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Abstract 
In this work, we focus on the inverse problem of determining the parameters 
in a partial differential equation from given numerical solutions. For this 
purpose, we consider a modified Fisher’s equation that includes a relaxation 
time in relating the flux to the gradient of the density and an added cubic 
non-linearity. We show that such equations still possess traveling wave solu-
tions by using standard methods for nonlinear dynamical systems in which 
fixed points in the phase plane are found and their stability characteristics are 
classified. A heteroclinic orbit in the phase plane connecting a saddle point to 
a node represents the traveling wave solution. We then design parameter es-
timation/discovery algorithms for this system including a few based on ma-
chine learning methods and compare their performance. 
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1. Introduction 

Many important processes such as fluid flow, heat and mass transport, wave mo-
tion, and others involve quantities that vary in space and time and can be mod-
eled by partial differential equations (PDEs). Most PDEs, specially if nonlinear, 
do not have explicit analytical solutions and numerical methods must be used to 
solve them. The inverse problem for PDEs/ODEs is one of determining unknown 
coefficients, parameters, or functions in the equation from a set of observations 
or measurements. Normally, the inverse problem is more challenging than the 
forward problem due to its ill-posed nature, in which small errors in the mea-
surements can lead to large errors in the estimated parameters or functions. In-
verse problems arise in many scientific and engineering applications, such as 
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medical imaging, geophysics, non-destructive testing, and material characteriza-
tion. For example, PDE inverse problems can be used to determine properties of 
materials from measurements of waves or fields, or to reconstruct images of in-
ternal organs from X-rays or CT scans. In this article, we focus on the traveling 
wave solution of a nonlinear diffusion-reaction equation, namely Fisher’s equa-
tion but with some modifications. We develop methods for solving the inverse 
problem, which aims to discover the PDEs that govern a space-time-dependent 
process and the parameters within those PDEs using various approaches, in-
cluding machine learning and optimization. Given a numerical solution, the goal 
is to determine which PDE and what parameters gave rise to that solution. 

Fisher’s equation was first introduced in 1930 [1] to describe the spread of 
advantageous genes. Canosa extended it to depict population growth in 1973 [2]. 
In Murray’s book [3], the history and various applications of Fisher’s equation 
are discussed in detail. There has been growing interest in studying the traveling 
wave solutions of Fisher’s equation. Some researchers have found analytic solu-
tions in specific cases. For example, [4] provided an exact solution with wave 
speed 5 6± ; [5] provided the solution of quadratic Fisher equation in both 
one and two dimensions; and [6] provided analytic approximate solutions of 
some nonlinear parabolic dynamical wave equations (including Fisher’s equa-
tion) with a modified variational iteration algorithm. 

In addition to analytic solutions, there are also many articles that focus on 
numerical solutions of Fisher’s equation. For example, [7] presented the numer-
ical solution of several types of Fisher’s reaction-diffusion equation by using cu-
bic trigonometric B-spline functions and the differential quadrature method; [8] 
used forward-in-time and central-in-space (FTCS) method; and [9] applied 
Atangana-Baleanu fractional derivative with spectral collocation methods. 

In this paper, a relaxation effect is introduced in an equation relating flux to 
density; the linear part of the operator then becomes hyperbolic and yields a fi-
nite speed for the propagation of disturbances. This adds a parameter making 
the identification problem a bit more challenging. A similar relaxation effect has 
been introduced into the convection-diffusion equation; for example, [10] solved 
the unsteady convection-diffusion equation with such a relaxation effect by us-
ing third-order accurate implicit-explicit (IMEX) Runge-Kutta method in time 
and fifth-order finite difference WENO scheme in space. [11] provided an ana-
lytic approach with fractional operators, including Liouville-Caputo and Atan-
gana-Baleanu-Caputo operators; [12] used a system similar to the one discussed 
in the current paper but with different parameters, and they provided large-time 
solutions with a specific nonlinear function on the right-hand side:  
( ) ( )( )1 1F u u u uε σ= − +  taking 0 1ε< <  and 1 σ− < . 
Recently, instead of using traditional PDE numerical solvers, researchers have 

started to solve direct and inverse PDE problems using machine learning algo-
rithms. For example, [13] solved PDEs with deep learning; they provided some 
examples like the Black-Scholes equation, and the Hamilton-Jacobi-Bellman eq-
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uation. [14] introduced a new feed-forward deep network, PDE-Net, to solve 
PDEs. Additionally, a new deep learning framework called Physics-Informed 
Neural Network (PINN) has been used to solve PDEs. For this method, [15] 
provided the general structure and algorithms, and [16] obtained numerical so-
lutions by using a Bayesian PINN (B-PINN) in both forward and inverse nonli-
near directions with noisy data. 

As to parameter estimation, [17] proposed two methods (parameter cascading 
and Bayesian approach) to estimate the parameters in PDEs, [18] estimated the 
parameters of a laminar flow model with the help of machine learning, and [19] 
designed a data-driven model that can be used to discover the key parameters in 
PDEs through time series measurements in the spatial domain. 

