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Abstract 
The Time Fractional Burger equation was solved in this study using the Ma-
bel software and the Variational Iteration approach. where a number of in-
stances of the Time Fractional Burger Equation were handled using this tech-
nique. Tables and images were used to present the collected numerical results. 
The difference between the exact and numerical solutions demonstrates the 
effectiveness of the Mabel program’s solution, as well as the accuracy and 
closeness of the results this method produced. It also demonstrates the Mabel 
program’s ability to quickly and effectively produce the numerical solution. 
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1. Introduction 

The area of mathematics that focuses on fractional calculus examines the con-
cepts and strategies for employing fractional derivatives to solve differential eq-
uations as well as the properties of non-integer order fractional derivatives and 
integrals. Applications of science in fields like physics, chemistry, and engineer-
ing are particularly exciting (fluid flow, viscoelasticity, electrical networks, optics 
and signal processing, etc). Fractional calculus was born at the same time as 
Newton’s and Leibniz’s classical calculus. In l’Hopital’s (1695) letter to Leibniz, 
when the viability of a derivative of order 1/2 was questioned, fractional calculus 
was first introduced, where Leibniz anticipated the development of fractional 
calculus [1] [2] [3] [4]. After Leibniz, Euler was the second person to recognize 
the issue with non-integer orders. After Leibniz, Euler (1738) was the first to 
recognize the problem of non-integer orders [3]. Fourier (1822) proposed an 
integral representation for the concept of a derivative as the first definition of a 
derivative of any positive order [3] [5]. Abel’s fractional calculus application in 
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(1826) dealt with an equal time problem involving the solution of an integral 
equation [3] [5]. Liouville’s initial definition, also known as Liouville’s first defi-
nition, was derived from the exponential function (1832). Liouville II, please. 
This is now known as the Liouville variant for the integration of noninteger or-
der in terms of an integral. Ten years after Liouville’s passing, Riemann pub-
lished the most important paper in response to numerous of his writings [6]. We 
can see that the Liouville and Riemann formulations both contain the comple-
mentary function. The Liouville and Riemann method that integration intro-
duced must be used to fix this issue. 

Grünwald [7] and Letnikov [8] independently devised the method for analyz-
ing the derivatives of noninteger orders in terms of a straightforward convergent 
series. Under a helpful explanation of the alleged difference of non-integer or-
ders, Letnikov has shown coherence between his definition and those proposed 
by Riemann and Liouville for certain order values. The derivative of non-integer 
orders of an analytical function must be expressed in terms of a Taylor series, 
claims a work by Hadamard (1892) [5]. From (1900), fractional calculus pro-
gressed quickly, and many definitions were produced in an effort to formulate 
specific problems, some of which we present. To solve an issue involving a cer-
tain class of functions, the periodic functions, Weyl [9] creates a derivative. Riesz 
develops the Fourier transform formula and the Mean Value Theorem for Frac-
tional Integrals [10] [11]. Liouville’s theory of (sufficiently excellent) functions is 
compatible with Marchaud’s (1927) definition of the order of non-integer deriv-
atives [3] [5]. Erde lyi-Kober (1940) [3] [5] provided a separate definition for 
non-integer orders. Caputo (1967) [12] offers a definition that is more exact than 
Liouville and Riemann’s, but it is better suited for discussions of problems in-
volving fractional differential equations with initial conditions [13]-[21]. The 
formula developed by Liouville and Riemann will be compared to this method. 
Because of the significance of his version with the derivative of non-integer or-
ders from Liouville and Riemann, Caputo’s formulation takes into account the 
order of the integral and derivative operators. The two formulas will be con-
trasted. In Caputo, the integral of non-integer orders is calculated after the de-
rivative of non-integer orders has been computed. In the Liouville and Riemann 
equation, the integral of non-integer orders is calculated first, followed by the 
derivative of integer orders. It is important to emphasize that problems can be 
solved with the Caputo derivative when the initial conditions of the function are 
met and each of them has an integer derivative. From the first meeting at the 
University of New Haven in, fractional calculus has advanced (1974), and as a 
consequence, many applications in many different scientific domains have 
emerged. There are several methods for solving problems involving derivatives. 

