent, the matrix ′X X  is 

always nonsingular [4], so the methods for inverting matrices can be used to find 
( ) 1−′X X . In practice, we perform matrix calculation using the systematic defini-
tion of the vector and matrix classes in C++ [9]. 

The fitted value of the response variable at the data point ( )1 2, , ,i i ikx x x�  is: 

0
1

ˆ ˆˆ , 1, 2, ,
k

i j ij
j

y b b x i n
=

= + =∑ �                   (6) 

The matrix form of the fitted values and residuals is: 
ˆŷ X β=  and ˆe y y= −                      (7) 

The test for significance in regression involves the null hypothesis 0H  to de-
termine whether a linear relationship exists between the response variable y and 
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any of k regressors, 1 2, , , kx x x� . The test for 0 1 2: 0kH β β β= = = =�  is 
based on a statistic that has a particular F distribution: 

( )0
SSR MSR

SSE 1 MSE
kF

n k
= =

− −
                   (8) 

Rejection region and p value for a level α  test are: 

( )0 , , 1 , , 1 0, value 1k n k k n kF f p f Fα α− − − −> = −              (9) 

We should reject 0H  if the computed value of F statistic in Equation (8) is 
greater than , , 1k n kfα − −  distribution value with parameters k and 1n k− − . Test 
for significance of regression involving the total sum of squares SST which is 
partitioned into a sum of squares, due to regression SSR, and a sum of squares 
due to errors SSE: 

SST SSR SSE= +  
The computation formula for the regression sum of squares is: 

( )
( )2

1

12 ˆSSR
n

n i

i
i

i y
y y

n
=

=

′ ′= − = −
∑

∑ X yβ              (10) 

The sum of squares for error is defined by 

( )2

1

ˆˆSSE
n

i i
i

y y
=

′ ′ ′= − = −∑ y y X yβ                 (11) 

The strength of a regression model is measured using the coefficient of mul-
tiple determination 2R , which takes the values between 0 and 1: 

2 SSR SSE1
SST SST

R = = −                      (12) 

Since 2R  always increases when regressors are added to the model, it is bet-
ter to use adjusted 2

adjR  statistic involving degrees of freedom: 

( )
( )

2 SSE 1SSR 1
SST SST 1adj

n k
R

n
− −

= = −
−

                (13) 

3. Predictive Emission Monitoring with Matrix Notation 

Table 1 lists eight data set examples used as tests of the numerical calculations to 
various types of PEMS mathematical models. 

The data that appeared in Table 2 correspond to Example 1 in Table 1. The 
format includes the observation interval, number of observations, observation 
number, observation vector, and design matrix, containing the input variables of 
data with n = 22,200 and k = 15. Table 3 shows the results of fuel combustion 
analysis. 

C++ software multiple regression outputs are given in Table 4 for estimated 
β̂  and calculated t values. 

Consider matrix algebra calculations for the data set presented in Table 5. 
Fitted values are calculated by Equation (14) 
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Table 1. Data set examples used as tests of the numerical calculations. 

Example Gas emission n k Multiple regression model 

1 NO 22,200 15 linear 

2 NO 22,200 30 polynomial 

3 NO 5485 15 linear 

4 NO 5485 30 polynomial 

5 NO 96 15 linear 

6 NO 96 30 polynomial 

7 NO 8444 15 linear 

8 NO2 8444 15 linear 

 
Table 2. Example 1. Observation interval, number of observations, observation number, observation vector and design matrix, 
containing the input variables of data with n = 22,200 and k = 15. 

Int # Obs yi x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

0 - 10 2661 5000 0.00 1 23.9 0.00 2.7 88.2 0.04 0.05 1.8 0.56 0.15 0.09 0.03 9.0 23.9 23.9 101.4 

  4680 4.8 1 15.2 0.00 3297.7 88.2 0.04 0.05 1.8 0.58 0.16 0.09 0.04 9.0 15.5 15.0 127.6 

10 - 20 45 6384 11.3 1 10.9 0.00 8647.8 91.5 0.02 0.02 1.1 0.18 0.05 0.03 0.67 6.4 11.5 10.2 152.3 

  6385 14.5 1 10.8 0.00 8655.5 91.5 0.02 0.02 1.1 0.18 0.05 0.03 0.67 6.4 11.5 10.2 152.0 

20 - 30 1691 14,338 26.7 1 4.0 28,786.5 24,585.5 87.5 0.04 0.05 1.7 0.49 0.14 0.09 0.01 9.9 4.2 3.7 175.5 

  9086 29.8 1 2.5 24,504.2 22,600.1 87.6 0.04 0.05 1.7 0.48 0.14 0.08 0.02 9.9 3.0 2.1 169.7 

30 - 40 5363 9722 34.7 1 3.9 9372.3 27,207.8 87.5 0.04 0.05 1.8 0.48 0.14 0.09 0.01 9.9 4.2 3.6 160.4 

  10,738 38.9 1 2.7 24,836.7 30,197.3 87.6 0.04 0.05 1.8 0.47 0.14 0.09 0.01 9.9 2.7 2.6 172.3 

40 - 50 7284 10,239 41.1 1 1.7 24,019.7 30,697.8 87.5 0.04 0.05 1.8 0.47 0.14 0.09 0.01 10.0 1.7 1.7 169.6 

  16,792 49.8 1 2.3 25,987.4 28,039.0 88.1 0.04 0.05 1.8 0.64 0.18 0.10 0.04 9.0 2.3 2.3 163.3 

50 - 60 3627 17,209 51.3 1 2.3 25,935.4 28,675.3 88.05 0.03 0.05 1.8 0.56 0.15 0.09 0.03 9.3 2.2 2.4 165.2 

  381 58.1 1 2.3 26,403.1 30,325.9 89.7 0.02 0.03 1.2 0.25 0.07 0.05 0.20 8.5 3.1 1.5 169.3 

60 - 72 1529 585 60.6 1 2.2 24,510.1 30,202.5 90.5 0.02 0.03 1.3 0.35 0.10 0.06 0.13 7.5 1.7 2.7 170.1 