Fisher’s equation combines the logistic population growth model,  
( )1u ku u C= −� , where k is the growth rate at low densities and C is the carrying 

capacity, with a diffusion equation in which density ( ),u x t  is a function of 
space x and time t and satisfies the PDE ( )1t xxu Du ku u C= + − . Upon scaling 
u with C, time t with 1k −  and x with ( )1 2D k , the dimensionless form of Fish-
er’s equation becomes ( )1t xxu u u u= + − . By introducing the flux ( ),q x t , we 
can rewrite this scaled reaction-diffusion equation in the form 

( ) ( )
,

, 0 ,
,

t x

x

u q F u
x t

u q
+ = −∞ < < ∞ >
= −

               (1) 

where ( ) ( )( )( )1 21 1 1F u u u u uγ γ= − − − � . Here, we have modified the logistic 
expression for the growth rate ( )F u  by allowing for higher order polynomials 
to see their effect on the parameter identification problem. 

The second equation in the system above relates the flux q, instantaneously, to 
the negative of the gradient of the density u, which is common in diffusion mod-
els (such as Fick’s law of diffusion). However, in some cases, it may take a finite 
time for the flux to adjust to the variations in the gradient. To account for this 
relaxation process, one can introduce a dimensionless relaxation time ε  in the 
flux relation. The new system then reads: 

( ) ( )
,

, 0, 0 .
.

t x

t x

u q F u
x t

q u q
ε

ε
+ = −∞ < < ∞ > ≥
+ = −

             (2) 

By eliminating ( ),q x t , we can also write this system as a single second-order 
equation in the form: 

( ) ( )1 .xx tt tu u u F u F uε ε ′− = − −                    (3) 

In the special case 0ε =  and ( ) ( )1F u u u= − , the equation becomes the 
original Fisher’s equation which is a parabolic PDE; when 0ε > , it becomes 
hyperbolic. 

In this paper, we focus on traveling wave solutions of this system. To that end, 
we take both ( ),u x t  and ( ),q x t  to depend on the single variable x Vtζ = −  
with velocity 0V >  in the system (2) and equation (3). The result is a system of 
coupled first-order ordinary differential equations: 
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( ) ( )
,

, 0, 0 ,
,

Vu q F u
V

u V q q
ζ ε

ε

′ ′− + = −∞ < < ∞ > ≥
′ ′− = −

           (4) 

and a second order ODE: 

( ) ( ) ( )2 1 1 ,V u F u Vu F uε ε′′ ′ ′− = − +                  (5) 

where ( ) ( )( )11 1F u u u uγ= − − � . These equations are our starting points to 
analyze the properties of the traveling wave solutions. 

In this article, we mostly focus on the ODE system (4), and the second-order 
ODE (5). In our experiments, we find that larger values of ζ  are needed to 
show a significant change in the solution u as the order of nonlinearity increases. 
For example, if we set 1γ  and 2γ  to 0.6 and 0.8, respectively, the wave front 
occurs when ζ  is around 750. Most of the time, we restrict our attention on 
the nonlinearity ( ) ( )( )1 1F u u u uγ= − −  with just a single parameter γ . As 
such, our modified Fisher’s equation includes three parameters: ε , V, and γ , 
which we try to identify from a given numerical solutions of the system (2) or 
the Equation (5). 

The traveling wave fronts that are of interest to us have a u profile that 
smoothly goes from 1 to 0 (two of the fixed points of the system) as ζ  ranges 
from −∞  to ∞ . To justify the existence of such traveling waves, we first carry 
out a stability analysis of the nonlinear dynamical system for arbitrary values of 
V, ε , and γ . Then, we consider the inverse problems of finding the parame-
ters given some numerical solution. We consider two different cases of the in-
verse problem: one in which both profiles ( )u ζ  and ( )q ζ  are available, and 
another where only one of these, namely ( )u ζ  is known. We refer to these as 
Type 1 and Type 2 inverse problems, respectively. For Type 1 problems, we can 
determine the parameters V, ε , and γ  through the use of appropriate opti-
mization problems. For Type 2 problems, we recover parameters V, ε , and γ  
by means of machine learning methods. In this case, we first use an ensemble 
method to get a more accurate initial value for velocity V, which is crucial for 
enhancing the performance of the optimization problem to determine the re-
maining two parameters ε  and γ . 

2. Methods 

In this section, we focus on Equations (4) and (5). We first take  
( ) ( )( )( )1 21 1 1F u u u u uγ γ= − − − �  where 0 1iγ≤ < , and u is a proper density 

field that lies within the interval [0, 1]. Later, we restrict to the case where ( )F u  
is cubic with only one extra parameter γ . After the traveling-wave transforma-
tion and with the help of a stability analysis in the phase plane, we identify the 
proper range of parameters V and ε , which turn out to be 2 V≤  and 

20 1 Vε≤ < , for which traveling waves are obtained, keeping the density be-
tween 0 and 1. We then generate a large set of numerical solutions using these 
values to train machine learning algorithms. Next, assuming that some numeri-
cal traveling wave solution is given (including both u and q profiles or the u pro-
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file alone), we design parameter estimation models to estimate the velocity V, 
relaxation time ε , and parameter γ  that gave rise to that numerical solution. 

2.1. Stability Analysis 

Stability analysis of fixed points in the phase plane is a powerful approach for 
qualitative understanding of the behavior of a dynamical system. The equili-
brium points can typically be classified as linearly stable, unstable, or semi-stable. 
Although those classifications are local, it is often possible to infer qualitatively 
the global trajectories in the phase plane through further analysis. For instance a 
trajectory connecting two separate fixed points can represent a solution that goes 
from one constant value to another. However, due to the complex nature of dy-
namics in the presence of multiple fixed points and nonlinearities, while linear 
stability analysis is a valuable tool, it may not be suitable for all systems or pro-
vide a full picture of the dynamics. 