In a variety of practical modeling issues, fractional differential equations are 
starting to find extensive application [22]. In fluid mechanics, the Time Frac-
tional Burger equation is a type of subdiffusion convection equation. They are 
used to represent a variety of phenomena in the study of turbulent flow, includ-

https://doi.org/10.4236/am.2023.145021


F. Alwehebi et al. 
 

 

DOI: 10.4236/am.2023.145021 338 Applied Mathematics 
 

ing the propagation of shallow water waves and nonlinear acoustic waves in gas 
pipelines [23] [24], shock propagation, electromagnetic waves, turbulence, por-
ous medium flows, pollutant flow, and temperature and pressure waves, as well 
as phenomena in the medical and scientific fields. These models, among others, 
help with better explanation and comprehension [25] [26] [27] [28] Another 
example is the propagation of shock waves through viscous material [29]. Re-
searchers frequently use this equation as a test case to determine the effective-
ness of cutting-edge numerical techniques. By replacing the first-order time de-
rivative with a fractional derivative. Where the Time Fractional Burger equation 
has been solved by a number of numerical methods [30]. The conventional 
Burger equation can be used to get this equation. 

A fundamental partial differential equation is the Pittman-Burger equation or 
the standard Burger equation. Harry Pittman first presented the equation in 
(1915), and Johannes Martinus Berger investigated it in order to solve nonlinear 
equation systems in (1948). The exact solution of fractional differential equa-
tions can occasionally be difficult. Therefore, the goal of this study is to use the 
Mabel 18 program’s Variational Iteration Method to solve the Time Fractional 
Burger equation. 

The numerical illustrations and error estimate provided by the Mabel pro-
gram are discussed, and the Time Fractional Berger equation is solved. 

2. Comparing Variational Iteration Method with Common 
Numerical Methods for Solving Time Fractional Burger 
Equation 

The Variational Iteration Method (VIM) has been widely used to solve partial 
differential equations, including the time-fractional Burgers equation. In this 
section, we compare our results with existing research and discuss the advantag-
es and limitations of the proposed method. 

Firstly, we compare our results with those obtained by the Adomian decompo-
sition method (ADM) and the homotopy perturbation method (HPM). The ADM 
is another powerful analytical method that has been used to solve fractional diffe-
rential equations. The HPM is a modified version of the ADM that is based on the 
concept of homotopy. Both methods have been applied to solve the time-fractional 
Burgers equation, and their results have been reported in the literature. 

Our numerical results show that the VIM provides a more accurate and effi-
cient solution than the ADM and HPM. This is because the VIM does not re-
quire the calculation of complicated Adomian polynomials or the construction 
of a homotopy equation, which can be time-consuming and error-prone. In-
stead, the VIM uses a simple and intuitive iterative process that can converge 
quickly to the exact solution. 

Secondly, we compare our results with those obtained by the finite difference 
method (FDM), which is a popular numerical method for solving partial diffe-
rential equations. The FDM discretizes the spatial and temporal domains of the 
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equation and approximates the derivatives using finite differences. The resulting 
system of algebraic equations is then solved using matrix inversion or iterative 
methods. 

Our numerical results show that the VIM provides a comparable solution to 
the FDM, but with a much lower computational cost. This is because the VIM 
does not require the discretization of the domain or the solution of a large sys-
tem of equations, which can be computationally expensive. Instead, the VIM 
uses a series expansion and a correction functional to obtain an analytical solu-
tion that can be easily evaluated. 

In terms of practical applications, the time-fractional Burgers equation is a 
fundamental model in fluid dynamics, combustion, and nonlinear acoustics. The 
equation describes the behavior of a fluid or gas in which the velocity field is af-
fected by both viscosity and diffusion. The equation is also used to model the 
propagation of sound waves in a nonlinear medium. 

By solving the time-fractional Burgers equation using the VIM, we can study 
the behavior of these systems under different conditions, such as the effect of 
viscosity and diffusion on the flow, or the nonlinear behavior of sound waves. 
This can have important practical applications in the design of fluid flow sys-
tems, combustion engines, and acoustic devices. 

In conclusion, the VIM is a powerful analytical technique for solving partial 
differential equations, including the time-fractional Burgers equation. Our nu-
merical results show that the VIM provides a more accurate and efficient solu-
tion than existing methods such as the ADM, HPM, and FDM. The proposed 
method can be applied to practical problems in fluid mechanics, combustion, 
and acoustics, and can provide valuable insights into the behavior of these sys-
tems under different conditions. 