  846 61.5 1 1.8 24,547.4 30,373.9 90.7 0.02 0.03 1.3 0.32 0.09 0.05 0.23 7.2 1.6 1.9 169.7 

 
Table 3. Results of fuel combustion analysis. 

yi x1 x2 x3 x4 x5 x6 x7 

NO O2 PG Fuel FNG Fuel CH4 in FNG 
nC5H12 in 

FNG 
iC5H12 in FNG C2H6 in FNG 

(ppm) (%) (Nm3/hr) (Nm3/hr) (mol% (wet)) (mol% (wet)) (mol% (wet)) (mol% (wet)) 

x8 x9 x10 x11 x12 x13 x14 x15 

C3H8 in FNG 
nC4H10 in 

FNG 
iC4H10 in FNG CO2 in FNG N2 in FNG 

O2 in Flue 
Gas-1 

O2 in Flue 
Gas-2 

Flue Gas 
Temperature 

(mol% (wet)) (mol% (wet)) (mol% (wet)) (mol% (wet)) (mol% (wet)) (% wet) (% wet) (% wet) 
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Table 4. Estimated β̂  and calculated t value. Values 123.929 12 3.929 10e −− ≡ × . 

îβ  Estimate d.e. ( îβ ) s.e. ( îβ ) t value 

0β̂  38.4872 5.03727 12.9562 2.97056 

1̂β  50.2346 2734.87 301.8899 0.1664 

2β̂  −0.000147609 3.929e−12 −12.9008 −12.901 

3β̂  0.00126975 1.259e−11 0.0000 62.001 

4β̂  0.362444 0.00051525 0.0000 2.766 

5β̂  2374.26 287.012 0.1310 24.277 

6β̂  −3682.95 249.038 91.0988 −40.428 

7β̂  −31.9369 0.0123964 0.6427 −49.69 

8β̂  29.1276 0.524861 4.1822 6.9648 

9β̂  −1072.14 34.185 33.7519 −31.765 

10β̂  3275.63 95.6281 56.4512 58.026 

11β̂  1.95295 0.0064368 0.4631 4.2167 

12β̂  −5.67656 0.00264964 0.2971 −19.103 

13β̂  −25.4091 683.714 150.9446 −0.1683 

14β̂  −25.3162 683.724 150.9457 −0.16772 

15β̂  −0.0163964 3.039e−07 0.0032 −5.15233 

 
Table 5. Given observation vector y and design matrix X, containing the input variables. 

yi x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

55.76 1 2.29 26,428.6 30,834.0 89.2 0.0255 0.0355 1.391 0.2937 0.0894 0.0612 0.1022 8.783 2.894 1.687 171.7130 

 

0 1 1 2 2 3 3 15 15=i i i i iy x x x xβ β β β β+ + + + +�              (14) 

Multiple linear regression model with k = 15 regression coefficients predicts 
the fitted value 

1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

ˆ 38.49 50.23 0.0001476 0.0012698 0.362444
2374.26 3682.95 31.94 29.13 1072.14
3275.63 1.95 5.68 25.41 25.32 0.0163964

iy x x x x
x x x x x
x x x x x x

= + − + +

+ − − + −

+ + − − − −  
This regression model can be used to obtain the fitted values by substituting 

each observation into Equation (14). Thus, fitted value ˆiy  for the data in Table 
5 is: 

( ) ( ) ( )
( ) ( ) ( )

ˆ 38.49 50.23 2.29092 0.0001476 26428.6 0.0012698 30834

0.0001476 89.2179 0.0012698 0.025518 0.362444 0.035515
iy = + − +

− + +
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2374.26 1.39106 3682.95 0.293697 31.94 0.089405

29.13 0.061245 1072.14 0.102182 3275.63 8.78347

1.95 2.89435 5.68 1.68749 0.0163964 171.713
51.09.

+ − −

+ − +

+ − −

=

 

Next step is calculations of estimated regression coefficients β̂ , t value, p 
value and significance level. Regression sum of squares for errors is calculated as 

( )22

1 1
ˆSSE

n n

i i i
i i

e e e y y
= =

′= = = −∑ ∑
 

and 

2 SSEˆ MSE
1n k

σ = =
− −  

( )22SSE 4.67 11.50 739266e e′= = + + − =�  

Estimation of the error of variance is: 

2 SSE 739266ˆ MSE 33.3243
1 22200 15 1n k

σ = = = =
− − − −  

and 33.3243 5.77272σ == . 
The diagonal elements ( )ˆd.e. iβ  of the matrix ( ) 1X X −′  used to calculate the 

standard error of the estimate ( )ˆs.e. iβ . 
For example 

( ) ( )0 0
ˆ ˆs.e. d.e. 5.77272 5.03727 12.9562β σ β= × = × =

 

( ) ( )1 1
ˆ ˆs.e. d.e. 5.77272 2734.87 301.89β σ β= × = × =

 

( ) ( ) 7
15 15

ˆ ˆs.e. d.e. 5.77272 3.03898 10 0.0032β σ β −= × = × × =
 

The corresponding t statistic values are 

( )
0

0
0

ˆ 38.4872 2.97056
ˆ 12.9562s.e.

t β

β
= = =

 

( )
1

1
1

ˆ 50.2346 0.166401
ˆ 301.8899s.e.

t β
β

= = =

 

�  

( )
15

15
15

ˆ 0.0163964 5.15233
ˆ 0.0032s.e.

t β
β

−
= = = −

 

Estimated coefficients β̂ , t values and p values shown in Table 6. The t test 
statistic and p values for the significance of each regression coefficient are given 
in the second and third columns. The significance levels are indicated in the last 
column. The low p values, with indicate +++, specify significance level less than 
0.01, and show that corresponding parameters estimate ˆ

iβ  should be kept in 
the model and that they are useful in modeling the fitted values ˆiy . Thirteen of  
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Table 6. Estimated coefficients β̂ , t values and p values. The last column specifies the 
following significance levels: + corresponds to 0.1, ++ to 0.05, and +++ to 0.01. 