Equation (4) can be written in matrix-vector notation: 

( )1
.

1
u uV F u
q qV q
ζ ζ

ζ ζε
−       

≡ =      − −      
A                (6) 

Matrix A  is invertible provided that 2Vε  is not equal to 1. We linearize the 
system about fixed points ( ) ( ), ,0iu q u=  by introducing small perturbations 
( )ξ ζ  and ( )η ζ  through ( )iu u ξ ζ= +  and ( )0q η ζ= + . The linearized 

system becomes: 

( )

( )
( )

1

2

1
1

11
1

.

i

i

i

V F u
V

F u V
F u VV

ξ ξ
η ε η

ε ξ
ηε

ξ
η

−′ −  +   
=     − −     

′ −  
=    ′ −−   

 
≡  

 
C

 

The eigenvalues of C  determine the stability of the fixed points; to simplify 
the notation, let ( )iF uβ ′= ; the two eigenvalues at each fixed point are then 
given by 

( ) ( ) ( )2
22

41 1 .
2 1

V
VV
βλ εβ εβ

ε

 
= − ± + − 

−  
             (7) 

The function ( )F u  has roots at 0u =  and 1u =  in addition to those in-
troduced by the additional factors; thus there are always two equilibrium points 
at 0 and 1. At these points ( )0 1β =  and ( ) ( )1 1 iiβ γ= − −∏ . We seek travel-
ing wave solutions in which u varies smoothly from 1 to 0 as ζ  goes from −∞  
to ∞ . As such 0u =  must be a stable node (if it were a spiral, u would oscillate 
as it approached 0 and become negative at times), while 1u =  can be an unsta-
ble node or saddle. The corresponding eigenvalues for these equilibrium points 
are given as: 
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( ) ( ) ( )2
22

40 1 1 ,
2 1

V
VV

λ ε ε
ε

 
= − ± + − 

−    

( ) ( ) ( ) ( )
( )2

22

4 1
1 1 1 1 1 .

2 1

i
i

i i
i i

V
VV

γ
λ γ ε ε γ

ε

 −
  = − − − ± − − +  −   
 

∏
∏ ∏

 
When 0ε = , in order for the eigenvalues ( )0λ  not to be complex which 

would make the fixed point a spiral, V has to be greater than 2. For any V, we 
must keep ε  less than 21 V  in order to avoid a singularity and change of sign 
in the eigenvalues. In order for u to have a smooth transition between 1 and 0, 
the two key parameters in our system, velocity V and relaxation time ε , can be 
restricted to be within the respective ranges: 2 V≤ , and 20 1 Vε≤ < . 

2.2. Parameter Estimation for the Cubic Non-Linearity 

Using ( ) ( )( )1 1F u u u uγ= − − , and applying constraints for ε  and V, the 
scaled system (4) reduce to: 

( )( )
2

1 1 , 12 , 0 , 0 1 .
,

Vu q u u u
V

Vu Vq q
γ

ε γ
ε

′ ′− + = − −  ≤ ≤ < ≤ <  ′ ′− = −  
      (8) 

Assuming that a numerical solution is given over some range, we design sev-
eral approaches to determine the parameters for two types of inverse problems: 
Type 1 where numerical solutions u and q (density and flux) are both given with 
u in the range [ ]0.95,0.05 ; Type 2 where the numerical solution u (density on-
ly) is given in the range [ ]0.95,0.05 . A good approximation of the first and 
second derivatives is essential for getting high accuracy in the parameter esti-
mates. We use the following high order central difference formulae for this pur-
pose: 

( ) ( )6
3 2 1 1 2 360 9 45 45 9 ,j j j j j j jhf x f f f f f f O h− − − + + +′ = − + − + − + +

 

( )
( )

2
3 2 1 1

6
2 3

180 2 27 270 490 270

27 2 .

j j j j j j

j j

h f x f f f f f

f f O h

− − − +

+ +

′′ = − + − +

− + +
       (9) 

To characterize the performance in our results, we will use the Root Mean 
Square Error (RMSE) which is defined as: 

( )2

1

1 ˆRMSE ,
n

i i
i

y y
n =

= −∑
 

where iy  is the true value, and ˆiy  is the estimated value of iy . 

2.2.1. Type 1 Inverse Problem 
Assume that both numerical solutions u and q with u in the range [ ]0.95,0.05  
are given. Solving the first equation for V in (8) yields:  

( )( )1 1V u u u q uγ ′ ′= − − − −   . Since V is supposed to be a constant (indepen-
dent of ζ  if the estimated γ̂  is equal or close to the true value γ , there 
should be almost no variance in V̂  calculated at different ζ  locations. In 
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other words, if we calculate the variance in V (thought of as a function of ζ ) as 
γ̂  is varied, it should be very close to 0 when γ̂  is close to the true value γ . 
Therefore, we generate our first model which solves the following optimization 
problem: 

( ) ( )( )1 1
minimize : Var ,

subject to : 0 1.

q u u u
g

u
γ

γ

γ

′ − − − 
=  ′ 

≤ <

           (10) 

It is hard to see the convexity of ( )g γ  directly, but we can transform this 
problem into the following quadratic form in which ( )g γ  is strongly convex 
(See the Appendix for details): 

( ) 2
1 2 3

T T T
1 2 2 2 1 2 3 1 1

1minimize : 2 ,
1

subject to : , , ,

g c c c
n

c D c D c D

γ γ γ = − + −
= = =v v v v v v  

where ( ) ( )TT TD n n= − −I I11 11 , ( )2
1 q u u u′ ′= + −v , ( )3 2

2 u u u′= −v , 
and 1  is a column vector of ones. Here, n is the number of data points in the 
vector of numerical solution values u. 

