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Abstract 
It is well known that an integral is nothing but a continuous form of a sum. Is 
it possible to do the same thing with a product? The answer is yes and done 
for the first time in this publication. The new operator is called inteduct. As 
an integral is a proper tool to calculate the arithmetic mean of a function, the 
inteduct gives the geometric mean of a function. This defines a new branch of 
mathematics. Most applications may lay way ahead. Only some are discussed 
here. One is applying the inteduct to probability theory. There it is possible 
e.g., to determine a function for a life expectation rather than just a numerical 
value. Another application is to distinguish chaos from randomness within 
numerically given values. At least for the logistic map there exists a direct con-
nection between Lyapunov exponent and inteduct. To distinguish between 
chaos and randomness is particularly important in finance. While random-
ness implies ergodicity, chaos is non-ergodic. And many fundamental financial 
theories from portfolio theory to market efficiency require ergodicity. 
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1. Introduction 

Going back to Newton or Leibniz, an integral is a continuous generalization of a 
sum. Like the arithmetic average is a sum, the average value of a function can be 
expressed by an integral. 

It is a very different question whether there exists some analogy for a product. 
To scrutinize it is the main point of this publication. As the answer is yes, it is 
justified in its own right to publish about this new operator which we will call 
INTEDUCT (as a merger of integral and product). 

In Chapter 2 we will define the inteduct and give some analytic calculations 
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for an inteduct over some functions. It is comparable to a table of integrals 
which can be found in e.g. [1]. Like the integral gives the (arithmetic) average of 
an infinite number of functional values, the inteduct gives the geometric mean of 
an infinite number of functional values. As the geometric mean is defined for 
positive numbers only, so is the inteduct. In that sense the inteduct is the conti-
nuous generalization of the geometric mean. 

Inteduct and integral both give some average and both take an infinite 
amount of numbers as an input. However, in the case of an inteduct the number 
is countable infinite ( 0ℵ ) while the integral needs non-countable infinite num-
bers ( 1ℵ ). An integral over a function showing functional values for rational 
numbers only (e.g. Dirichlet function) does not exist as a Riemann integral. 
With a Lebesgue integral the result will always be zero. In that sense an integral 
over a probability distribution is always zero as probabilities are by definition ra-
tional number (number of possible states divided by number of all states). In re-
ality one continuously adds the irrational numbers in a probability distribution 
which looks arbitrary. Taking the integral over that distribution gives results 
which are in perfect accordance with very many experiments. One has to ask, 
whether this is pure luck. Though the inteduct is no panacea to solve this con-
tradiction, it is at least a measure which can deal with rational numbers only. 
Only recently [2] [3] some questions were raised. Comparing random numbers 
between 0 and 1 to chaotically varying numbers as given by e.g. a logistic map 
(29) shows no differences at first glance. Statistical properties like average and 
variance are identical. However, some limits are completely different. Further-
more, random numbers are ergodic, which is a prerequisite for many statistical 
considerations in finance from portfolio theory [4] to Fama’s market efficiency 
[5]. As one knows from [6] or [7], fluctuations in e.g. stock prices vary chaoti-
cally rather than randomly. So there is no ergodicity. If the values are created by 
a mathematical formula like the logistic map (37), there are mathematical tools 
(e.g. Lyapunov exponent or Hausdorff dimension) to determine the degree of 
chaos. However, stock prices (and also radio signals from outer space) are given 
by observations rather than formulas. To distinguish between randomness or 
chaotic behavior is at least extremely difficult. This brings us to the application 
discussed in Chapter 3.2. There we show that at least within the logistic map 
there is a direct connection between Lyapunov exponent and the inteduct over 
the values. How it is for other chaotic systems is so far unclear and left for future 
work. From this it is clear, that most applications of an inteduct are to solve 
problems to be discovered in the future. To the best of the knowledge of the au-
thors this is the first time such product operator is discussed in a publication. 

In Chapter 3.1., we have a more back-to-earth application. As probabilities are 
positive numbers, the inteduct should have applications in probability theory 
especially when probabilities are multiplied. In Chapter 3.1., we consider a mor-
tality table. It has normal annual values (e.g. Table 1). From these given values 
e.g., the probability of reaching a certain age can be calculated. As the probabili-
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ties in a mortality table are discrete measured values, the life expectation is just a 
number determined numerically. However, the values of a mortality table can be 
fitted. Via inteduct one can give a functional form of the average life expectation. 