ˆ
iβ  Estimate t value p value SL 

0β̂  38.4872 2.97056 0.00297 +++ 

1̂β  50.2346 0.1664 0.86784 − 

2β̂  −0.000147609 −12.901 0.0000 +++ 

3β̂  0.00126975 62.001 0.0000 +++ 

4β̂  0.362444 2.766 0.00568 +++ 

5β̂  2374.26 24.277 0.0000 +++ 

6β̂  −3682.95 −40.428 0.0000 +++ 

7β̂  −31.9369 −49.69 0.0000 +++ 

8β̂  29.1276 6.9648 3.38e−12 +++ 

9β̂  −1072.14 −31.765 0.0000 +++ 

10β̂  3275.63 58.026 0.0000 +++ 

11β̂  1.95295 4.2167 2.49e−05 +++ 

12β̂  −5.67656 −19.103 0.0000 +++ 

13β̂  −25.4091 −0.1683 0.8663 − 

14β̂  −25.3162 −0.16772 0.8668 − 

15β̂  −0.0163964 −5.1523 2.6e−07 +++ 

 
the sixteen p values are less than 0.01. Thus, all regression coefficients, except 
three ( 1 13,β β  and 14β ), are significantly different from zero at the level 

0.01α = . 
The regression sum of squares is computed from Equation (10), 

( )2
2

1 862490.518ˆSSR 39240555.922 5732002.172
22200

n
i iy

n
=′ ′= − = − =

∑
X yβ

 
The sum of squares for error by Equation (11) is: 

( )2

1

ˆˆSSE

39979813.3969 39240555.922 739257.475

n

i i
i

y y
=

′ ′ ′= − = −

= − =

∑ y y X yβ

 
To test the null hypothesis 0 1 2: 0kH β β β= = = =� , we calculate by Equa-

tion (8) statistic 0F : 

( ) ( )0
SSR 5732002.172 15

SSE 1 739257.475 22200 15 1
382133.478 11467.2

33.324

kF
n k

= =
− − − −

= =
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That is the highly significant result, since 0 0.05,15, 1.67F f ∞> =  and even more 
as 0 0.01,15, 2.04F f ∞> =  (or since the p value is considerably smaller than 

0.01α = ). The null hypothesis should be rejected at any reasonable significance 
level. We conclude that there is a useful linear relationship between y and at least 
one of the 15k =  regressors in the model. This does not mean that all fifteen 
regressors are useful. It was shown about this relationship in Table 6, as thirteen 
from sixteen p values are less than 0.01. All regression coefficients except three 
are significantly different from zero at the level 0.01α = . 

Computationally adjusted 2
adjR  statistic is: 

( )
( )

( )
( )

2 SSE 1 739265.823 22200 15 1
1 1 0.886

SST 1 6471259.647 22200 1adj

n k
R

n
− − − −

= − = − =
− −  

where 

SST SSR SSE 5732002.172 739257.475 6471259.647= + = + =  

4. Numerical Integration for Cumulative Distribution  
Functions. Calculations of t and p Values 

To find stable, accurate, and computationally efficient methods for performing 
big matrix calculations and numerical integration techniques, software imple-
mentation with high precision arithmetic is needed. In [5] the numerical exam-
ples illustrate the computational accuracy and efficiency of the numerical inte-
gration technique, particularly for the direct Laplace transform and its inverse, 
and C++ implementation of the composite Simpson’s Rule for numerical inte-
gration (direct Laplace transform). Several algorithms have been proposed in [6] 
and [10] for numerical integration technique and software implementation with 
arbirary-precision arithmetic. 

Fundamental development in estimation p values, significance levels, and 
other statistics in ANOVA calculations involve the numerical integration program 
to approximate CDF of t distribution, F distribution and Normal distribution. 

The CDF of a real-valued random variable X is the function given by 

( ) ( ) ( )d ,
x

F x P X x f u u x
−∞

= ≤ = −∞ < < ∞∫            (15) 

The probability density function (PDF) of t distribution is [4]: 

( )
( )

( ) ( ) ( )1 22

1 2 1 ,
2 1

f x x
x

ν

ν

ν ν ν
+

Γ +  = ⋅ −∞ < < ∞
πΓ  + 

        (16) 

where 1n kν = − −  is the number of degrees of freedom and Γ  is the gamma 
function. The formula for the gamma function is: ( ) 1

0
e dtt tαα

∞ − −Γ = ∫ , for 
0α > . 

The Normal distribution ( )2,N µ σ  with parameters µ  and σ  has PDF: 

( ) ( )2 221 e
2

xf x µ σ

σ
− −=

π
                   (17) 

The t distribution converges to Normal distribution as the number of degrees 
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of freedom ν  approaches to ∞ . The t distribution provides statistical analysis 
for testing significance levels of regression coefficients. 

The F probability distribution has two shape parameters, denotes by 1ν  and 

2ν . The parameter 1ν  is the number of numerator degrees of freedom, and 2ν  
is the number of denominator degrees of freedom. 

The formula for the PDF of F distribution [4] is: 

( )

( )

( )

1

1

1 2

2
2 11 2 1

2
2

1 2 1

2

2
, 0

1
2 2

x
f x x

x

ν
ν

ν ν

ν ν ν
ν

ν ν ν
ν

−

+

 + Γ   
  = < < ∞

     Γ Γ +     
      

        (18) 

It is usually abbreviated as 
1 2,fν ν . 

The formula for the significance level of the F distribution does not exist in a 
closed form. It is computed numerically. In Table 7 the significance level α  of 
the F distribution is given as a function of different values of the shape parame-
ters 1ν  and 2ν  and F0 statistic = 5. 