After obtaining γ̂ , we can estimate ε  and V by following equations ob-
tained by averaging the appropriate pointwise values of the parameters along the 
numerical traveling wave profile: 

( )( )
1

ˆ1 11ˆ ,
n

i i i i

i i

q u u u
V

n u
γ

=

′ − − −
=

′∑
 

( )
( )( )( )1 1

1 1ˆ .
ˆ1 1

n n
i i ii i

i ii i i i i i i

u q uu q
n V q n q u u u q

ε
γ= =

′ ′ ′+′ ′+
= =

′ ′ ′− − −
∑ ∑

 

2.2.2. Type 2 Inverse Problem 
Assuming that only some numerical solution of u is given in the range 

[ ]0.95,0.05u∈  without having the corresponding flux q, we devise an alterna-
tive method for estimating the parameters. The solution can be generated by 
solving the second order ODE (5). Considering the different forms of numerical 
equations, it can sometimes estimate u′  too. Therefore, it is essential to come 
up with other methods where the only input is a part of the u solution. To do 
that, we first solve for γ  from the equation 

( ) ( )( ) ( )( )2 21 1 3 2 1 1 1 1V u u u Vu u u uε ε γ γ γ ′′ ′− = − − + + + − −   
treating V and ε  as given. This yields: 

( )
( ) ( )

( )( )
( ) ( ) ( )

( )

2 2

2

2
2

2

2

3 2

2 1
3 2 3 2

2 .
3 2

u u u Vu V u Vu Vu u

u u u Vu u u

u u Vu u u u
u u u Vu

u u u u u Vu u u

Vu u u u
u u u

ε
γ

ε

ε

′′ ′ ′′ ′ ′+ − + − + −
=

′− + −

 ′′ ′ ′− + −
 ′′ ′= + − + +

′ − ′  − + − 
′′ ′ ′+ −

−
′ −  
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To simply the notation, we define four vectors as follows:  

( )( ) ( )2 2 2 3 2u u u Vu u u Vu u u u u u′′ ′ ′′ ′ ′ ′= + − + + − + − −a , ( )2u u u= −b ,  
( )3 2Vu u u′= −c , and ( ) ( )2 3 2Vu u u u u u u′′ ′ ′ ′= − + − −  d . Ignoring the vector 

sign for ease of notation, we can write = / ( )a b c dγ ε+ + . Next, like in the 
previous case, we regard this as the following two-variable optimization prob-
lem: 

( )minimize : , Var ,

subject to : 2 ,0 0.25.

af V d
b c

V

ε
ε

ε

 = + + 
≤ ≤ <

              (11) 

It is clear that ( ),f V ε  is not a convex function. However, we found that if V 
is equal to or around the true velocity, we can transform this equation into the 
following form where ( )w ε  is a strongly convex function (see the Appendix 
for details). 

( ) T 2
1 1 1

2

minimize : 2 ,
1subject to : 0 ,

w D D

V

ε ε ε

ε

= +

≤ <

h h d h

 
where ( ) ( )TT TD n n= − −I I11 11 , and 

T2 2
1 1 1 1 , , n n na c b a c b = −  h � . 

Therefore, if there is a good initial guess for the velocity, the solution of the 
optimization problem (11) always exists and is unique. We designed an ensem-
ble model to make such predictions. Also, in addition to solving (11), we use an 
embedding technique to estimate the parameters. 

2.2.3. Variable Selection 
To begin the design of the ensemble model, the first step is variable selection. In 
our model, we generate our data set from the u solutions. Since ( )u ζ  is a trav-
eling front, it can be shifted right or left without changing form, so the origin in 
ζ  is arbitrary. It is therefore better to work with variables that are independent  

 

 
Figure 1. The process of the first three intercept variables that { }0.95,0.85, ,0.05U = � . 

After estimating all îζ , we generate the intercept variable set: { }0 1 10, , ,T T T T= ∆ ∆ ∆� . 
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of such shifts. Here is the main process we used to generate our data set from a 
numerical solution ( )u ζ , as shown in Figure 1: 

1. Define a set of fixed range intervals along the u-axis, namely 
{ }1 2: , , , kU U U U= � ; the numerical solution is given by { }1 2, , , nu u u u= � , and 

its corresponding variables set is { }1 2, , , nζ ζ ζ ζ= � . 
2. Since most of the time, the numerical solution does not include the exact 

iζ  that corresponds to iU , we estimate it by linear interpolation: assuming the 
neighbors of iU  are iU −  and iU + , which can be found in the solution set u 
and their corresponding ζ  values: iζ

−  and iζ
+ . The linear interpolation es-

timate of iζ  is given by ( )( ) ( )î i i i i i i iU U U Uζ ζ ζ ζ− + − + − −= − − − + . 
3. After estimating all îζ , to avoid that `horizontally shift’ issue, design the 

intercept variables as the increments:  

{ } { }1 0 2 1 1 0 1 1
ˆ ˆ ˆ ˆ ˆ ˆ, , , : , , ,k k kT T T Tζ ζ ζ ζ ζ ζ − −= − − − = ∆ ∆ ∆� � . 