We close with short conclusions in Chapter 4. There we also discuss future 
work. 

2. Definition and Theorems 

An integral is nothing but a sum with an infinite number of summands and es-
pecially infinitely small summands. Its geometric interpretation is an area A un-
der the graph of a function ( )f x  between a and b: 

( )d
b

a

A x f x= ∫                          (1) 

Maybe more interesting for many applications is the average value of ( )f x  
between a and b: 

( )1 d
b

a

x f x
b a− ∫                          (2) 

An area under a curve (1) and average (2) are well known even in high school 
mathematics. There are standard books [1] on it. Especially when scrutinizing 
the average, there are also more recent considerations [2]. 

The integral is a linear measure. There are also non-linear averages. There is e. 
g. a geometric mean. Having N variables kx  (k runs from 1 to N) the geometric 
mean is defined as: 

{ } { }
1

1

min max
NN

k k k
k

x x x
=

 ≤ ≤ 
 
∏                  (3) 

Of course, all 0kx > . The inequalities in (3) are trivial. The geometric inter-
pretation of (3) is as follows. Having an N dimensional cuboid, the geometric 
mean of (3) is nothing but the edge length of an N dimensional cube having the 
same volume as the original cuboid. So far this is also high school mathematics 
and it can be found in textbooks such as [1]. Please note that the average in (2) is 
continuous while the (geometric) mean in (3) is discrete. Making (3) continuous 
is the main purpose of this paper. 

Considering a function ( )f x  within an interval [ ],x a b∈  and ( ) 0f x >  

[ ],x a b∀ ∈ , one may divide the interval [ ],a b  in smaller and smaller pieces 
leading to the definition of inteduct: 

( ) ( )
1

1

  0
lim

x n n

na b k

kf x f a b a
n

+

→∞ =

  ≡ + ⋅ −  
  

∏ ∏               (4) 

The sign Π for the inteduct is chosen for convenience as it exists in Word and 
LaTeX as an operator for product. There is an infinite number of continuous 
transformations of 

→∑ ∫                            (5) 
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Figure 1. Suggestion for an inteduct operator of a function of x between a and b. 

 
So there is no strict construction for a symbol for inteduct. However, with 

some handwaving argumentation one may conclude from (5) that is a reasona-
ble symbol. However, more important than the symbol of Figure 1 is the mean-
ing of (4). It is the continuous form of a geometric mean just like (2) is the con-
tinuous form of the discrete summation average. Like in the case of the ordinary 
geometric mean, (3) is the edge length of a cube of infinite dimension having the 
same volume as a cuboid of infinite dimension having the edge lengths ( )f x . 
Though (2) and (4) give some form of average, there is a fundamental difference 
between (2) and (4). It is of minor importance that (2) is a linear operation while 
(4) is not. Both, (2) and (4) consider an infinite number of functional values of 
( )f x . However, in (4) it is countable infinite and in (2) it is not. This limitation 

of (2) is mostly ignored. Some remarks can be found in [2] or [3], respectively. 
An integral like (1) is often used in probability theory. A probability is by defini-
tion a rational number. Taking the integral of (1) only over rational values of 
( )f x  will yield always to a result identical to zero. Strictly speaking, applying 

an integral in probability theory has serious flaws. However, as reality shows that 
using the integral appears to be mostly correct. But especially when chaos is in-
volved (cf. [2] or [3]) some limitations become obvious. The same would be true 
for quantum mechanics when integrating over an infinite number of states. 
Again, the number of states may be infinite but it is always countable infinite. 
This indicates that the main applications of the inteduct lay way ahead. Maybe it 
has even applications where ordinary numbers fail such as describing games like 
go (a game played with black and white pieces on a board of 361 crosses) or 
chess where surreal numbers appear promising ([8] [9]) or while treating things 
like envy quantitatively where at least real numbers fail [10]. 