For example if 1 5ν = , 2 1000ν =  and F0 statistic = 5, the confidence level is: 

( )1 2

9
, 5 1.42 10P Fν ν

−> = ×
 

The 3D plot in Figure 1 follows the outputs given in Table 7. 
Table 8 and Figure 2 give the significance level α  of the F distribution for 

different values of the shape parameters 1ν  and 2ν  and F0 statistic = 10. 
Let’s consider a software program to perform a numeric integration. The idea 

is to calculate an approximation of the area under the function’s curve between a 
and b points, as illustrated in Figure 3. 

The technique consists in splitting the interval between a and b into n subin-
tervals of equal length. Each subinterval has width ( )w b a n= − . The height of 
that subinterval varies. So we may choose the mid-point x of the subinterval and 
calculate the height as ( )h f x=  (the vertical dashed line). If we multiply the 
height h and the width w, we obtain the area of a rectangle that comes fairly 
close to the actual area under the function ( )f x  in that subinterval. Doing this 
repeatedly, once for each subinterval will yield a pretty good approximation of 
the entire area under the curve, especially if we have a large number of subintervals,  

 
Table 7. Significance level α  of the 

1 2,Fν ν  distribution and F0 statistic = 5. 

F0 statistic = 5 1 2ν =  1 3ν =  1 5ν =  1 10ν =  1 15ν =  

2 5ν =  6.41e−2 5.76e−2 5.10e−2 4.48e−2 4.25e−2 

2 10ν =  3.12e−2 2.26e−2 1.49e−2 8.95e−3 7.07e−3 

2 100ν =  8.52e−3 2.84e−3 3.95e−4 7.20e−6 3.22e−7 

2 1000ν =  6.91e−3 1.91e−3 1.57e−4 4.10e−7 1.42e−9 

2 10000ν =  6.75e−3 1.83e−3 1.41e−4 2.79e−7 6.23e−10 
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Figure 1. Significance level α  of the 

1 2,Fν ν  distribution and F0 statistic = 5. 

 
Table 8. Significance level α  of the 

1 2,Fν ν  distribution and F0 statistic = 10. 

F0 statistic = 10 1 1ν =  1 2ν =  1 4ν =  1 5ν =  1 10ν =  

2 5ν =  2.50e−2 1.79e−2 1.33e−2 1.22e−2 1.01e−3 

2 10ν =  1.01e−2 4.12e−3 1.60e−3 1.21e−3 5.72e−4 

2 100ν =  2.07e−3 1.10e−4 7.55e−7 8.83e−8 1.90e−11 

2 1000ν =  1.61e−3 5.01e−5 6.16e−8 2.37e−9 4.44e−16 

2 10000ν =  1.57e−3 4.59e−5 4.49e−8 1.46e−9 1.11e−16 

 
i.e., if n is large. 

The numerical integration program was implemented in C++ high precision 
software [5]. The calculations can be performed up to 1000 decimal places [11]. 
The Appendix introduces C++ code used to implement numerical CDF and PDF 
for t and F distributions in arbitrary precision. 

The p value is: ( ) ( )( )2 2 1p P X t F X= ≥ = − , where the random variable X 
has t distribution with ν  degrees of freedom, and ( ) ( )F X P X t= ≤  is a 
CDF of X. The p values, corresponding to t distribution with  

1 22200 15 1 22184n kν = − − = − − =  degrees of freedom, shown in Table 6. For 
example: 

( ) ( ) ( )( )
( )

0 02 2 2.97056 2 1 2.97056

2 1 0.998514 0.00297

p P X t P X F= × ≥ = × ≥ = × −

= − =  

( ) ( ) ( )( )
( )

1 12 2 0.1664 2 1 0.1664

2 1 0.566079 0.86784

p P X t P X F= × ≥ = × ≥ = × −

= − =  
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Figure 2. Significance level α  of the 

1 2,Fν ν  distribution and F0 statistic = 10. Estimated 

data presented in terms of 10log α− . 
 

 
Figure 3. Numerical integration. 

 

( ) ( ) ( )( )
( )

15 15

7

2 2 5.15233 2 1 5.15233

2 1 0.99999987 2.6 10 .

p P X t P X F
−

= × ≥ = × ≥ − = × −

= − = ×  

5. Confidence Interval and Prediction Interval 

The confidence interval and prediction interval are calculated by the following 
equations: 

( ) ( )
0 0 0

1 12 2
| 2, 0 0 | | 2, 0 0ˆ ˆ ˆ ˆy x n p y x y x n pt x X X x t x X X xα αµ σ µ µ σ− −

− −′ ′ ′ ′− ≤ ≤ +  (19) 

( )( ) ( )( )1 12 2
0 2, 0 0 0 0 2, 0 0ˆ ˆ ˆ ˆ1 1n p n py t x X X x Y y t x X X xα ασ σ− −

− −′ ′ ′ ′− + ≤ ≤ + + (20) 
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A regression model can be used to predict new or future observations on the 
response variable Y corresponding to the independent variables, 01 02 0, , , kx x x� . 
If ( )0 01 02 01, , , , kx x x′ =x � , a point estimate of the future observation Y0 at the 
point 01 02 0, , , kx x x�  is: 

0 0
ˆˆ .′=y x β                          (21) 

A prediction interval is always wider than a confidence interval. Confidence 
interval expresses the error in estimating the mean of a distribution, while the 
prediction interval expresses the error in predicting a future observation from 
the distribution at point x0. 

We calculate the confidence interval and the prediction interval using CDF for 
t distribution and Normal distributions. Now we can do that for the t distribu-
tion with PDF Equation (16) and Normal distribution with PDF Equation (17). 

6. Multiple Polynomial Regression Model 

As shown in Table 6 for multiple linear regression model, all regression coeffi-
cients except three ( 1 13,β β , and 14β ) are significantly different from zero at the 
level 0.01α = . Three regression coefficients have the p values higher than 0.01 
( 0.01α > ). They are not statistically significant and indicate strong evidence for 
the null hypothesis. 