4. Repeat steps 1 to 3 until the intercept variables of all numerical solutions 
are generated. 

Table 1 shows sample input data generated from four intercept variables in U. 

2.2.4. Ensemble Model with Linear Machine Learning Algorithms 
In our approach, prediction of the traveling wave velocity is a regression task; 
therefore, we propose using existing ensemble techniques along with the follow-
ing common linear models: 

1) Linear regression: This is one of the most famous methods, which is easy 
to calculate and apply. It considers the problem of finding the column vector β  
in y X β ε= + , which can be formulated as: 

2

2min ,
w

Xw y−
 

where X represents the input data, w is the vector of weights, and y is the target 
variable. If there is a positivity constraint in linear regression, in which all coeffi-
cients must be positive except the intercept, we solve the following optimization 
problem: 

2

2min subject to .
w

Xw y w− ≥ 0
 

2) Ridge regression/Tikhonov regularization: Due to multicollinearity in  
 

Table 1. One sample variables table contains 4 intercept variables with  
{ }0.05,0.35,0.65,0.95U = , velocity V from 2 to 10, time relaxation ε  from 0 to 

20.99 V , and 0γ = . 

0T∆  1T∆  2T∆  3T∆  V ε  

3.198128 1.878075 2.082083 4.596184 2.0 0 

3.186127 1.884075 2.076083 4.596184 2.0 0.001244 

3.198128 1.878075 2.082083 4.596184 2.0 0.002487 

... ... ... ... ... ... 

19.614785 9.666387 9.720389 19.896796 10.0 0.0099 
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data, most people consider using ridge regression to avoid this issue by imposing 
a penalty on the size of the coefficients. One of the reasons it works is that it does 
not require unbiased estimators. This problem can be written as: 

2 2

2 2min ,
w

Xw y wα− +
 

where α  is a non-negative parameter that controls the degree of shrinkage. 
3) Lasso regression: “Lasso” stands for Least Absolute Shrinkage and Selec-

tion Operator. Similarly to Ridge regression, Lasso regression adds a penalty 
term to avoid multicollinearity problems, but unlike Ridge regression, it uses the 

1L  norm rather than the 2L  norm. We can express this problem as: 
2

2 1min ,
w

Xw y wα− +
 

where X represents the input data, w is the vector of weights, y represents the 
target variable, and the non-negative parameter α  controls the degree of 
shrinkage. 

4) Bayesian ridge regression: This method assumes that the output y comes 
from a probability distribution, rather than having a single value. We express 
this as: 

( ) ( )| , , | , ,P y X w N y Xwα α=  
where α  is a random variable estimated from the data. In practice, people use 
gamma distributions which are conjugated prior to the precision of the Gaussian 
distribution (focusing on two parameters: α  and λ ), rather than the normal 
distribution directly. 

5) Bayesian Automatic Relevance Determination (ARD) regression: This 
method is similar to Bayesian Ridge Regression but with sparse weights, con-
taining a weight matrix without spherical Gaussian distribution. This means that 
its coefficients iw  can be drawn from a normal distribution with zero mean 
and precision iλ : 

( ) ( )1| | 0, ,p w N w Aλ −=
 

where A is a positive definite diagonal matrix with ( ) { }1 2, , , ndiag A λ λ λ= � . 
6) Stochastic Gradient Descent (SGD) Regression: This is another popular 

gradient descent method. However, compared to regular gradient descent, it in-
duces randomness in the process. Due to this characteristic, SGD can randomly 
pick one data point from the whole set at each iteration, which reduces the 
computation time dramatically. 

The reason we chose these regression methods is that although linear regres-
sion is easy to apply, it is sensitive to outliers and is prone to noise and overfit-
ting. Therefore, to reduce the effects of such overfitting, we introduce other re-
gression methods such as Ridge and Lasso which add a penalty term, Bayesian 
Ridge which provides a confidence bound on predictions, and ARD regression 
which provides a sparser solution than Bayesian regression. Additionally, we al-
so applied the SGD regression due to its high speed of execution. 
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2.2.5. Embedding Method Process 
By using the previous ensemble model, the predicted velocity is very close to the 
true velocity, but its performance is still not good enough for relaxation time ε  
and parameter γ  prediction. Therefore, instead of using one ensemble model 
to predict all parameters, we applied an embedding method. Roughly, the 
process can be shown as is shown in Figure 2. 

There are several advantages to our approach: 
1) Low cost: In our model, during the training process, the range of velocities 

typically falls between 2 and 10, and a good initial guess of the velocity is one 
with an error less than about 10−3 compared to the true velocity. However, de-
signing a data set with velocities that have around 10−3 increments, considering 
the increments of ε  and γ , might give rise to more than one hundred thou-
sand different cases which makes the learning process too long to be practical. 
Our approach reduces the computational time and cost. 

2) Ease of application: Compared to optimization problem solvers, the en-
semble model approach is relatively easy to apply. We have already defined the 
structure of the ensemble model, so we can simply train another one using the 
embedded data. 

2.2.6. Main Process for Type 2 Inverse Problems 
In summary, similar to the previous case, we use an ensemble model to predict a 
good initial value of the traveling wave velocity. After that, we not only solve the 
optimization problem (11), but also apply the embedding method to predict the 
parameters. The whole process can be summarized in Figure 3. 

