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Abstract 
We consider the so-called Thomson problem which refers to finding the 
equilibrium distribution of a finite number of mutually repelling point 
charges on the surface of a sphere, but for the case where the sphere is re-
placed by a spheroid or ellipsoid. To get started, we first consider the problem 
in two dimensions, with point charges on circles (for which the equilibrium 
distribution is intuitively obvious) and ellipses. We then generalize the ap-
proach to the three-dimensional case of an ellipsoid. The method we use is to 
begin with a random distribution of charges on the surface and allow each 
point charge to move tangentially to the surface due to the sum of all Cou-
lomb forces it feels from the other charges. Deriving the proper equations of 
motion requires using a projection operator to project the total force on each 
point charge onto the tangent plane of the surface. The position vectors then 
evolve and find their final equilibrium distribution naturally. For the case of 
ellipses and ellipsoids or spheroids, we find that multiple distinct equilibria 
are possible for certain numbers of charges, depending on the starting condi-
tions. We characterize these based on their total potential energies. Some of 
the equilibria found turn out to represent local minima in the potential ener-
gy landscape, while others represent the global minimum. We devise a me-
thod based on comparing the moment-of-inertia tensors of the final configu-
rations to distinguish them from one another. 
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1. Introduction 

In this contribution, we consider the so-called Thomson Problem on an ellip-
soidal surface. What is the Thomson Problem? Nobel laureate J. J. Thomson 
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who was credited with the discovery of electrons was interested in the structure 
of the atom and considered the problem of distribution of point charges on the 
surface of a sphere [1] [2] [3]; problems of this type have since been referred to 
as the Thomson Problem. Prominent mathematician and Fields Medal winner 
Steve Smale included this as one of 18 problems worthy of further study during 
the current century. Given that N electrons are constrained to lie on a unit 
sphere, the goal was to find the equilibrium configuration having the minimum 
electrostatic potential energy labeled ( )U N  [4]-[8]. From Coulomb’s Law which 
states that the potential energy of a pair of charges is proportional to the reciprocal 
of their distance: ( )4 επ=ij i j o ijU e e r , assuming identical charges and scaling 
the energy with the pre-factor, the energy of N point charges takes the form 

( )
1 1

1 .
= = +

= ∑ ∑
N N

i j i ij

U N
r

                         (1) 

The global minimum of ( )U N  over all possible collections of N distinct 
points is typically found by some numerical minimization algorithm. For in-
stance, in the Thomson Problem for two electrons, the solution is obtained when 
they are as far apart as possible across a diameter of the sphere of unit radius, so 
that 12 2=r  or ( ) 22 1=U . 

The minimum energy configurations are known for different N. For the first 
few cases, the configurations are as follows: When 2=N , the electrons will be 
at antipodal points, across a great diameter of the sphere; for 3=N , the elec-
trons form the vertices of an equilateral triangle around a great circle; for N 
ranging from 4 through 7, the vertices respectively form a regular tetrahedron, a 
triangular bipyramid, a regular octahedron and a pentagonal bipyramid. 

Much work has been done on the Thomson Problem as a testing ground for 
various optimization algorithms [9]-[16]. Also, it is interesting to note that some 
physical applications, such as an atom model used in Quantum Mechanics, ap-
peared after Thomson. For instance, a recent reference [17] generalizes the clas-
sical Thomson problem to the quantum regime. Other examples include the 
structure of viruses [18] [19], the study of topological defects [20]-[25], and 
crystals on curved surfaces [24]. In addition, Millikan’s oil drop experiment 
which successfully measured the elementary charge of an electron could be 
thought of as being related to the Thomson Problem, since the few discrete 
charges on each oil drop likely distribute themselves on the surface of the spher-
ical oil drop [26]. A notable recent work [27] generalizes the Thomson Problem 
to curves in two dimensions, such as an ellipse. They find the minimum energy 
state of N point charges in that case and show possible multiplicity in the solu-
tions. We tackle this same problem and the corresponding 3D problem with an 
ellipsoid using a different methodology. Another recent reference [28] considers 
another variation on this problem. 

The significance of the present contribution is that it enables one to generalize 
the Thomson Problem to surfaces other than a sphere, and it also provides the 
dynamics, i.e., time evolution of the positions, instead of focusing on just the fi-
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nal equilibrium configuration that minimizes the energy. In the process, other 
equilibrium states that represent local minima in energy, rather than the global 
minimum, are also identified and their multiplicities explored. 