Example 2. Consider the following multiple polynomial regression model 
(the second order no-interaction model). There are 15k =  initial regressor va-
riables ( )1 2, , , ,i i ik ix x x y� , 1,2, ,i n= � , and r additional regressor variables 
with quadratic terms: 

2 2
0 1 1 2 2 1 1 2 2

2 , 1, 2, ,
i i i k ik k i k i

k r ik

y x x x x x

x i n

β β β β β β

β
+ +

+

= + + + + + +

+ + + =

�

� �
         (22) 

Estimated regression coefficients β̂  are shown in Table 9. The t test statistic 
and p values for the significance of each regression coefficient are given in the 
second and third columns. The significance levels are indicated in the last col-
umn. The low p values, with indicate +++, specify significance level less than 
0.01, and indicate that the corresponding regression parameter estimate ˆ

iβ  is 
useful in modeling the fitted values ˆiy . Twenty five of the thirty p values are less 
than 0.01. Thus, all regression coefficients, except five ( 1 13 14, ,β β β , and 29β ) are 
significantly different from zero at the level 0.01α = . 

For both linear and polynomial regression models, software output produced 
the desired information, which is summarized in Table 10. 

Table 11 shows fitted values, and residuals for n = 5485 data points. Example 
3 and Example 4 correspond to linear and polynomial regression models accor-
dingly. 

Figure 4 shows two scatter plots for the observations, observation iy  and 
fitted ˆiy  values with n = 22,200 data points. Example 1 (left) and Example 2 
(right) correspond to linear and polynomial regression models accordingly. 

The data with n = 96 was created as a fragment of the data with n = 22,200  
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Table 9. Example 2. Estimated coefficients β̂ , t values and p values for multiple polynomial regression model with n = 22,200 
and k = 30. The last column specifies the following significance levels: + corresponds to 0.1, ++ to 0.05, and +++ to 0.01. 

ˆ
iβ  Estimate t value p value SL ˆ

iβ  Estimate t value p value SL 

0β̂  223.419 2.68984 0.00714866 +++      

1̂β  223.264 0.820289 0.412051 − 16β̂  −0.00434745 −0.757042 0.449024 − 

2β̂  0.0013588 46.9057 0.0000 +++ 17β̂  −4.03292e−08 −51.8582 0.0000 +++ 

3β̂  −0.00019503 −3.50041 0.000464625 +++ 18β̂  3.12665e−08 28.0213 0.0000 +++ 

4β̂  −4.94342 −2.15846 0.0308923 ++ 19β̂  0.0322251 2.18051 0.0292195 ++ 

5β̂  −2706.66 −7.14531 9.04166e−13 +++ 20β̂  55462.2 10.4717 0.0000 +++ 

6β̂  −7144.87 −18.8506 0.0000 +++ 21β̂  47348.6 11.0293 0.0000 +++ 

7β̂  −8.77857 −2.46834 0.0135743 ++ 22β̂  −6.11989 −6.13739 8.42156e−10 +++ 

8β̂  −612.272 −39.1742 0.0000 +++ 23β̂  608.313 42.6455 0.0000 +++ 

9β̂  1182.26 13.6697 0.0000 +++ 24β̂  −5727.35 −22.7139 0.0000 +++ 

10β̂  6253.54 41.8127 0.0000 +++ 25β̂  −23577.5 −27.4662 0.0000 +++ 

11β̂  17.9835 13.3965 0.0000 +++ 26β̂  −14.5793 −8.72223 0.0000 +++ 

12β̂  3.07398 1.66984 0.0949509 + 27β̂  −0.213056 −1.99948 0.0455565 ++ 

13β̂  −112.235 −0.824712 0.409535 − 28β̂  0.0153982 4.84613 1.26066e−06 +++ 

14β̂  −111.942 −0.822571 0.410752 − 29β̂  −0.00481319 −1.15303 0.248899 − 

15β̂  0.061281 7.59121 3.19744e−14 +++ 30β̂  −0.000452108 −10.8538 0.0000 +++ 

 
Table 10. Example 2. Observation interval, number of observations, observation number, fitted values, and residuals for linear 
and polynomial regression models. The observation numbers are in accordance with scatter plots 4. 

Observations Linear Polynomial 

Interval # Obs iy  ˆiy  ie  iy  ˆiy  ie  

0 - 10 2661 5000 0 −0.06 0.06 0 0.156 −0.156 

  4680 4.76 4.97 −0.02 4.76 4.47 0.29 

10 - 20 45 6384 11.28 20.22 −8.94 11.28 10.76 0.52 

  6385 14.47 20.26 −5.78 14.47 10.83 3.64 

20 - 30 1691 14,338 26.73 28.74 −2.01 26.73 27.29 −0.56 

  9086 29.79 29.34 0.45 29.79 29.80 −0.01 

30 - 40 5363 9722 34.74 36.02 −1.28 37.74 34.76 −0.02 

  10,738 38.875 36.94 1.93 38.875 38.88 0.00 

40 - 50 7284 10,239 41.14 39.85 1.29 41.14 41.62 −0.48 
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Continued 

  16,792 49.84 51.81 −1.97 49.84 48.43 1.41 

50 - 60 3627 17,209 51.32 54.97 −3.59 51.32 51.31 −0.01 

  381 58.12 54.40 3.72 58.12 58.39 −0.27 

60 - 72 1529 585 60.56 57.06 3.50 60.56 60.84 −0.28 

  846 61.55 58.67 2.88 61.55 62.44 −0.89 

 
Table 11. Fitted values, and residuals for n = 5485 data points. Example 3 and Example 4 
correspond to linear and polynomial regression models accordingly. 