3. Results 

In this section, we present some key numerical solutions of the traveling wave  
 

 
Figure 2. A schematic diagram of the embedding process: the original training set considers the velocity range from 2 to 10. After 

0V  prediction, generate new training set with a velocity from 0V α−  to 0V α+  where α  is a small value. 
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Figure 3. A schematic representation of the type 2 inverse problem. 

 
problem, consider it in the phase plane, and characterize the performance of the 
parameter estimation methods from a given solution. We include both types of 
inverse problems where both u and q are available or when only the u profile is 
given. 

3.1. Traveling Wave Solutions 

To solve the nonlinear Equation (8), we can use standard ODE solvers such as 
Python SciPy’s “odeint”. The pair of coupled equations can be written in terms 
of u and u’ (which constitutes the phase plane) or in terms of u and q: 
• In terms of density and its derivative: 

( )( ) ( )
2

2

,
2 , 0 1 .1 1

1

u w
V V

w F u Vw F u
V

ε
ε

ε

′ =
 ≤ ≤ <  ′ ′= − +  −  

• In terms of density and flux when 0ε = : 

( )
2 , 0 1.

u q
V

q F u Vq
γ

′ = − ≤ ≤ < ′ = −  
• In terms of density and flux when 0ε ≠ : 

( )

( )

2
2

2

1
1 2 , 0 1 .
1 1

1

u VF u q
V V V

q VF u q q
V V

ε
ε ε

ε
ε ε

 ′  = −  − ≤ < <
  ′  = − +   −   

Figure 4 displays some examples of the phase plane and numerical solutions 
of u with ( ) ( )1F u u u= −  and 0ε = . The fixed points are along the horizontal 
axis in the left panels at 0u =  and 1u = . They are marked with red dots in the 
figure. The heteroclinic trajectory connecting them in the phase plane is the tra-
velling wave solution along which u decreases from 1 to 0. It is clear that when 
0 2V< < , the point 0u =  is a stable spiral and 1u =  is a saddle point, and 
when 2V > , 0u =  become a stable node while 1u =  remains a saddle point. 
In both cases, starting very close to the saddle point along the heteroclinic tra-
jectory and moving toward the attracting fixed point, u starts at 1, but when the 
attracting fixed point is a spiral, the profile oscillates about 0 before ending up at 
that fixed point (top right panel), while when the fixed point at zero is a node, 
the profile decreases monotonically without oscillation (bottom right panel). If u  
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Figure 4. This figure shows two examples of phase plane and numerical solution of system (4) where the non-linear function 
( ) ( )1F u u u= −  with 0ε =  and different velocity V. The first example shows the phase plane with the case V = 0.5, and the 

numerical solution with the velocity V = 0.3, 0.6, 0.9, 1.2, 1.5; The second example shows the phase plane where V = 2 and its nu-
merical solution with the velocity V = 2, 4, 6, 8, 10. 
 

represents a density variable that cannot be negative, only the latter case is phys-
ical. That is the reason we restrict our attention to the traveling wave velocity 
range 2V > . 

In Figure 5 we show another solution using the ( ),u q  formulation when 
10V = , 0ε =  and 0.8γ = . When starting very close to 1u = , it takes a much 

longer range of ζ  to see the variation of u toward zero in this case. 

3.2. Parameter Estimation 
3.2.1. Type 1 Inverse Problem 
The Type 1 problem is the one where both u and q profiles are given. As ex-
plained earlier, we take that portion of the density profile ( )u ζ  for which u is 
from 0.95 to 0.05. In our tests, we focus on the parameter ranges given in Table 
2. 
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Figure 5. Numerical solution of u and q with 10V = , 0ε = , and 0.8γ = . 
 

Table 2. Type 1 inverse problem parameters test table. 

 Range Number 

Velocity V 2 10V≤ ≤  50 

Relaxation time ε  20 1 Vε≤ <  5 

Parameter γ  0 0.8γ≤ ≤  20 

 
Table 3. Type 1 inverse problem performance table. 

 RMSE 

Velocity V 4.368 × 10−6 

Relaxation time ε  7.479 × 10−5 

Parameter γ  1.356 × 10−6 

 
Overall, there are 5000 cases in this experiment, and for each case, there may 

be a few hundred to a few thousand points for the specific range of u and the 
corresponding q. Table 3 gives the root mean square error values in the esti-
mates of the three parameters over all the cases. The performance is excellent. 
However, if the data comes not from a numerical but from a physical experi-
ment in which only the density u and not the flux q can be measured in a travel-
ing wave front, the parameter estimation process is more challenging. We dis-
cuss that case as the Type 2 inverse problem later in this section. 

To further explore the characteristics of the method, in the following three 
figures, we show the performance in more detail in cases where two of the three 
parameters V, ε , and γ  are fixed while the third varies. 

In Figure 6, ε  and γ  are fixed while V is allowed to range from 2 to 10. 
The three panels compare the predicted values of the three parameters to their 
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true counterparts. The agreement is very good. Note that in the rightmost panel, 
the vertical axis scale is showing the difference between the true solution of 

0.5γ =  and the predicted solution, with the range being from 0 to 10−6, indi-
cating excellent agreement. This is indicated by the notation above the top left of 
the plot. Figure 7 and Figure 8 show similar comparisons where ε  and γ  are 
respectively varied while the other two parameters are fixed. In the panels with 
the notation above the top left of the plot, the difference between true and pre-
dicted values is being plotted. 

3.2.2. Type 2 Inverse Problem 
In this part, in addition to characterizing the performance of the method, we al-
so apply an epistemic uncertainty analysis on velocity. To do so, we designed  

 

 
Figure 6. Type 1 inverse problem performance where 2 10V≤ ≤ , 0.009ε = , and 0.5γ = . 
 