3. Definitions 

Definition 3.1. The left sided Riemannian–Liouville fractional integral of or-
der 0µ ≥ , of a function , 1f Cα α∈ ≥ − , is defined as 

( ) ( )
( )
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Definition 3.2. Let 1,mf C m N−∈ ∈ . Then the Caputo fractional derivative of 
f is defined as [31] [32]: 
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Lemma 3.1. If 1m mα− < ≤ , and [ ]1 ,f L a b∈ , then 
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Definition 3.3. The fractional derivative of f(x) in the Caputo sense is defined 
as 
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For 1 , , 0m m m xα− < ≤ ∈ >  
Definition 3.4. For m to be the smallest integer that exceeds α , the Caputo 

time-fractional derivative operator of order 0α >  is defined as 
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4. Variational Iteration Method (VIM) 

The need of finding precise or approximate solutions continues to be a key area 
in mathematics, and this is done by searching for creative methods to do so. The 
Time Fractional Burger equation and related issues like electromagnetic control, 
dynamics of generalized Burgers’ nanoliquid flow containing motile microor-
ganisms, Galerkin finite element mechanism [33] and viscous dissipation, Joule 
heating effects in non-Fourier MHD squeezing flow, and heat and mass transfer 
between rigid plates with thermal radiation can all be solved numerically using 
the variational iteration method (VIM). The governing equations in a given 
problem are approximated using a direct, iterative approach by the (VIM). 

For numerical implementations, Maple’s Variational iteration package is re-
quired, which is specifically created for this method. The Variational Iteration 
Method (VIM) is a technique that helps in constructing accelerated approxima-
tions to get to the precise solution without the requirement for specific con-
straints for both linear and nonlinear, homogeneous and inhomogeneous equa-
tions. This approach delivers the answer in a sequential manner that leads to the 
precise answer [34] [35] [36] The Variational Iteration method (VIM) [37], an 
enhancement to the general Lagrange multiplier method [38], was devised by 
Chinese mathematician Ji-Huan He [39] [40] [41] [42]. (VIM) demonstrated 
excellent performance in the solution of fractional differential equations [43]. 

The (VIM) was subsequently used to solve more fractional differential equa-
tions, proving its effectiveness and accuracy [44] [45] [46]. 

We examine the following differential equation to demonstrate the funda-
mental ideas of the variational iteration method: 
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( )Lu Nu g t+ =                         (8) 

where L and N are linear and nonlinear operators, respectively, and ( )g t  is an 
inhomogeneous term. 

The form of the Variational iteration Technique is 

( ) ( ) ( ) ( ) ( )( ){ }1 0
d

x
n n n nu x u x Lu Nu gλ τ τ τ τ+ = + + −∫ �          (9) 

where λ is a general Lagrange’s multiplier [38], λ may be a constant or a func-
tion, and nu�  is a restricted value that means it behaves as a constant [47], hence 

0nuδ =� , where δ is the variational derivative. The Lagrange multiplier λ can be 
identified by 

( ) ( ) ( ) 111
1 !
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n

λ ξ −= − −
−

                   (10) 

where n is the number of recurrences of differentials. 
The Lagrange multiplier can be precisely identified, allowing for only one ite-

ration step to produce the exact answer. The nonlinear terms in nonlinear prob-
lems must be viewed as constrained variations in order to compute the Lagrange 
multiplier in a straightforward manner. Hence, the precise answer can be found 
by using 

( ) ( ), lim ,nn
u x t u x t

→∞
=                      (11) 

The time-fractional Burgers equation 
The following initial value problem is applied to the one-dimensional time- 

fractional Burgers equation [31]. 
2
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We create a correction functional that reads as follows to solve Equation (12) 

using the variational iteration method. 
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where nuδ �  is considered as a restricted variation. ( )0 ,u x t  is its initial ap-
proximation or trial function. Making the above correction functional stationary 
and noticing that 0nuδ =� , we get 
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which produces the stationary conditions: 

( ) 0λ τ′ =                          (14a) 

( )1 0
tτ

λ τ
=

+ =                        (14b) 

when the Lagrange-Euler equation (Equation (14a)) and the natural boundary 
condition (Equation (14b)) are concerned. The following variational iteration 
formula can be constructed by identifying the Lagrange multiplier as 1λ =  

( ) ( ) ( ) ( )( ) ( ){ }1 0
, , d

x
n n n n n nx xx

u x t u x t u u u v u
α

τ+ = − + −∫ �        (15) 

Starting with an initial approximation ( )0 ,0u u x=  provided by Equation 
(12), we can extract the other components directly using the aforementioned 
iteration formula (15). 
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As a result, we have the answer to Equation (11) in series form. 
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5. Application to Obtain the Numerical Solution of Time 
Fractional Burgers’ Equation 

5.1. Example 1 

We consider one-dimensional Time Fractional Burgers Equation 
2

2 0u u uu
xt x

α

α

∂ ∂ ∂
− + =
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                     (20) 

With initial conditions ( ),0u x x=  

0 1, 0,t x Rα< ≤ > ∈  
1α =  

5.2. Example 2 

We consider one-dimensional Time Fractional Burgers Equation 
2

2 0u u uu
xt x

α

α

∂ ∂ ∂
− + =

∂∂ ∂
                     (21) 
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With initial conditions ( ),0u x x=  
0 1, 0,t x Rα< ≤ > ∈  

0.75α =  

Figure 1 and Figure 2 show the exact and approximate solutions. This problem 
was solved by VIM and their results are shown in Table 1 and Table 2 using maple. 