But now back to the inteduct of (4). It exits when the limit in (4) exits. In what 
follows we give sum formulas on how to calculate an inteduct analytically. For 
( ) constantf x =  the inteduct is identical to this constant. For ( )f x x=  (and 

0 a b< < ) we have 

( )
1

1

   0
lim

x n n

na b k

kx a b a
n

+

→∞ =

 = + ⋅ − 
 

∏ ∏                   (6) 

One can write 

( )
11

1 11 1
1

0
1 ,

n
n nn n

n
h

k

k b a a na b a a P n
n n b a

++ +
+

=

−  ⋅      + ⋅ − = ⋅ +      −      
∏       (7) 

where the Pochhammer symbol is defined as: 
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( ) ( ) ( ) ( )
( )

, 1 1h

x n
P x n x x x n

x
Γ +

≡ ⋅ + ⋅ ⋅ + − =
Γ

�             (8) 

Expressing the Pochhammer symbol by gamma functions and using a genera-
lized Stirling formula 

( ) ( ) ( )1 2 12 e e with 0 if 0
12

xx xx x x x
x

µ µ−− −Γ = π < < >         (9) 

one ends up with 

( )
1

0

1lim
e

b
n a bn

bn k b a

k ba b a
n

a

−

→∞ = −

  + ⋅ − = ⋅  
  

∏                (10) 

Because 

( )( ) ( )( ) ( )( )
1 1 1 11

1lim , , lim , , lim , ,
O

n n n n
n n n

f a b n f a b n f a b n
  ⋅ +  +   

→∞ →∞ →∞
= =     (11) 

One may change the exponent 1 n  in (10) to 1 1n +  and get eventually 

   

1
e

b
x a b

b
a b b a

bx
a

−

−

= ⋅∏                         (12) 

Trivially we have 

( ) ( ) ( ) ( )
         

x x x

a b a b a b
f x g x f x g x⋅ = ⋅∏ ∏ ∏                (13) 

And with a b c< <  

( ) ( ) ( )
         

b a c b
x x xc a c a

a c a b b c
f x f x f x

− −
− −   = ⋅   

   
∏ ∏ ∏              (14) 

From (12) with (13) one easily gets 

   

1
e

mb
x b a

m
m ma

a b b a

bx
a

−

−

= ⋅∏                        (15) 

Furthermore as e e ea b a b+⋅ =  we have 

   
e exp

2

x
m x

a b

a bm⋅ + = ⋅ 
 

∏                     (16) 

In the same way one gets 

2
2 2

   
e exp

3

x
m x

a b

a a b bm− ⋅  + ⋅ +
= − ⋅ 

 
∏                (17) 

With (13) to (17) it is now possible to take the inteduct over a variety of 
product like functions. It comes as no surprise that it is not simple to calculate 
an inteduct over a sum of functions. With the Chebichev inequality [1]  
( ) ( ) ( )1 2 1 2 1 1 2 22a a b b a b a b+ ⋅ + ≤ ⋅ ⋅ + ⋅  we can just show 

( ) ( ) ( ) ( )
         

2
x x x

a b a b a b
f x g x f x g x + ≤ ⋅ + 

 
∏ ∏ ∏              (18) 
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It is clear that the inteduct does exist over a uniformly continuous function. 
That does not mean that the inteduct does not exist for not uniformly conti-
nuous functions. Consider the slightly changed Dirichlet function 

( )
1

fur

2

x
D x

x

+

+

 ∈


= 
 ∈

��


 
                   (19) 

This function is nowhere continuous and of course not uniformly continuous. 
The Riemann integral does not exist. The inteduct 

( )
0   

1
fur

2

y

x

x
D y

x

+

+

 ∈


= 
 ∈

∏ ��


 
                  (20) 

is again a Dirichlet function. Though it is formally possible to take an inteduct of 
a Dirichlet function, the result should not be taken too seriously. The Dirichlet 
function of (19) has an average of 2 as can be shown by taking the Lebesgue 
integral. It is also plausible as most functional values are 2. The inteduct essen-
tially shows that a geometric mean does not exist here (at least if calculated by an 
inteduct). 

In order to see how the averaging with (2) or (4), respectively works consider 
the function 

( ) sin with 1f x a x a= + >                   (21) 

The averages via integral or inteduct, respectively are given by: 

( ) ( )
0

1 d
0

x

F x y f y
x

=
− ∫                     (22) 

( ) ( )
0   

y

x
x f y=∏F                        (23) 

(22) can be easily calculated to 

( ) 1 cos xF x a
x

−
= +                      (24) 

(23) is more cumbersome to calculate. It can be expressed by a complicated 
series 

( )
1

1

2 3
0

1 1 1lim 1 sin "double" "triple"
n n

n k

kx a x
a n a a

+

→∞ =

  = + + + +  
  

∑ ∑ ∑ �F  (25) 

The exact form of the dummies “double”, “triple”, and so forth can be found 
elsewhere. They are of no particular interest as the limit in (25) must be taken 
numerically anyway. E.g. 2a =  one can plot the result in Figure 2. 