 
Figure 7. Type 1 inverse problem performance where 2V = , 20 1 2ε≤ < , and 0.5γ = . 
 

 
Figure 8. Type 1 inverse problem performance where 5V = , 0.02ε = , and 0 0.8γ≤ ≤ . 
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two test data sets, in which the velocity of one set is within the same range as the 
training set but with different values, and for the other test set, the velocities are 
outside the training range, as listed in Table 4. The goal is to see how well the 
method performs in predicting the velocity values if they fall outside the range 
for which the method has been trained. 

In this experiment, there are 2500 cases in the training set, and 300 cases in-
side and outside test data. For each numerical solution, we have a few hundred 
to a few thousand data points at the chosen range of u depending on the value of 

maxζ  needed to obtain the full traveling front profile. 
The RMSE errors for both the optimization solver (see Table 5) and the em-

bedding method (see Table 6) are quite small, though the ones for the embed-
ding method are one or two orders of magnitude larger. However, as we men-
tioned above, the time savings associated with the embedding method may make 
it worthwhile as a viable alternative to the original optimization approach. Both 
methods are successful in predicting the velocities outside the range in which 
they were trained. In Figures 9-11 we provide comparisons of true and pre-
dicted values of the parameters, when two of them are fixed while the third va-
ries, as we did with the Type 1 inverse problem. Keep in mind that in the plots 
where there is a notation above the plot, it is the difference between true and 
predicted values that is being plotted. For the embedding method, the inside and  

 
Table 4. Parameter ranges for training and test sets. 

 Range Number 

Training velocity V 2 5V≤ ≤  25 

Inside test velocity V 2 5V≤ ≤  10 

Outside test velocity V 5 10V≤ ≤  10 

Relaxation time ε  20 1 Vε≤ <  5 

Parameter γ  0 0.8γ≤ ≤  20 

 
Table 5. Optimization solver inside/outside test performance table. 

 Inside test RMSE Outside test RMSE 

Velocity V 4.114 × 10−6 3.767 × 10−5 

Relaxation time ε  4.255 × 10−5 5.540 × 10−4 

Parameter γ  2.427 × 10−6 1.123 × 10−5 

 
Table 6. Embedding method inside/outside test performance table. 

 Inside test RMSE Outside test RMSE 

Velocity V 3.168 × 10−3 7.461 × 10−4 

Relaxation time ε  5.910 × 10−3 5.151 × 10−3 

Parameter γ  6.703 × 10−3 5.318 × 10−3 
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Figure 9. Type 2 inverse problem optimization method where 2 10V≤ ≤ , 0ε = , and 0.5γ = . 
 

 
Figure 10. Type 2 inverse problem optimization method where 3V = , 20 1 3ε≤ < , and 0.5γ = . 
 

 
Figure 11. Type 2 inverse problem optimization method where 3V = , 0ε = , and 0 0.8γ≤ ≤ . 

 
outside test performances are illustrated in Figure 12 and Figure 13. 

Overall, compared to the optimization problem solver, the performance of the  
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Figure 12. Type 2 inverse problem embedding method of inside test performance. 
 

 
Figure 13. Type 2 inverse problem embedding method of outside uncertain test performance. 
 

embedding method is not as good. However, both methods are acceptable with 
errors less than 10−3 for both inside and outside test cases. The embedding me-
thod is considerably faster. 

4. Discussion 

With a modified Fisher’s partial differential equation (PDE) as our test case, we 
have shown how the three parameters in this PDE can be inferred once a nu-
merical solution of the traveling wave profile is given. Ultimately, the goal is to 
be able to take experimental data on a traveling front and successfully determine 
the PDE that gave rise to that profile. 

In this paper, as proof-of-principle, we used a numerical solution of the PDE 
as a surrogate for actual experimental data. The traveling front can be characte-
rized in terms of a density profile that varies smoothly from one to zero across 
some distance (at a fixed time), or in time (at a fixed spatial location), and also a 
flux function that appears in the conservation equation for the density field. In 
most experiments, it is more likely that the density field is the only observable 
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quantity while the flux is not directly measured. As such, we considered two 
types of inverse problems, one in which both the density and flux profiles are 
known, and one where only the density profile is given. In the former case, a 
fairly robust method based on minimization of the variance of certain functions 
related to the density and flux could be used to infer the parameters accurately. 
When only the density profile is available, the inverse problem is more chal-
lenging, but using methods from machine learning, we were able to obtain satis-
factory estimates of the parameters from the solution. In our experiments, the 
number of points in the range where significant changes in the solution u occurs 
plays a crucial role in achieving low error, particularly when solving optimiza-
tion problems (10) and (11). Similarly, for the embedding method, building the 
second intercept variable training dataset with a higher density for each para-
meter leads to higher accuracy, but it also results in a longer training process. 