In the following sections, we formulate the equations for the time evolution of 
the positions of a finite number of point charges that are initially placed at ran-
dom on a curve or surface of a given constant shape. We start in two dimensions 
with the case of a circle and an ellipse, followed by the three-dimensional case of 
an ellipsoid. In each case, the problem can also be regarded as a constrained 
optimization where we seek to find the minimum Coulombic energy 

 
( ) 1

1 1

−

= = +∑ ∑N N
iji j i r , subject to the constraint that the particles must remain on the  

curve or surface of interest. While taking the gradient of the potential energy 
function with respect to the coordinates of the particles is straightforward, 
yielding the force on the particles, the constraint that the particles stay on the 
given surface makes it somewhat challenging to find the right evolution equa-
tions. We show below that there are two approaches to obtaining the appropriate 
evolution equations. Conceptually, they are as follows. Suppose the curve or 
surface that the particles must reside upon has unit normal n̂ . If the force on a 
particular particle, obtained by taking the negative gradient of the potential 
energy with respect to the particle position x , is denoted by F , in the absence 
of any constraints, the particle might move according to the evolution equation 
=x F , taking the particle velocity to be in the direction of the force exerted on 

it. However, in order to satisfy the constraint that the particle stays on the sur-
face of interest, one would have to modify that equation to:  

( )ˆ ˆ ˆ ˆ= − ⋅ = − ⋅x F nn F I nn F . That is, we subtract from the force any component 
it might have had in the direction of the local normal, and keep only the com-
ponents of the force tangent to the surface. Here, tensor ( )ˆ ˆ−I nn  is a projec-
tion operator that projects vector force F  onto the surface. To obtain the equ-
ations of motion, one can either directly use this vector evolution equation, or 
take its normal and tangential components that read: ˆ 0⋅ =n x  and 
ˆ ˆ⋅ = ⋅t x t F , where t̂  is the unit tangent to the surface. For a curve in two di-

mensions, there is just one unit tangent at each location. For a surface in three 
dimensions, there are two such unit tangents and the component along each of 
them should be taken. We show and compare these two formulations explicitly 
for the case of an ellipse but will use the simpler one in three dimensions for the 
case of an ellipsoid. In each case, we evolve the positions of the particles until 
they naturally find their local equilibrium state. 

2. Point Charges on a Circle 

We begin with the simple case of just two point charges. We take the first one to 
have position vector 1x  and the second 2x . Both are arbitrarily placed around 
a circle of scaled radius 1. The angle between the x-axis and vector 1x  is called 

1θ  and that with 2x  is called 2θ  as illustrated in Figure 1. There is a force on 
ion 1 by ion 2 which we call 21F ; that on ion 2 by ion 1 is 12F  where  
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Figure 1. A schematic of two particles on a circle. 

 

12 21= −F F . 
The position vectors of the two particles are given by: ( ) ( )1 1 1

ˆ ˆcos sinθ θ= +x i j  
and ( ) ( )2 2 2

ˆ ˆcos sinθ θ= +x i j . As such the vector 12r  connecting 1x  to 2x   
is given by ( ) ( ) ( ) ( )12 2 1 2 1

ˆ ˆcos cos sin sinθ θ θ θ= − + −      r i j , whose magnitude 

is ( ) ( )( ) ( ) ( )( )2 2
12 2 1 2 1cos cos sin sinθ θ θ θ= − + −r . The scaled Coulomb force  

on ion 2 by ion 1 is 3
12 12 12=F r r  which reduces to  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 1 2 1
12 2 2

2 1 2 1

3 2

ˆ ˆcos cos sin sin
.

cos cos sin sin

θ θ θ θ

θ θ θ θ

− + −
=
 − + −  

i j
F          (2) 

In this work, we aim to find the equilibrium distribution of point charges on a 
surface by allowing an initially random set of points on the surface to relax to 
their equilibrium under the action of the sum of forces acting on each of them. 
In particular, if the position vector of one of the charges is ( )x t  at time t, we 
allow it to move with a velocity x  proportional to the force acting on it. By 
scaling the time variable, the proportionality constant can always be taken to be 
unity so that =x F  with F  representing the sum of all forces on the point 
charge of interest. However, since we wish to restrict the points to remain on the 
surface of interest, we need to modify that equation to the form: ( )ˆ ˆ= − ⋅x I nn F . 
Here n̂  is the unit normal to the surface at the point x , I  is the unit (iden-
tity) tensor, and the projection operator ( )ˆ ˆ−I nn , when dotted with any vector, 
removes any component of that vector in the direction normal to the surface and 
leaves only the component tangential to the surface. As such, the velocity of the 
point charge is purely tangential to the surface as well and the evolution equa-
tion maintains the particles on the desired surface. 