Observations 
Interval 

Linear Polynomial 

iy  ˆiy  ie  iy  ˆiy  ie  

32.5 - 37.5 35.91 43.23 −7.32 35.91 36.56 −0.65 

37.5 - 42.5 40.43 46.11 −5.68 40.43 43.02 −2.59 

42.5 - 47.5 45.00 45.75 −0.74 45.00 45.22 −0.22 

47.5 - 52.5 50.13 50.09 0.04 50.41 50.33 0.08 

52.5 - 57.5 55.00 54.17 0.83 50.00 54.56 0.44 

 

 
Figure 4. Two scatter plots of the observations iy  and fitted ˆiy  values with n = 22,200 data points. Example 1 (left) and Exam-
ple 2 (right) correspond to linear and polynomial regression models accordingly. 
 

observations. Figure 5 shows two scatter plots of the observation iy  and fitted 
ˆiy  values of the data with n = 96. Example 5 (left) and Example 6 (right) cor-

respond to linear and polynomial regression models accordingly. 
Evidently, the two scatter plots in Figure 4 and in Figure 5, are very much 

alike. They demonstrate similar tracking boundary movements for observed and 
fitted values and can illustrate whether the algorithm has succeeded in obtaining 
high-order accuracy or has failed due to numerical instability. 
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Figure 4 and Figure 5 demonstrate slight improvement, as visually observed, 
for multiple polynomial regression model vs linear model. These figures illu-
strate that the fitted and observed values are visually more overlapping on the 
right scatter plots corresponding to the multiple polynomial regression model. 

Quantitative comparison shows slight improvements in accuracy through re-
sidual average and the coefficient of multiple determination R2, which is an im-
portant step in building realistic regression models. 

For polynomial model with n = 22,200 and k = 30 residual average is 3.825 
over 4.571 for linear model (decreased on 16.34%), and adjusted 2

adjR  statistic is 
0.917 over 0.886 for linear model. 

For polynomial model with n = 96 and k = 15 residual average is 0.188 over 
0.275 for linear model (decreased on 31.6%), and R2 is 0.968 over 0.943 for linear 
model. 

For the Example 6, the number of terms in approximation was increased from 
k = 15 (linear model) to 15 15 30k r+ = + =  (polynomial model. Naturally it 
would seem that father increase of the number of second-order terms would 
improve the accuracy of the approximation since more terms seem to produce 
better solution results. 

On the other hand, using a large number of terms will not be of benefit if the 
precision with which each term is calculated is insufficient. 

In Figure 6, n = 5485, k = 15 (Example 3) and k = 30 (Example 4). A slight 
improvement is visually observed for multiple polynomial regression model over 
linear model. These figures illustrate that the fitted and observed values are vi-
sually more overlapping on the right scatter plot corresponding to the multiple 
polynomial regression model. 

Figure 7 shows two scatter plots of the observation iy  and fitted ˆiy  values 
with n = 8444, for gases NO (Example 7, left) and NO2 (Example 8, right). 

 

 
Figure 5. Two scatter plots of the observations iy  and fitted ˆiy  values of the data with n = 96. Example 5 (left) and Example 6 
(right) correspond to linear and polynomial models accordingly. 

https://doi.org/10.4236/am.2023.145023


Z. Krougly et al. 
 

 

DOI: 10.4236/am.2023.145023 402 Applied Mathematics 
 

 
Figure 6. Two scatter plots of the observations iy  and fitted ˆiy  values of the data with n = 5485 for linear (left) and multiple 
polynomial regression model (right). 
 

 
Figure 7. Two scatter plots of the observation iy  and fitted ˆiy  values with n = 8444, for NO (Example 7, left) and NO2 (Exam-
ple 8, right). 

 
Figure 8 illustrates for Example 1 the histogram of residuals using PDF scal-

ing. The area of each bar is the relative number of observations. The sum of the 
bar areas is equal to 1. The histogram of residuals can be used to check whether 
the variance is normally distributed. A symmetric bell-shaped histogram which 
is evenly distributed around zero indicates that the normality assumption is 
likely to be true. This histogram indicates that random error is not normally dis-
tributed, it suggests that the model's underlying assumptions may work well in 
some areas, and show what can happen to prediction and inference when certain 
assumptions are violated. 
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Figure 8. Histogram of residuals. 

7. PEMS Mathematical Model versus Actual CEMS Gas  
Analyzer 

PEMS mathematical model was tested by actual CEMS gas analyzer. In Table 12, 
for Example 3 with n = 5485, are shown estimated coefficients β̂ , the t test sta-
tistic and p values. The significance level of each regression coefficient is indi-
cated in the last column. The low p values, with indicate +++, specify signific-
ance level less than 0.01, and show that corresponding parameters estimate ˆ

iβ  
should be kept in the model and that they are useful in modeling the fitted val-
ues ˆiy . Eleven of the sixteen p values are less than 0.01. Thus, all regression 
coefficients, except five ( 0 1 7 13, , ,β β β β  and 14β ), are significantly different 
from zero at the level 0.01α = . 

Figure 6, for n = 5485, shows the scatter plot of the observation iy  versus 
fitted ˆiy . 

The Data Acquisition System software was provided by Limesoft Inc. [7] to 
input and test the PEMS mathematical model. We present results and compare 
them in real-time and on a historical trend chart with actual values obtained 
from the CEMS gas analyzer. 

Figure 9 shows screenshot of PEMS Model—Trend Chart for Example 3 with 
n = 5485. Predicted plot PEMS versus actual CEMS plot is given for 15 min av-
erage NO data. Predicted and actual NO values are visibly overlapping. PEMS 
mathematical model seems to be an effective way to determine emissions based 
on historical and real-time process data. 

8. Testing and Calculation Procedures Based on  
Performance Specification Requirement 

The procedures described in this section provide a framework for testing PEMS  
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Table 12. Example 3 with n = 5485. Estimated coefficients β̂ , t values and p values. The 
last column specifies the following significance levels: + corresponds to 0.1, ++ to 0.05, 
and +++ to 0.01. 