Overall, the performance of parameter estimation method for both cases is 
acceptable. However, there is still room for improvement in our model. Firstly, 
we did not introduce any extra noise in our data (there is some noise during the 
linear interpolation approximation), therefore, to study the effect of noise, future 
studies can add extra white noise to the solution of u before trying to infer the 
parameters. Secondly, we did not have access to actual traveling front data from 
a physical experiment to apply our method. Future work will focus on experi-
mental systems with traveling fronts or waves with the goal of finding the para-
meters in the PDE that gives rise to that wave, or the form of the PDE itself. 
Another research field is inverse problems based on the solutions of PDEs di-
rectly. In this kind of problem, parameters can be estimated by solving the linear 
equation tuζΦ = , where Φ  represents the library of terms related to u and its 
spatial derivatives that may appear on the right-hand side of the time-evolution 
equation for u, and ζ  represents the coefficient vector for the terms in that li-
brary. After estimating the coefficients, algorithms used to solve the inverse prob-
lem can be used to verify the accuracy of the solution. 
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Appendix 

A. Convexity analysis of ( )( )( )Var 1 1q u u u uγ′ ′− − −    
First, transform this into ( ) ( )( )2 3 2Var q u u u u u u γ′ ′ ′+ − − − ; then to simpl-

ify notation, define ( )2
1 q u u u′ ′= + −v , ( )3 2

2 u u u′= −v , and 1 2γ= −c v v . 
So, during the sample variance ( )2S c  and sample mean c  estimation, we 
have: 

Sample variance: ( ) ( )2 22

1

1 1 ,
1 1

n

i
i

S c c c
n n=

= − = −
− −∑c c 1  

Sample mean: T T

1

1 1 1 .
n

i
i

c c
n n n=

= = =∑ c c1 1  

where ⋅  is the 2-norm, and 1  is the 1n×  column vector all whose ele-
ments are 1. With that: 

( )
2

2 T

T
T T T

1 1
1

1 1 1 .
1

S
n n

n n n

= −
−

   = − −   −    

c c c

c I I c

11

11 11
 

Next define 
T

T T1 1D
n n

   = − −   
   

I I11 11 . It is clear that D is a symmetric 

matrix. Then, we have: 

( )2 T
1 2

T T 2 T
1 1 2 1 2 2

1
1

1 2 .
1

S D
n

D D D
n

γ

γ γ

− =
−

 = − + −

v v c c

v v v v v v
 

To simplify the notation, define constants T
1 2 2c D= v v , T

2 1 2c D= v v , 
T

3 1 1c D= v v , so the function being minimized can be written as  
( ) ( )2

1 2 32 1g c c c nγ γ γ = − + −  , and since 1 0c > , by the second-order deriva-
tive condition for convexity ( )g γ  is a convex function as 0 1γ≤ < . Next, we 
would like to check whether ( )g γ  is strongly convex. To do that, we define 

{ }, 0 1x y γ∈ ≤ < , then: 

( ) ( ) ( ) ( )2 2
1 2

1 2 ,
1

g y g x c y x c y x
n

 − = − − − −  

( )( ) ( )( )

( )

1 2

2
1 2 1 2

1 2 2
1

2 .
1

g x y x xc c y x
n

xyc yc x c xc
n

∇ − = − −
−

= − − +
−  

So that: 

( ) ( ) ( )( )

( ) ( )

( )

2 2 2
1 2 1 2 1 2

2
1

1 2 2 2 2 2
1

1 .
1

g y g x g x y x

c y x c y x c xy c y c x c x
n

c y x
n

− −∇ −

 = − − − − + + − −

= −
−  

Therefore, there exists a positive constant m such that: 
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( ) ( ) ( )( ) ( ) ( )2 21 .
1 2

c mg y g x g x y x y x y x
n

− −∇ − = − ≥ −
−  

Then, this function is strongly convex, and there always exists a unique solu-
tion for the following optimization problem: 

( ) 2
1 2 3

T T T
1 2 2 2 1 2 3 1 1

1minimize : 2
1

subject to : , , .

g c c c
n

c D c D c D

γ γ γ = − + −
= = =v v v v v v  

B. Convexity analysis of ( )( )Var a b c dε+ +  when V is fixed 
First, define vector ( ) [ ]T1, , nH Hε = ⋅⋅⋅H  where ( )i i i iH a b c ε= + , and 
= +k H d . From the previous proof, we have ( ) ( )2 T 1S D nε = −k k  and D is 

symmetric, therefore, for this case, we have the following results: 

( ) ( ) ( )

( )

T2 T

T T T

1 1
1 1

1 2 .
1

S D D
n n

D D D
n

ε = = + +
− −

= + +
−

k k H d H d

H H d H d d
 

Since V is fixed, Td d  would be a fixed constant and T Dd d  is non-negative. 
Therefore to minimize ( )2S ε , instead of solving the original function directly, 
we consider this minimize function ( ) T T2f D Dε = +H H d H . Next, from our 
numerical solutions, ( )2 1c b c bVε < <  is always true. Therefore we can ap-
ply geometric series in our equation, so that ( )εH  can be written as: 
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∑
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Therefore, we have the new minimization function ( )f ε : 

( )

( )

T T

T T

1 1 1

T

1 1 1

T 2 3
1 1 1

2

2
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2 .
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By the second-order derivative condition for convexity ( )f ε  is a convex 
function. Next, let’s prove that ( )f ε  is strongly convex. Like the previous 
proof, we define the same two variables { }2, 0 1x y Vε∈ ≤ < , and there exists a 
positive constant m such that: 

( ) ( ) ( )( ) ( ) ( )2 2T
1 1 .

2
mf y f x f x y x D y x y x− −∇ − = − ≥ −h h

 
Therefore, function ( )f ε  is strongly convex, and instead of the original op-

timization problem, we can solve the following problem which can get the same 
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results: 

( ) T 2
1 1 1

2

minimize : 2
1subject to : 0 .

f D D

V

ε ε ε

ε

= +

≤ <

h h d h
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