With those in mind, the equations of motion for the two ions can be written 
as  

( )1 1 1 21 1 1 21
ˆ ˆˆ ˆ ,= − ⋅ = ⋅x I n n F t t F                    (3) 
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( )2 2 2 12 2 2 12
ˆ ˆˆ ˆ ,= − ⋅ = ⋅x I n n F t t F                   (4) 

where 1n̂  and 1̂t  are the normal and tangential unit vectors to the curve at 

1x , namely:  

( ) ( ) ( ) ( )
1 11 1 1 1 1 1

ˆ ˆ ˆ ˆˆˆ ˆ ˆcos sin , cos sin ,θθ θ
θ θ θ θ= = + = = −n e i j t e j ir  

with similar expressions at 2θ . The unit tensor I  in two dimensions is given 
by ˆ̂ ˆ̂ ˆ̂ˆ ˆ= + = +I ii jj nn tt . 

Using the above results, the tangential component of the force on ion 2, for 
instance, simplifies to:  

( )

( ) ( )( ) ( ) ( )( )
( )1 2

2 12 1 22 2 3 2

2 1 2 1

sinˆ , .
cos cos sin sin

θ θ
θ θ

θ θ θ θ

−
⋅ = ≡

 − + −  

t F F    (5) 

Here, we have defined a scalar function of two variables ( )1 2,θ θF  which will 
make it easier to write the equations of motion for point charges on a circle. It 
represents the tangential component (in the direction of increasing θ ) of the 
force by particle 1 (first argument of the function) on particle 2 (second argu-
ment). 

Since the particles move tangent to the circle, we have 1 1 1
ˆθ=x t   and 

2 2 2
ˆ θ=x t  . The above equations of motion therefore simplify to a system of two 

equations:  

( )1 2 1= , ,θ θ θ F                          (6) 

( )2 1 2, .θ θ θ= F                          (7) 

It is also straightforward to obtain the equations of motion for three or more 
particles by summing the pairwise forces. For instance, for the case of three par-
ticles we will have:  

( ) ( )1 2 1 3 1, , ,θ θ θ θ θ= + F F                     (8) 

( ) ( )2 1 2 3 2, , ,θ θ θ θ θ= + F F                     (9) 

( ) ( )3 1 3 2 3, , .θ θ θ θ θ= + F F                    (10) 

More generally, with N particles numbered from 1 to N, the equation of mo-
tion for the i-th particle is given by:  

( )
1,

, .θ θ θ
= ≠

= ∑

N

i j i
j j i

F                       (11) 

We use MATLAB to integrate these systems of equations for two or more par-
ticles starting with random initial positions of the point charges. As expected 
intuitively, in all cases the N point charges move in response to the repulsive 
forces from all their neighbors until they reach an equilibrium state in which 
they are uniformly spaced on the circle. To show just one illustration of this, in 
Figure 2 we show the dynamics of 5 point charges on a circle. To be able to track 
the dynamics in time, we use polar plots in which the radial coordinate represents 
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Figure 2. Trajectories of five particles on a circle. (a) Long-time equilibrium; (b) Initial 
transient. 
 
the time variable rather than the radius of the circle which is unity. The left pan-
el in the figure shows the dynamics over a longer time of up to 50. It is clear that 
the five charges have reached and stay at the vertices of a regular pentagon. The 
right panel, on the other hand, shows the shorter time dynamics up to a time of 
0.2, during which the five point charges gradually move apart along the unit cir-
cle due to the repulsive forces between them, creating curved paths in our polar 
plot. 

3. Point Charges on an Ellipse 

While the equilibrium position of repelling point charges on a circle can be tri-
vially guessed to be an arrangement that distributes the charges along the circle 
with equal arc segments between them, the situation for point charges on an el-
liptical curve is not so straightforward. In order to study this problem, let’s con-
sider an ellipse which is described by the equation  

2 2

2 2 1.+ =
x y
a b

                        (12) 

Without loss of generality, we can take either parameter a or b as our length 
scale (in effect taking it to be unity) and interpret the other as the dimensionless 
ratio of the semi-axis lengths of the ellipse. In the following, we take 1=b  and 
allow a to be a free parameter. When 1=a  we recover the circle shape; when 

1>a  we will have an ellipse whose length is in the horizontal direction is 
greater than its height in the vertical direction. 