Without surprise both averages go to a (here 2) if x →∞ . 
So far we have shown how an inteduct is defined and how to calculate it. In 

chapter 3 we will discuss some applications. 
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Figure 2. Average via inteduct ( ( )xF ) and integral ( ( )F x ), respectively. 

3. Applications 

In this chapter we will discuss applications of the newly defined inteduct. Please 
note that there may be many more. In 3.1 we will show how the inteduct is use-
ful in ordinary probability theory. As probabilities are by definition positive, it is 
clear that an inteduct might be suitable here. In 3.2 we will discuss possible ap-
plications to scrutinize chaos. 

3.1. Application to Mortality Table 

A mortality table gives the probability (likelihood) to die in your first year on 
earth, second year, and so forth. For sure it depends on gender, time and coun-
try as an example please see Table 1. It is normally even taught in high school 
how to calculate an average age or life expectation from it. Given a birth rate, it 
is slightly more advanced to calculate an age distribution. The probability ( )p τ  
to reach a certain age τ  is e.g. given by: 

( ) ( )
1
1 d

t
p p t

τ

τ
=

= −∏                       (26) 

Of course, it is not possible to construct a function ( )p τ  via (26). It gives 
just the numerical values. As the ( )dp τ  are given numerically anyway, this is 
sufficient for most practical purposes. 

Though it may be sufficient to express the mortality of Table 1 within steps of 
one year, it is of course possible to express it finer and finer leading to a continuous 
function eventually. An almost perfect fit of the dp  of Table 1 is given by1 

( )1 with 184.225 and 8.48029 years
exp

dp t
t

α α τ
α

τ

− = ≈ ≈
+

     (27) 

 

 

1It follows from a non-linear least square fit. Except for the first couple of years it fits almost perfect-
ly here. These early years are of little quantitative importance in most cases. They can be included 
easily be a slightly more complicated fit. 
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Table 1. Mortality table, men 2014/16 Germany, source:Statistisches Bundesamt. 

Year up to age of τ Probability pd (τ) to die within that year 

1 3.5 × 10−3 

2 2.7 × 10−4 

3 1.6 × 10−4 

… … 

11 7.8 × 10−5 

… … 

98 0.34 

99 0.36 

100 0.38 

 
The main point of (27) is that we have a function now. Instead of (26) we can 

write the probability ( )p T  to live up to the age of T as an inteduct: 

( )
0   exp

T

t

T
p T

t
α

α
τ

 
 

=  
 + 
 

∏                     (28) 

We have now a real function ( )p T  which can be calculated numerically 
with arbitrary precision. 

3.2. The Inteduct to Scrutinize Chaos 

As a second example one may look to chaos as defined in textbooks like [11]. 
Our focus here lies in applied situations in business and economics as can be 
found [6] [7] and [12] [13]. In such situations there is no given formula and one 
cannot calculate e.g. the Lyapunov exponent or a fractal dimension to prove 
chaos. There are just data of e.g. stock prices. They are often assumed to vary 
randomly. However, in reality they are chaotic. This makes a huge difference, as 
randomness implies ergodicity while chaos is not ergodic. The consequences are 
various. Just see [6]. 

More generally speaking, it is next to impossible to decide for experimental 
data (be it stock prices or radio signals from outer space) whether they are ran-
dom or chaotic. To scrutinize it further consider the archetype of chaotic num-
bers (logistic map): 

( )1 4 1n n nx x x+ = ⋅ ⋅ −                      (29) 

The nx  are chaotic as long as the starting value 0x  fulfills the following 
conditions: 

0 0 0
10 1 and 1 cos with
2 2kx x k π  < < ≠ − ∈  

  
         (30) 

It is easy to prove that (29) leads to a Lyapunov exponent of ln 2  and a 
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Hausdorff dimension 4 3D = .2 (see e.g. [2]) Consider in contrast random 
numbers iz  within an interval ( )0,1 . Their Hausdorff dimension is 2 which 
proves them as non-chaotic. 