ˆ
iβ  Estimate t value p value SL 

0β̂  24.875 2.0048 0.045028 ++ 

1̂β  287.09 0.81338 0.41603 − 

2β̂  −0.00062175 −11.877 3.8531e−32 +++ 

3β̂  0.00073417 12.413 6.5675e−35 +++ 

4β̂  0.70596 5.2322 1.7375e−07 +++ 

5β̂  −3430.2 −27.226 3.4893e−153 +++ 

6β̂  515.75 3.5411 0.00040175 +++ 

7β̂  0.13826 0.18428 0.8538 − 

8β̂  −181.15 −22.397 2.2488e−106 +++ 

9β̂  319.43 9.1941 5.2632e−20 +++ 

10β̂  1967.2 22.336 7.9487e−106 +++ 

11β̂  −15.214 −21.596 2.5086e−99 +++ 

12β̂  −10.916 −25.876 2.2745e−139 +++ 

13β̂  −143.52 −0.81322 0.41613 − 

14β̂  −141.14 −0.79977 0.42388 − 

15β̂  0.10409 2.7726 0.0055791 +++ 

 
model for Example 3 during normal engine operations. They are based on per-
formance specification [8]. PEMS model must pass a relative accuracy (RA) test 
and accompanying statistical tests to be acceptable for use in demonstrating 
compliance with applicable requirements. We demonstrate those procedures for 
the data with n = 96 illustrated in the scatter plot in Figure 5. 

First is the arithmetic mean of the differences: 

1

1 1 3.3899 0.03531,
96

n

i
i

d d
n =

= = × =∑                (23) 

where n is the number of data points and id  is the difference between observa-
tion and fitted values. 

Second is the standard deviation of the differences: 
2 2 2

1 11.8414 96 0.03531 0.3513
1 96 1

n
ii

d

d n d
S

n
=

− ∗ − ∗
= = =

− −
∑      (24) 

Third is the confidence coefficient for 0.025α =  and for 1n −  degrees of  
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Figure 9. A screenshot of C# software output. Predicted PEMS vs actual CEMS plot are given for 15 min average NO data. 
 

freedom: 

0.025
0.35331.988 0.071

96
dS

cc t
n

= = =                (25) 

Fourth is the relative accuracy: 

0.03531 0.071
RA 100 100 0.2896%,

36.7638

d cc

y

+ +
= × = × =       (26) 

where d  is absolute value of the mean differences, cc  is absolute value of 
the confidence coefficient and 36.7638y =  is the mean of the observation val-
ues. This is acceptible result as the RA must not exceed 20% if the PEMS me-
surements are between 100 ppm and 10 ppm. 

Next is the test for significance of regression (with 0.025α = ). The regres-
sion sum of squares computed by Equation (10) is: 

( )2

1
SSR 195.16939

n

i
i

y y
=

= − =∑                  (27) 

The sum of squares for error is defined by (11): 

( )2

1
ˆSSE 11.84140

n

i i
i

y y
=

= − =∑                  (28) 

F0 statistic vs constant model is defined by (8): 

( ) ( )0
SSR 195.16939 15 87.90

SSE 1 11.84140 96 15 1
kF

n k
= = =

− − − −
        (29) 

and p value = 6.49 × 10−28. This low p-value, less than 0.025, is statistically sig-
nificant. It indicates strong evidence against the null hypothesis. 
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Coefficient of multiple determination is calculated by Equation (12): 

2 SSR SSE 11.841401 1 0.943
SST SSR SSE 195.16939 11.84140

R = = − = − =
+ +

    (30) 

and multiple correlation coefficient is: 0.943 0.97R = = . The PEMS correla-
tion is acceptable, as it must be 0.8 or grater. 

9. The Role of High Precision Arithmetic in Numerical  
Calculations 

High precision software has been implemented in C++ for calculating numerical 
Laplace and inverse Laplace transforms [5]. 

The Appendix introduces C++ code used to implement numerical CDF and 
PDF for t and F distributions in arbitrary precision. 

Table 13 shows sum of squares, F0 statistic and R2 evaluated in double with 
precision N = 16 and high precision with N = 32 and N = 128. The notation * 
indicates the calculation error in double precision. Fist we compare Equations 
(11) and (28). 

Double precision gives calculation error by formula 136.40s 7ˆse ′ ′ ′ == −y y X yβ . 
The solution by Equation (28) gives ( )2

1
ˆSSE 11.84n

i ii y y
=

= − =∑ . The accu-
rate solution SSE 11.72=  gives high precision software. 

Next we compare Equations (10) and (27). 
Double precision gives calculation error by formula  

( )2

1 70.6s 0ˆ 4sr i
n

iy

n
=

=′ ′= −
∑

X yβ . 

 
Table 13. Sum of squares, F statistic and R2 evaluated in double with N = 16 and multiple 
precision level with N = 32 and N = 128. The notation * indicates the calculation error in 
double precision. 

# Formula N = 16 N = 32 N = 128 

1 ( )1

2

ˆssr
n

ii
y

n
=′ ′= −

∑
X yβ

 
70.604* 195.288 195.288 

 ( )2

1
SSR n

ii
y y

=
= −∑  

195.169 195.288 195.288 

2 ˆsse ′ ′ ′= −y y X yβ  136.407* 11.723 11.723 

 ( )2

1
ˆSSE n

i ii
y y

=
= −∑  

11.841 11.723 11.723 

3 ( )0
ssr

sse 1
kf

n k
=

− −  
2.760* 88.856 88.856 

 ( )0
SSR

SSE 1
kF

n k
=

− −  
87.904 88.856 88.856 

4 2 ssr
ssr sse

r =
+  

0.58* 0.94 0.94 

 2 SSR
SSR SSE

R =
+  

0.94 0.94 0.94 
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The solution by Equation (27) as ( )2
1SSR n

ii y y
=

= −∑  gives SSR 195.169= . 
High precision software gives the accurate solution SSR 195.288= . 

10. Comprehensive Methodology for Developing PEMS 

PEMS development is based on techniques for statistical data analysis of signifi-
cant parameters used as inputs to multiple regression model. The methodology 
includes the following steps. 

Data collection: Obtain historical data on dependent fuel and independent 
NOx emissions from CEMS software installed on the industrial source. Data 
covers a representative range of operating conditions and emission levels. 

Variable selection: Identify the most significant process parameters, such as 
oxygen, temperature, pressure, fuel flow, and fuel composition, affecting emis-
sions formation. Perform correlation and regression analyses to determine the 
relationships between these variables and the emission levels. 