While it is possible to parameterize the position of a point charge on the el-
lipse by one angle variable (i.e., one degree of freedom), it turns out to be easier 
to use the Cartesian coordinates of each point (two degrees of freedom) to track 
the particles. The two coordinates are constrained to lie on the curve described 
by Equation (12), so in actuality, there is still one degree of freedom per particle. 
If we start with two particles as before, with their position vectors and velocities 
given by ( ) ( ) ( )ˆ ˆ= +x i ji i it x t y t  and ˆ ˆ= +x i j  i i ix y  the Coulomb force on ion 1 
by ion 2 is:  
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( ) ( )
( ) ( )

1 2 1 21 2
21 3 2 2

1 2 1 2

2

2

3

1

ˆ ˆ
.

− + −−
= =

−  − + − 

i jx xf
x x

x x y y

x x y y
           (13) 

The normal and tangent vectors (not normalized) at any point ( ),x y  on the 
ellipse (with 1=b ) are given by:  

( ) ( )2 2ˆ ˆ ˆ ˆ  ,   .= + = − +n i j t i jx a y y x a              (14) 

If needed, these can be normalized by dividing each by ( )2 4 2+x a y . 

The equations of motion for the point charges can now be derived as follows. 
One approach is to take the equation of motion for each particle, say ion 1, 
which reads ( )1 1 1 21ˆ ˆ= − ⋅x I n n F , and obtain one equation by taking the tangen-
tial component of both side by dot multiplying with vector t ; noting that 
( )1 1ˆ ˆ⋅ − =t I n n t , this yields  

1 21⋅ = ⋅t x t F                         (15) 

which reduces to  

( ) ( ) ( )( )

( ) ( )

2
1 1 2 1 1 22

1 1 1 1 2 2
1 1 2

3

2

2 .
− − + −

− + =
 − + − 

 

y x x x a y y
y x x a y

x x y y
       (16) 

A second equation involving 1x  and 1y  can be obtained by taking the nor-
mal component of the equation of motion which reads, 1 1 0⋅ =n x ; this is the 
same as differentiating Equation (12) for the ellipse with respect to time, yielding  

2
21 1
1 1 1 12 20 0.+ = ⇒ + = 

x xy x y y
a a

               (17) 

A similar pair of equations can be obtained governing the evolution of ( )2x t  
and ( )2y t , together resulting in a system of 4 coupled equations for the motion 
of the two ions. 

Written in matrix form, these 4 equations are given by  

( ) ( )( )

( ) ( )

( )( )

( ) ( )

2
1 1 2 1 1 2

2 2
2 1 2 1 211 1

2
11 1

2 2
22 2 2 2 1 2 2 1

2
2 2 2

3 2

32 2
1

2

2 1 2

0 0
00 0

.
0 0 ( )
0 0

0

 − − + −
 
  − + − −     

     
     =     − − − + −     
       − + −  

 
 









y x x x a y y

x x y yxy x a
yx a y
xy x a y x x x a y y
yx a y

x x y y

 (18) 

The approach outlined above derives a pair of equations for the evolution of 
the Cartesian coordinates of each point charge, one equating the tangential ve-
locity of the particle to the tangential component of the force, and the other en-
suring that the particle stays on the ellipse as it moves. The resulting system of 
ODEs has a coefficient matrix on the left-hand side, multiplying the column 
vector of velocities. 

Alternatively, we can use the two components of the vector equation of mo-
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tion directly, without first taking its dot product with the local unit normal and 
tangent. In other words, for two particles, we start with ( )1 1 1 21ˆ ˆ= − ⋅x I n n F  for 
particle one. The right-hand side can be shown to be  

( ) ( ) ( )21 1 1 21 2 2 1 1 2 2 1 1
ˆ ˆˆ ˆ , ; , , ; , .− ⋅ = +F n n F i jf x y x y g x y x y         (19) 

where  

( )
( )( )( )

( ) ( ) ( )( )
2 2

3 2

2
1 1 1 2 2 1

2 1 2 24 2 2
1 1 1 2 1 2

1
, ,

− + −
=

+ − + −
r r

a y x a y y a x y
f

a y x x x y y
         (20) 

( )
( )( )( )

( ) ( ) ( )( )
2 2

1 2 1 1 1 2

2 1 2 24 2 2
1 1

3

1 2 1 2

2

1
, .