As the nx  and iz  are mathematically defined objects, it is easy to prove or 
disprove chaos. Given a set of numbers nx  and iz  numerically, they are very 
hard to distinguish. One will e.g. end up with 

0

1 1lim
1 2

n

in i
z

n→∞ =

=
+ ∑                       (31) 

0

1 1lim
1 2

n

in i
x

n→∞ =

=
+ ∑                       (32) 

in a numerical calculation. Statistically the sets of iz  and ix  are indistin-
guishable. However, building the geometric mean one gets 

1
1

0
lim does not exist

n n

in k
z

+

→∞ =

  → 
 
∏                  (33) 

1
1

0

1lim
2

n n

in k
x

+

→∞ =

  = 
 
∏                       (34) 

Please note that (34) converges quite slowly. For 10.000n =  one just obtains 
≈ 0.46. (33) looks numerically as if it would converge. For 50.000 100.000n≤ ≤  
one typically gets 0.366 ± 1.02 × 10−3. 

(33) and (34) show that the continuous geometric mean or better inteduct 
does exist for chaotic numbers of the logistic map but not for random numbers. 
It is left to future work whether this applies to all sets of chaotic numbers or at 
least what kind of chaotic maps it applies to. 

For more details for the detection of chaos via inteduct please consider the 
following. A useful approach would be to describe an iterative map like e.g. (29) 
by a function ( )nf x . In the case of the logistic map 0x x=  and ( )n nf x x= . 
The Lyapunov exponent ( )xλ  as defined in e.g. [11] is then given by 

( ) ( )d1lim ln
d
n

n

f x
x

n x
λ

→∞
=                     (35) 

As ( ) ( )( ) ( )( )( )1 1 1 1 2n n nf x f f x f f f x− −= = =�  and by applying the chain 
rule one gets 

( ) ( ) ( )
1

1 1

1 1

d d1lim ln lim ln
d d

n n n
n i n i

n ni in i n i

f f f f
x

n f f
λ − −

→∞ →∞= =− −

= =∏ ∏          (36) 

For a generalized logistic map 

( )1 1n n nx a x x+ = ⋅ ⋅ −                       (37) 

We have ( ) ( )1 1f x a x x= ⋅ ⋅ −  and therefore 

 

 

2Of course, one has to map the numbers nx  of (29) to an interval [ ]0,1  where 0 corresponds to 

0x  and 1 to nx →∞ . In this sense (29) is a function mapping ( )0,1  on ( )0,1 . The random numbers 

iz  can be considered in the same way. 
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( )
1

1
ln lim ln 1 2

n n

n in i
x a fλ −→∞ =

 = + − ⋅ 
 
∏                (38) 

As the logistic map is symmetric around 1/2, the limit in (34) is identical to 
the limit in (38). Therefore there exists at least for the logistic map a direct con-
nection between Lyapunov exponent and inteduct. In other words, at least for 
the logistic map the Lyapunov exponent can be calculated by an inteduct, cf. 
(34). The main importance of it is that the Lyapunov exponent defined in (35) 
needs a mathematical function (e.g. logistic map) to be calculated. The inteduct 
can be calculated from measured numbers. It is left to future work to show a 
connection between the Lyapunov exponent and inteduct via (36). But this will 
be far from straight forward. 

4. Conclusions and Future Work 

We have shown that it is possible to define (see (4)) an inteduct which is a con-
tinuous generalization of the geometric mean just like the integral is the conti-
nuous generalization of the arithmetic average. In (12) and (15) to (17) we give 
analytic calculations of an inteduct for some functions. (13) and (14) show how 
to handle a product of functions or how to split the path the inteduct is running, 
respectively. 

The most obvious application lies in treating statistics. Probabilities are posi-
tive numbers by definition. So an inteduct is always well defined. We show just 
one example in Chapter 3.1 (mortality table). 

In 3.2 we have shown a direct connection between Lyapunov exponent and 
inteduct for a logistic map (37). To extend this to other maps would be a great 
step forward. Probably it will not be possible to show it for any map. Maybe cer-
tain properties and especially symmetries are required. But this is all left to fu-
ture work. 

Maybe most important is the fact that an inteduct is a new measure complete-
ly independent from integral. It may have applications where standard analysis 
fails such as particular situations in game theory [10] or even describing games 
like go or chess, cf. [8] or [9]. However, such and further speculations are also 
left for future work. 

As an inteduct is a generalization of a geometric mean, one should ask what a 
geometric mean is good for. There are some situations where the arithmetic mean 
is even ludicrous, cf. [2]. The geometric mean gives an average where it is more 
important that the individual values are similar. With that in mind it is possible 
to explain the Cob Douglas (production) function which will be scrutinized in3. 
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