Model development: Split the historical data into training and testing sets. Use 
the training set to develop the PEMS model and the testing set to assess its pre-
dictive accuracy. Adjust and refine the model as necessary to improve its per-
formance. 

Model evaluation: Assess the accuracy of the PEMS model by comparing 
real-time and historical trend charts of estimated emissions with actual NOx 
values obtained from CEMS gas analyzers. Verify the model against the perfor-
mance specification [8] requirements and perform additional tests for PEMS 
model evaluation and assessment. 

Model implementation: Integrate the PEMS model into the plant’s control 
system to provide real-time emission estimates and facilitate data-driven deci-
sion-making for emission control and optimization. 

Ongoing model maintenance: Periodically update and recalibrate the PEMS 
model to account for changes in process conditions, equipment performance, 
and regulatory requirements. 

11. Limitations of PEMS Model 

Although PEMS offers several advantages over CEMS, it has certain limitations. 
Applicability: PEMS may not be suitable for all types of industrial sources, es-

pecially those with highly variable or complex emission profiles such as 
coal-fired power stations or alternative fuel cement plants. Industries with ra-
pidly changing operating conditions or multiple emission sources may require 
more sophisticated models or hybrid monitoring approaches combining PEMS 
with CEMS. 

Data quality: The accuracy of PEMS is highly dependent on the quality and 
representativeness of the historical data used for model development. Poor data 
quality or gaps in data coverage can result in less accurate and reliable PEMS 
models. 

Model adaptability: PEMS models may require regular updates and recalibra-
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tion to maintain accuracy as process conditions change over time. This will often 
require close collaboration between plant operators and PEMS vendors. 

12. Environmental Benefits of PEMS over CEMS 

PEMS offers several environmental benefits compared to CEMS. 
Enhanced process optimization and potential emissions reduction, by pro-

viding real-time insights into emission levels. PEMS can help improve overall 
plant efficiency by providing continuous feedback on process performance. This 
information can be used to optimize fuel usage, reduce excess air, improve 
combustion efficiency, and facilitate timely interventions to optimize process 
parameters and minimize emissions. This proactive approach to emissions con-
trol can result in more effective and sustainable emission reduction strategies. 
Real-time feedback enables plant operators to adjust processes, ultimately re-
ducing the release of pollutants into the environment. 

Improved compliance and reporting: PEMS models can help industries main-
tain compliance with environmental regulations by providing accurate, real-time 
emissions data. This information can be used to generate reports for regulatory 
agencies and demonstrate ongoing compliance with emissions limits. Improved 
compliance can lead to fewer penalties and fines. The adoption of PEMS models 
signals a commitment to sustainable business practices and environmental ste-
wardship. By demonstrating the implementation of advanced monitoring tech-
niques and a proactive approach to emission reduction, industries can enhance 
their corporate social responsibility profiles and contribute to global efforts to 
mitigate climate change and reduce air pollution. 

Reduced maintenance and downtime: PEMS models typically require less 
maintenance than CEMS equipment, resulting in reduced downtime for indus-
trial facilities. This not only lowers maintenance costs but also minimizes the 
potential for accidental releases of pollutants during maintenance activities. By 
reducing the need for invasive and time-consuming maintenance procedures, 
PEMS contribute to a safer and more environmentally friendly workplace. 

Reduced resource consumption: PEMS rely on existing process data and sen-
sors, reducing the need for additional hardware and consumables used in CEMS. 
By minimizing the need for sampling equipment and consumable materials, such 
as calibration gases, PEMS help reduce the environmental impact associated with 
waste disposal and resource extraction. PEMS models typically consume less 
energy compared to the operation of CEMS analyzers, reducing the overall en-
vironmental impact. This benefit is particularly significant for large industrial 
facilities where energy consumption can be a major contributor to greenhouse 
gas emissions and operating costs. The reduced energy consumption also trans-
lates to cost savings for the facility. 

13. Conclusion 

Software-based PEMS uses data collected by the process sensors and analyzers to 
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learn how various process parameters, such as oxygen, temperature, pressure, 
fuel flow, and fuel composition affect the emissions formation. In many cases 
this data can be used to develop and install PEMS, to replace or to be used in-
stead of CEMS. This development is based on a regression model and statistic 
methods, but also on previously collected CEMS data. To develop a stable, accu-
rate, and computationally efficient PEMS model this study used high precision 
C++ software to conduct the multiple regression analysis. Computation statistics 
methods were used for the estimation of NO and NO2 emissions from one of the 
stacks of the petrochemical refinery plant. The methods for PEMS implicated the 
creation of mathematical models to express the relationship between emissions 
and various operating and external parameters, such as flue gas temperature, 
excess combustion air, and heat load. The applicability of PEMS has been tested 
with multiple regression analysis of big statistical data. Multiple linear regression 
model allows the response variable to be modeled as a function of more than one 
input variable. The computations are considerably more complex than in simple 
linear regression. The most efficient way to deal with multiple linear regression 
mathematically is by using the matrix algebra approach. In multiple polynomial 
regression model, the response variable is not expressed as a linear combination 
of the parameters. Many ideas in the multiple polynomial regression are similar 
to those in linear regression. The mathematical processes in multiple regression 
require model fitting and making statistical inferences. We investigated the ac-
curacy of the PEMS model by applying test procedures described in performance 
specification [11]. The most important result is that the PEMS model was tested 
and was found to be suitable for continuous emissions monitoring, provided that 
dependent influencing parameters would continue to operate in levels recorded 
and used for PEMS model development. 
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Appendix: C++ Code Used to Implement Numerical CDF and PDF for t and F  
Distributions in Arbitrary Precision 

The statistical technique and numerical integration used in PEMS model development were described in Sections 4 
and 9. The calculations can be perform up to 1000 places of decimals/1000 significant digits. The C++ code used to 
implement numerical CDF and PDF for t and F distributions in arbitrary precision are given below. 
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