− − +
=

+ − + −
r r

x a x y x a y y
g

a y x x x y y
         (21) 

Here, we have defined the functions ( )2 2 1 1, ; ,f x y x y  and ( )2 2 1 1, ; ,g x y x y  
whose arguments we have abbreviated as ( )2 1,r rf  and ( )2 1,r rg . With their 
help, the equations of motion for the two particles give rise to the following sys-
tem of four coupled first-order differential equations:  

( )
( )
( )
( )

1 2 1

1 2 1

2 1 2

2 1 2

,

,

,

,

=


=


=
 =

r r

r r

r r

r r









x f

y g

x f

y g

                        (22) 

Equation (22) can be obtained from Equation (18) by inverting the coefficient 
matrix that appears on the left-hand side of the latter. For the case with N point 
charges, we would have 2N equations. In that case, the equations of motion for 
particle i take the form:  

( )
( )

1,

1,

,

,

= ≠

= ≠

 =


=

∑
∑

r r

r r





N
i j ij j i

N
i j ij j i

x f

y g
                     (23) 

Both approaches yield the same results for the dynamics of point particles on 
the ellipse. 

While tracking the positions of the particles on the curve or surface, it is also 
helpful to be able to monitor the total potential energy in the system and verify 
that it reaches a minimum as the system approaches its equilibrium. The elec-
trostatic energy of two point charges is given by ( )2 4 επ oq r  where r is the 
distance between the point charges of charge q each and εo  is the permittivity 
of vacuum. We can scale the energy with the factor out front so that it is simply 
given by 1/r for two particles. In free space, the minimum of that energy occurs 
when the two particles are infinitely far apart. When constrained to remain on a 
circle or sphere, they minimum occurs when they are across a diameter. For a 
system of N particles, the scaled total potential energy is the sum of the pairwise 
energies and would be given by Equation (1) where  

( ) ( )2 1 22 = − + −  ij i j i jr x x y y . 
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Results 

To illustrate a typical time evolution, for the case of two point charges and with 
3=a , in Figure 3 we show successive positions of the two particles (distin-

guished by their colors) at discrete time steps when their random initial posi-
tions start near each other close to the top portion of the ellipse. As expected, 
they move along the ellipse and after some time, they position themselves near 
the left and right ends of the ellipse, as far away from each other as possible. 

Next, we focus on the final equilibrium configuration of a few point charges as 
their number is varied. We choose 3=a  so the ellipse is elongated in the ho-
rizontal direction. In Figure 4, we display the equilibrium configurations of 3 to 
7 point charges, each starting with random initial positions and evolving to their 
final rest state which is being displayed. As we see, in many of the cases, the 
equilibrium configuration is not unique, though some of the configurations 
represent local minima in energy, rather than being the global minimum energy 
state of the system. 

Figure 4(a) shows the result for 3=N . At equilibrium, one particle is at the 
top of the ellipse, while the other two are near the left and right end points, but 
slightly below, forming an isosceles triangle. An identical configuration which is 
flipped upside down relative to this one is also obtained, depending on what ini-
tial conditions we begin with. Of course, the final energy minimum would be the 
same for these two configurations, given by PE 0.79= . 

Figure 4(b) and Figure 4(c) show two different final equilibrium configura-
tions of 4 point charges on this ellipse. In the latter configuration which has ref-
lection symmetry about the vertical axis, two of the particles are on the top  
 

 
Figure 3. Dynamics of two particles on an ellipse in the (x, y)-plane.  
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Figure 4. Equilibrium configurations of N particles on an ellipse in the (x, y)-plane. 
 
segment of the ellipse, closer to the middle, while the other two are near the 
right and left ends, but below. Connecting them would yield a regular trapezoid 
shape. The other configuration does not have the reflection symmetry. In that 
case connecting the four points produces a rhomboid shape. The potential ener-
gy for first case is 1.90 and for the second it is 2.02. 
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Figure 4(d) and Figure 4(e) show two different final equilibrium configura-
tions of 5 point charges. While both configurations have the reflection symmetry 
about the vertical, they are different in nature. In both cases, two of the particles 
are on one side (top or bottom) of the ellipse, and three on the other. But for the 
three particles on one side, in one case they are toward the middle, and in the 
other, one is in the middle and two are near the ends. Of course, in all these cas-
es, the flipped versions of these configurations are also possible but they are es-
sentially one of the two configurations displayed ( PE 3.9=  and PE 3.53= ). 