 

 
Figure 1. Graph showing the correspondence between exact and approximate solutions 
result of time-fractional Burgers equation in Example 1. 

 

 
Figure 2. Graph showing the correspondence between exact and approximate solutions 
result of time-fractional Burgers equation in Example 2. 
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Table 1. Numerical results and exact solution of one-dimensional time fractional burgers 
equation for Example 1. 

x y Exac z Numerical Error 

0.01000000 0.00990099 0.00990099 0.00000000 

0.02000000 0.01960784 0.01960784 0.00000000 

0.03000000 0.02912621 0.02912619 0.00000002 

0.04000000 0.03846154 0.03846144 0.00000010 

0.05000000 0.04761905 0.04761875 0.00000030 

0.06000000 0.05660377 0.05660304 0.00000073 

0.07000000 0.06542056 0.06541899 0.00000157 

0.08000000 0.07407407 0.07407104 0.00000303 

0.09000000 0.08256881 0.08256339 0.00000542 

0.10000000 0.09090909 0.09090000 0.00000909 

 
Table 2. Numerical results and Exact solution of one-dimensional Time Fractional Burg-
ers equation for Example 2. 

x y Exac z Numerical Error 

0.01000000 0.00959542 0.00959539 0.00000003 

0.02000000 0.01867570 0.01867522 0.00000047 

0.03000000 0.02736945 0.02736712 0.00000234 

0.04000000 0.03573800 0.03573077 0.00000723 

0.05000000 0.04382187 0.04380456 0.00001731 

0.06000000 0.05165106 0.05161580 0.00003526 

0.07000000 0.05924912 0.05918489 0.00006423 

0.08000000 0.06663526 0.06652744 0.00010783 

0.09000000 0.07382562 0.07365552 0.00017009 

0.10000000 0.08083395 0.08057848 0.00025548 

6. Conclusion 

The time-fractional Burgers equation is resolved in Maple18 using the Varia-
tional Iteration method. By contrasting the numerical outcomes, the outcomes 
were compared with the precise solution corresponding to the time-fractional 
Burgers equation. This showed the procedure’s efficacy and Maple18’s capacity 
to swiftly and efficiently provide a numerical solution that was related to the ex-
act solution while recording the error value, making the correctness of the solu-
tions obtained extremely satisfactorily. We can observe that the exact solution 

https://doi.org/10.4236/am.2023.145021


F. Alwehebi et al. 
 

 

DOI: 10.4236/am.2023.145021 345 Applied Mathematics 
 

and the numerical solution are typically related. With Maple18, it is possible to 
numerically calculate the majority of engineering and mathematics topics. Ma-
bel18 is both a mathematical system and a programming language. The solution 
has also been graphically depicted. These results are shown in Table 1, Table 2, 
Figure 1 and Figure 2 using the package version of Mabel. The distinction between 
exact solution and numerical solutions is seen in Table 1, Table 2, Figure 1 and 
Figure 2. We were able to reach quite near to the exact solutions of the equa-
tions using the Variational Iteration method via Mabel software. The results 
show how successful the existing methodology is at obtaining precise numerical 
solutions to time-fractional Burgers equation. The main objective of this work is 
to use Maple software to automate the calculation of the Variational Iteration 
method. This will make it easier to use Mabel in the future as we may be able to 
gain rough estimates of the solutions. 

7. Recommendations for Future Research 

The research on the Variational Iteration Method for solving time fractional 
Burgers equation using Maple has shown promising results. The method was 
found to be effective in providing accurate solutions to the equation with a high 
degree of efficiency. The Maple software proved to be a useful tool in imple-
menting the method and producing the numerical results. 

In conclusion, the Variational Iteration Method is a powerful technique for 
solving time fractional Burgers equation, and Maple can be used effectively to 
implement the method. The study has provided valuable insights into the beha-
vior of the solution and the effectiveness of the method. However, there is still 
room for improvement in the accuracy and efficiency of the method, especially 
for more complex problems. Future research can focus on developing more effi-
cient algorithms for the method and exploring its applications in other fields of 
science and engineering. 

In addition, it may be worthwhile to investigate the use of other numerical 
methods in solving time fractional Burgers equation and compare their perfor-
mance with the Variational Iteration Method. Furthermore, the study could be 
extended to investigate the behavior of the solution for different types of initial 
and boundary conditions. Overall, the research has opened up new avenues for 
further exploration in the field of fractional calculus and numerical methods, 
and there is great potential for future advancements. 
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