Figure 4(f) and Figure 4(g) display the equilibrium configurations of 6 point 
charges. As before, these two configurations are essentially different from each 
other, while flipped versions of each are also possible ( PE 5.66=  and 
PE 5.84= ). 

Finally, Figure 4(h) shows the equilibrium configuration of 7 point charges, 
three of which end up on one side of the ellipse (top or bottom) and found on 
the other side. In the side that has four, two are near the ends and two are closer 
to the middle ( PE 8.39= ). 

4. Point Charges on an Ellipsoid 

We now apply the same procedures that were described above to the problem of 
point charges on a three-dimensional ellipsoid. This surface in this case is de-
scribed by  

2 2 2

2 2 2 1.+ + =
x y z
a b c

                       (24) 

Later, without loss of generality, we choose our length scale so that one of the 
lengths is unity (i.e., 1=c ) and allow the other two parameters a and b to vary. 
When =a b , the ellipsoid reduces to an axisymmetric spheroid, a special case 
that we will also consider. When 1= =a b , this is a sphere and the original 
Thomson Problem is recovered. 

Proceeding in a manner similar to the ellipse case in two dimensions, we start 
with the position vectors and their derivatives in three dimensions:  

( ) ( ) ( ) ( )ˆ ˆ ˆ= + +x i j ki i i it x t y t z t  and ˆ ˆ ˆ= + +x i j k   i i i ix y z . The Coulomb force on 
ion 1 by ion 2 is:  

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 21 2
21 3 2 2 32

1 2 1 2 1

2

1 2 2

ˆ ˆ ˆ
.

− + − + −−
= =

−  − + − + − 

i j kx xF
x x

x x y y z z

x x y y z z
        (25) 

Also, the unit normal at any point on the ellipsoid is given by  

2 2 2

2 2 2

2 2

1 2

2

ˆ ˆ ˆ
ˆ .

     + +     
     =

      + +      
       

i j k
n

x y z
a b c

x y z
a b c

                  (26) 

After some careful algebra, the expression for the tangential force by particle 2 
on particle 1 becomes:  
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( ) ( ) ( ) ( )21 1 1 21 2 1 2 1 2 1
ˆ ˆ ˆˆ ˆ , , ,− ⋅ = + +F n n F i r r j r r k r rf g h           (27) 

where  

( )
( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

2 4 2 2 2 4 2 2 2 2 4 4 4 2 4 2
1 1 1 2 1 1 2 2 1 1

2 1 2 2 2 4 4 2 4 2 4 4 2
1 2 1 2 1 1

3

1

2

2 1

,
− + + − + − +

=
− + − + − + +

r r
a x b z z a c c z c y a b b c y y a x b z c y

f
x x y y z z a b z c y b c x

  

(28) 

( )
( )( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

2 4 2 2 2 2 4 2 2 2 2 2 4
1 1 1 2 2 1 1 1 2 1 2 1

2 1 2 2 2 4 4 2 4 2 4 4 2
1

3 2

2 1 2 1 2 1 1 1

,
− + − − − + +

=
− + − + − + +

r r
b a z y z b c c z b y z c x y a b b y a c x x y

g
x x y y z z a b z c y b c x

  

(29) 

( )
( )( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

2 4 2 2 2 2 4 2 2 2 2 2 4
1 2 1 1 1 2 1 1 2 1 2 1

2 1 2 2 2 4 4 2 4 2 4 4 2
1 2 1 1 1

3

2 1 1

2

2

,
− − + − − + +

=
− + − + − + +

r r
c a y b y z y z b c c z b x z a c c z a b x x z

h
x x y y z z a b z c y b c x

  

(30) 

The six equations of motion for the coordinates of the two particles are thus:  

( )
( )
( )
( )
( )
( )

1 2 1

1 2 1

1 2 1

2 1 2

2 1 2

2 1 2

,
,
,
,
,
,

 =
 =
 =
 =
 =


=

r r
r r
r r
r r
r r
r r













x f
y g
z h
x f
y g
z h

                        (31) 

For the general case with N particles, we have:  

( )
( )
( )

1,

1,

1,

,

,

,

= ≠

= ≠

= ≠

 =

 =


=

∑
∑
∑

r r

r r

r r







N
i j ij j i

N
i j ij j i

N
i j ij j i

x f

y g

z h

                    (32) 

with i ranging from 1 to N. 
The potential energy for the three-dimensional configurations is again given  

by Equation (1) with ( ) ( ) ( )2 2 12 2
 = − + − + −  ij i j i j i jr x x y y z z . 

Results 

If we set 1= = =a b c , the ellipsoid becomes a sphere of radius unity. This is the 
original Thomson Problem [29]. For all cases we examined, varying the number 
of particles, we recovered the known results of the Thomson Problem. For in-
stance, with five particles we obtain the triangular bipyramid analyzed by [30] in 
detail. 

The prolate spheroid is the case where the ellipsoid has 1= <a b  with 1=c . 
The spheroid is elongated along the z-axis while its horizontal cross sections are 
circles. We take 1 3= =a b  and show some of the results as the number of 
point charges varies. 
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Figure 5(a) and Figure 5(b) shows two different equilibrium configurations 
of four particles on the prolate spheroid. Similar to the case of four particles on 
the ellipse in 2D, these four particles can find two different equilibrium configu-
rations. In that equilibrium, the particles lie in the same plane and connecting 
them produces a rhomboid or regular trapezoid, like the 2D result shown earlier. 
For the case of five particles, we found one equilibrium configuration that is 
shown in Figure 5(c). These particles do not lie in a plane. 
 

 
Figure 5. Equilibrium configurations on a prolate spheroid in the (x, y, z)-space. 
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Next we consider an oblate spheroid. This is the case when 1= >a b . In this 
case, the spheroid would appear flattened along the z-axis. In Figure 6, we have 
shown two equilibrium configurations for the cases 3=N  and 5=N . In the 
top two panels, we see that at equilibrium three particles can arrange themselves 
around the equator of the spheroid forming an equilateral triangle, or one par-
ticle could find itself at one of the poles, with the other two on the other side of 
the spheroid but close to the equator, forming an isosceles triangle. Similarly, for 
five particles, one may find all five equally spaced around the equator, or have a 
particle at one of the poles and four close to the equator on the other side, form-
ing a pyramid with a square base. The triangular bipyramid that was the shape 
for five particles on the sphere does not form in this case. 

Finally, we consider the more general triaxial ellipsoid in which all three 
length parameters are different. We still set 1=c  and take 7=a  and 1 2=b  
as a test case. With 5=N  point charges, we find that they arrange themselves 
in a plane this time, and within that plane, their configuration is similar to one 
on the ellipse, with two of them on one side and close to the local pole, while the 
other three are on the other side, with two close to the ends and one at the pole. 
This is shown in Figure 7. 

5. Characterizing the Multiplicity of Equilibrium  
Configurations 

As we saw in the cases of point charges on an ellipse or ellipsoid, there were 
some cases that had more than one final equilibrium configuration. The potential  
 

 
Figure 6. Equilibrium configurations on an oblate spheroid in the (x, y, z)-space. 
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energies of those final configurations could be evaluated to see which one 
represents the true global minimum and which others represent local minima 
that are still at equilibrium but did not achieve the global minimum configura-
tion. It is thus apparent that the equilibrium configurations of N particles are not 
necessarily unique, having different energy levels. This is also observed in refer-
ences [12] [31] [32]. 

To see this more explicitly, let us consider the case of four point charges on an 
ellipse with parameter values 3=a  and 1=b . Starting with 4=N  and run-
ning the program over a hundred times with random starting positions of the 
four charges, we plotted the value of the Coulombic energy as a function of time 
all on the same graph, producing the one in Figure 8. If we focus on the tail end 
of these energy curves, we notice that they are all asymptotically approaching 
one of two possible values. The inset in the plot zooms in on the tail end to show 
the two asymptotes more clearly. The final equilibrium energy levels are nearly 
2.02 or 1.90, with a clear gap between the two. So the random starting configura-
tions all converge to one of two possible states whose final energy values are dif-
ferent but close. 

It is not always easy to compare the energy levels of the multiple equilibrium 
configurations since they may be very close to one another, and depending on  
 

 
Figure 7. Five particles on a triaxial ellipsoid in the (x, y, z)-space. 
 

 
Figure 8. Time variation of the potential energy of four particles on an ellipse with dif-
ferent initial configurations. The inset shows a blow-up of the tails of the curves.  
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the tolerance chosen for the numerical integration of the system of differential 
equations, the differences in energy may be obscured by the accuracy in the nu-
merical solution. As such, we sought other methods to be able to compare two or 
more final equilibrium configuration or arrangements of the N point charges. One 
method that proved successful was based on the concept of moment-of-inertial 
from classical mechanics. 

Once the N particles have found their final equilibrium state, in order to cal-
culate the moment-of-inertia tensor (matrix) of that configuration we proceed as 
follows. First we find the centroid or center-of-mass of the N particles, defined 
by  

1

1 .
=

= ∑r r
N

i
iN

                         (33) 

The x-, y- and z-coordinates of the centroid are just the arithmetic means of 
those of the N particles. The moment-of-inertia tensor is then defined by  

( )( )
1

1 .
=

= − −∑M r r r r
N

i i
iN

                  (34) 

In 3D, M  is equivalent to a symmetric 3-by-3 matrix. Its first diagonal 
component, for instance, is given by  

( )2
11

1

1 ,
=

= −∑
N

i
i

M x x
N

 

while the entries 12M  and 21M  are given by  

( )( )12 21
1

1 .
=

= = − −∑
N

i i
i

M M x x y y
N

 

In 2D, the moment-of-inertial matrix is a symmetric 2-by-2 matrix. Given the 
final configuration of the N particles in either 2D or 3D, we can calculate the 
moment-of-inertia tensor corresponding to that configuration. If a given ar-
rangement of particles is flipped or rotated as a rigid body, while the entries in 
the matrix will change, the principal moments of inertia which are the eigenva-
lues of that symmetric matrix do not change. Thus two configurations that are 
the same to within a solid-body rotation, or reflection across the vertical or ho-
rizontal line, yield identical eigenvalues, while configurations that are genuinely 
different give us different eigenvalues. 

When we carry out this process for the two different 4-particle configurations 
on the ellipse with 3=a , we find the principal moments of inertia to be (4.78, 
0.46) for one case, and (5.11, 0.29) in the other, better distinguishing one from 
the other. We have also applied the same procedure to 3D configurations on an 
ellipsoid and have been able to distinguish multiple equilibria from one another 
by comparing their three principal moments of inertia. 

6. Conclusions 

In this paper, we have provided an approach to finding the equilibrium configu-
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ration of N identical point charges that are constrained to reside on a particular 
surface. In 2D, we considered an ellipse and in 3D an ellipsoid. The latter gene-
ralizes the Thomson Problem from a sphere to the more general ellipsoid or 
spheroid shapes. 

Our approach is to follow the trajectories of the N points as each moves under 
the action of the repulsive forces from all the other points until they find their 
equilibrium, while maintaining the constraint that they should remain on the 
surface. This necessitates removing any component of the net force in the direc-
tion of the unit normal to the surface while writing the equations of motion. We 
presented two different approaches to achieve this. While the two formulations 
provide systems of differential equations that look different, they can be reduced 
to one another and the resulting dynamics are the same. 

By applying this method to cases of a few point charges on both ellipses and 
ellipsoids, we were able to obtain the equilibrium configurations. For the case of 
a circle, as expected the final equilibrium is one where the particles are equally 
spaced along the boundary of the circle. For the case of a sphere, the known con-
figurations for the Thomson Problem were recovered. But for the ellipse in 2D 
and the ellipsoid in 3D more interesting and complicated results emerged. In 
both cases, it was possible to find multiple different equilibrium configurations 
for certain values of N, the number of charges, depending on the starting ran-
dom positions. We devised a method to compare the configurations based on 
both their final Coulombic energy and based on the moment-of-inertia tensors 
associated with their final state. When multiple equilibria are possible, some 
have the lowest energy, representing the global minimum of the Coulombic 
energy. Others have slightly higher energy but represent a local minimum in 
configuration space. Finding the moment-of-inertia tensor and comparing the 
principal moments of inertia (eigenvalues of that symmetric tensor) can be used 
to distinguish the final equilibrium configurations, even when their energy levels 
are relatively close. 

One of the advantages of the approach introduced in this paper is having an 
explicit system of evolution equations that can begin with any given, possibly 
random, set of initial positions of the particles and allow the system to evolve on 
its own to obtain the final equilibrium configuration. With reasonable numbers 
of point charges, the computations are fast and reach the final steady state 
quickly. Smooth surface shapes such as spheroids and ellipsoids can be explored 
easily. Some limitations of the approach are that as the number of particles ap-
proaches many hundreds or thousands, the computations become slow and the 
system becomes stiff. In addition, only smooth surface geometries can be ex-
plored which precludes surfaces that have kinks or cusps. One of the promising 
directions for future research is to allow the particles to move into the bulk when 
their number density on the surface becomes too large. In that case, lower over-
all energy may be achieved when some of the particles move inside the domain 
rather than being forced to stay on the boundary. 
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